U.S. EPA Contaminated Site Cleanup Information (CLU-IN)


U.S. Environmental Protection Agency
U.S. EPA Technology Innovation and Field Services Division

Upcoming Live Web Events

More Information

Participant Comments

CLU-IN's ongoing series of Internet Seminars are free, web-based slide presentations with a companion audio portion. We provide two options for accessing the audio portion of the seminar: by phone line or streaming audio simulcast. More information and registration for all Internet Seminars is available by selecting the individual seminar below. Not able to make one of our live offerings? You may also view archived seminars.

 
 
February 2015
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
 
 
 
 
 
 
 
 

NARPM Presents...Analytical Laboratory Data - Electronic Data Assessment

In Superfund or other environmental clean-up and monitoring projects, data validation is the process of examining analytical data to ensure the data is precise, accurate, and adequate for the intended use. EPA Quality Policy requires that all environmental decisions are supported by data of known and documented quality, thus any data used to support Superfund site decisions should undergo some type of data validation.

Data validation can be expensive and labor-intensive, especially in the traditional format where hundreds of pages of analytical data and associated laboratory quality assurance and quality control information are examined manually by an experienced chemist, who then makes a determination on the usability of the data for the project. Although imperative, the data validation process can delay crucial site decisions and increase costs.

The mission of the EPA Contract Laboratory Program (CLP) is to provide data of known and documented quality for Superfund site decisions. The EPA CLP program uses the Electronic Data Evaluation and Exchange Software (EXES) tool for automated data review and evaluation. The EXES tool is programed to automatically identify potential data quality and usability issues, thus reducing the time necessary for manual data validation. The EXES tool can be adapted to any chemical analytical method. When the EXES tool is used correctly by experienced chemists and data validators, the software can significantly reduce the time, effort, and cost of data validation.

The EPA CLP is working to provide access to the EXES tool to EPA Regional laboratories and other Superfund data validators and end users. This CLU-IN session will provide an overview of data validation, and outline ways that Superfund Remedial Project Mangers, site contractors, data validators, or end data users can incorporate the EXES tool and electronic data assessment tools into their clean-up monitoring projects to increase efficiency and lower costs.

NARPM Presents...The Superfund Job Training Initiative (SuperJTI)

The Superfund Job Training Initiative (SuperJTI) is a job readiness program that provides training and employment opportunities for people living in communities affected by Superfund sites. Many of these areas are Environmental Justice communities - historically under-represented minority and low-income neighborhoods and areas burdened with significant environmental challenges. EPA's goal, through SuperJTI, is to help these communities develop job opportunities that remain long after a Superfund site has been cleaned up.

By participating in the webinar, participants will:
  • Understand how the SuperJTI program works;
  • Hear how the SuperJTI program has been implemented;
  • Discuss how SuperJTI programs benefited multiple stakeholders including the local community, contractors, EPA and especially participants;
  • Brainstorm sites that may be eligible for SuperJTI projects;
  • Receive information about how to contact SuperJTI staff and begin a SuperJTI program at their site/community.

Live Q&A Session for Best Management and Technical Practices for Site Assessment and Remediation

The Office of Underground Storage Tanks (OUST) joined with EPA's Office of Superfund Remediation and Technology Innovation (OSRTI) in 2014 to develop the previously recorded training on best practices for site assessment and remediation. At the request of several state partners the course was developed to explore experiences and resulting best practices from extensive work at underground storage tank (UST), Brownfields, and Superfund sites. Topics in this course include innovative analytical techniques, sampling strategies, and remediation technologies that can be applied at sites contaminated with petroleum hydrocarbons, chlorinated solvents or other constituents.

After viewing the archived webinar, participants can submit questions to the instructor through the online webinar environment. Questions submitted by March 6, 2015 will be addressed during the live Question and Answer Session with Stephen Dyment scheduled for March 11, 2015.
  • Replay the archived Best Management and Technical Practices for Site Assessment and Remediation Webinar at http://www.clu-in.org/conf/tio/bmp/

    • Remember to have your question addressed in the live Q&A webinar, please submit it by Mar 6th using the online form through the webinar archive

  • Register for the upcoming Live Q&A Session with Stephen Dyment on March 11, 2015 at http://www.clu-in.org/conf/tio/bmpqa/

Adaptation of Superfund Cleanup to Climate Change

Adaptation of Superfund Cleanup to Climate Change is a new two-hour webinar providing an overview of climate change vulnerability analyses and adaptation at contaminated sites. In some circumstances climate change may result in vulnerabilities in the protectiveness of contaminated site remedies. The course focuses on how such a vulnerability may be better understood and on the means of achieving increased remedy resilience through adaptation measures. The course builds upon a general understanding of the Superfund process, but is relevant to most cleanup programs. By taking the course, participants will gain a better understanding of the following topics:
  • Overview of Superfund-specific climate change action plan
  • Framing site-specific analyses to understand remedy vulnerabilities throughout the life of a remedy, and of adaptation measures that may increase remedy resilience
  • Tapping existing and relevant information resources when evaluating the potential impacts of climate at Superfund sites
  • Regional case studies of Superfund sites that have been impacted by a major weather event

Military Munitions Support Services - Planning for a Munitions Project

This will be a Military Munitions Support Services seminar with subject matter experts discussing the planning strategies and tools used to investigate or remediate munitions properties.

Military Munitions Support Services - Decision Making for a Munitions Project

This will be a Military Munitions Support Services seminar with subject matter experts discussing the strategies and tools used to enable sound remediation decisions at munitions properties.

Small Business Funding Opportunities (SBIR/STTR) for Environmental Technologies at NIEHS SRP, EPA, and NSF

This webinar is designed to help small businesses and academic researchers better understand the different agencies that fund environmental technologies, and the fundamental goals of the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

The SBIR and STTR programs are one of the largest sources of funding for domestic small businesses to develop innovative high technical risk technologies that have potential for substantial commercial or societal benefits.

The webinar is hosted jointly by the SBIR/STTR programs within the National Institute of Environmental Health Sciences Superfund Research Program (NIEHS SRP), the U.S. Environmental Protection Agency (EPA), and the National Science Foundation (NSF). Hear agency experts —Heather Henry from NIEHS SRP; April Richards from EPA; and Prakash Balan from NSF — highlight the unique characteristics of each of their environmental funding options, details of their SBIR/STTR programs, and tips on how to develop a successful SBIR/STTR application. A majority of the time will be dedicated to a Q&A session at the end of the webinar, which will be moderated by Kirsten Mease from NIEHS.

The NIEHS SRP SBIR/STTR programs fund the development of technologies for the detection and remediation of hazardous chemicals at contaminated Superfund sites.

The EPA SBIR program funds small businesses focused on technologies for the treatment of drinking water and wastewater; air quality sensors, filters, and pollution reduction; and innovative green manufacturing and green materials.

The NSF SBIR/STTR environmental programs fund any innovative technologies which have a significant, beneficial impact on the environment and enhance sustainability. Technologies include, but are not limited to, innovations in energy and bioenergy; biotechnology; separations; green chemistry-based products and byproducts; water conservation and reuse; agriculture; and chemical, food, and pharmaceutical processing.

SRI Webinar Series: Risk Management and Assessing Liability: Helping Communities Pursue Reuse Opportunities at Contaminated Properties

Parties involved in the assessment, cleanup and revitalization of contaminated properties often have questions and concerns about how they may incur liability operating at these sites. This webinar is intended to share two critical resources to guide municipal governments, developers, investors and communities in how to mitigate risk and achieve local land revitalization goals. Presenters will share available information in EPA's Revitalization Handbook — Revitalizing Contaminated Lands: Addressing Liability Concerns and in EPA's Process for Risk Evaluation, Property Analysis and Reuse Decisions (PREPARED) Workbook.

SRI Webinar Series: How to Bring about Ecological Revitalization on Contaminated Lands

Ecological revitalization refers to the process of returning land from a contaminated state to one that supports a functioning and sustainable habitat. While the end use of a contaminated property is typically a local decision made with the site owner, EPA actively supports and encourages ecological revitalization, when appropriate, on sites under its cleanup programs. This webinar will share several benefits of ecological revitalization illustrated by case study presentations of various projects across the country. Ecological revitalization topics will include habitat restoration, soil amendment usage, urban gardens and pollinator habitat development.

SRI Webinar Series: Green Infrastructure: Reusing Contaminated Sites and Promoting Sustainable Communities

This webinar will introduce green infrastructure elements in the context of reusing and revitalizing contaminated lands. Site-specific projects will be used to discuss reuse projects that with green infrastructure elements such as habitat conservation, stormwater management, recreational opportunities and quality of life for communities nearby the contaminated land. The webinar will also share green infrastructure considerations and opportunities for future projects looking to sustainably return contaminated lands to productive and beneficial use for communities.

SRI Webinar Series: Bringing Alternative Energy Projects to Superfund Sites

As communities, towns and businesses across the United States are looking for ways to reduce greenhouse gas emissions, lower utility bills and use alternative energy sources, Superfund sites and other contaminated properties have continued to garner interest. Nationally, Superfund sites have been put back into beneficial use producing energy from solar, wind, hydro-electric, biomass, and landfill gas-to-energy projects. This webinar will share several site-specific case study examples detailing how the potential for alternative energy was assessed, steps that had to be taken to facilitate the reuse in a way that would also be compatible with the remedy, and any economic or environmental incentives used to fund make these projects fiscally possible.

SRI Webinar Series: Potentially Responsible Party (PRP) Perspectives on Superfund Site Reuse

A potentially responsible party, or PRP, is an individual or company that is potentially responsible for contamination problems at a Superfund site. Whenever possible, EPA requires PRPs to clean up hazardous waste sites the PRP may have contaminated. Many PRPs not only perform the cleanup, but also seek ways to return the site to beneficial use for the community and maximize the extent of land use on the site. Presenters on this webinar will include representatives from several PRP groups who have taken an active role in facilitating the beneficial use of sites they manage and who have worked collaboratively with EPA over many years to ensure that both the cleanup and the reuse of the property remain protective of human health and the environment.
Interstate Technology Regulatory Council
Seminars Sponsored by the Interstate Technology and Regulatory Council


Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management

Interstate Technology Regulatory Council Chemical contaminants in soil and groundwater can volatilize into soil gas and migrate through unsaturated soils of the vadose zone. Vapor intrusion (VI) occurs when these vapors migrate upward into overlying buildings through cracks and gaps in the building floors, foundations, and utility conduits, and contaminate indoor air. If present at sufficiently high concentrations, these vapors may present a threat to the health and safety of building occupants. Petroleum vapor intrusion (PVI) is a subset of VI and is the process by which volatile petroleum hydrocarbons (PHCs) released as vapors from light nonaqueous phase liquids (LNAPL), petroleum-contaminated soils, or petroleum-contaminated groundwater migrate through the vadose zone and into overlying buildings. Fortunately, in the case of PHC vapors, this migration is often limited by microorganisms that are normally present in soil. The organisms consume these chemicals, reducing them to nontoxic end products through the process of biodegradation. The extent and rate to which this natural biodegradation process occurs is strongly influenced by the concentration of the vapor source, the distance the vapors must travel through soil from the source to potential receptors, and the presence of oxygen (O2) in the subsurface environment between the source and potential receptors.

The ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and this associated Internet-based training provides regulators and practitioners with consensus information based on empirical data and recent research to support PVI decision making under different regulatory frameworks. The PVI assessment strategy described in this guidance document enables confident decision making that protects human health for various types of petroleum sites and multiple PHC compounds. This guidance provides a comprehensive methodology for screening, investigating, and managing potential PVI sites and is intended to promote the efficient use of resources and increase confidence in decision making when evaluating the potential for vapor intrusion at petroleum-contaminated sites. By using the ITRC guidance document, the vapor intrusion pathway can be eliminated from further investigation at many sites where soil or groundwater is contaminated with petroleum hydrocarbons or where LNAPL is present.

After attending this ITRC Internet-based training, participants should be able to:
  • Determine when and how to use the ITRC PVI document at their sites
  • Describe the important role of biodegradation impacts on the PVI pathway (in contrast to chlorinated solvent contaminated sites)
  • Value a PVI conceptual site model (CSM) and list its key components
  • Apply the ITRC PVI 8 step decision process to screen sites for the PVI pathway and determine actions to take if a site does not initially screen out, (e.g., site investigation, modeling, and vapor control and site management)
  • Access fact sheets to support community engagement activities at each step in the process
For reference during the training class, participants should have a copy of the flowcharts, Figures 1-2, 3-2, and 4-1 from the ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and are available as a 3-page PDF at http://www.cluin.org/conf/itrc/PVI/ITRC-PVI-FlowCharts.pdf

Starting in late 2015, ITRC will offer a 2-day PVI focused classroom training at locations across the US. The classroom training will provide participants the opportunity to learn more in-depth information about the PVI pathway and practice applying the ITRC PVI guidance document with a diverse group of environmental professionals. Email training@itrcweb.org if you would like us to email you when additional information is available.

Issues and Options in Human Health Risk Assessment - A Resource When Alternatives to Default Parameters and Scenarios are Proposed

Interstate Technology Regulatory Council Many state and local regulatory agencies responsible for the cleanup of chemicals released to the environment have adopted regulations, guidance and policies that define default approaches, scenarios, and parameters as a starting point for risk assessment and the development of risk-based screening values. Regulatory project managers and decision makers, however, may not have specific guidance when alternative approaches, scenarios, and parameters are proposed for site-specific risk assessments, and are faced with difficult technical issues when evaluating these site-specific risk assessments. This ITRC web-based document is a resource for project managers and decision makers to help evaluate alternatives to risk assessment default approaches, scenarios and parameters.

ITRC's Decision Making at Contaminated Sites: Issues and Options in Human Health Risk Assessment (RISK-3, 2015) guidance document is different from existing ITRC Risk Assessment guidance and other state and federal resources because it identifies commonly encountered issues and discusses options in risk assessment when applying site-specific alternatives to defaults. In addition, the document includes links to resources and tools that provide even more detailed information on the specific issues and potential options. The ITRC Risk Assessment Team believes that state regulatory agencies and other organizations can use the RISK-3 document as a resource or reference to supplement their existing guidance. Community members and other stakeholders also may find this document helpful in understanding and using risk assessment information.

After participating in this ITRC training course, the learner will be able to apply ITRC's Decision Making at Contaminated Sites: Issues and Options in Human Health Risk (RISK-3, 2015) document when developing or reviewing site-specific risk assessments by:
  • Identifying common issues encountered when alternatives to default parameters and scenarios are proposed during the planning, data evaluation, toxicity, exposure assessment, and risk characterization and providing possible options for addressing these issues
  • Recognizing the value of proper planning and the role of stakeholders in the development and review of risk assessments
  • Providing information (that includes links to additional resources and tools) to support decision making when alternatives to default approaches, scenarios and parameters are proposed
ITRC offers additional documents and training on risk management. ITRC's Use of Risk Assessment in Management of Contaminated Sites (RISK-2, 2008) and associated Internet-based training archive highlight variation of risk-based site management and describes how to improve the use of risk assessment for making better risk management decisions. ITRC's Examination of Risk-Based Screening Values and Approaches of Selected States (RISK-1, 2005) and associated Internet-based training archive focus on the process by which risk-based levels are derived in different states.

Mining Waste Treatment Technology Selection

Interstate Technology Regulatory Council Mining produces millions of tons of waste each year. Contaminants from unreclaimed or unremediated areas have affected millions of acres of land and over 10,000 miles of stream. Historical mining practices and the absence of routine mined-land reclamation, remediation, and restoration have led to legacy sites with significant environmental and human health impacts. New mining operations continue to have severe waste issues that must be addressed during and after the actual mining operation. Conventional remedial solutions are often lengthy, expensive, and unacceptable to the regulated and regulatory communities, as well as to the public.

ITRC's Mining Waste Team developed the ITRC Web-based Mining Waste Technology Selection site to assist project managers in selecting an applicable technology, or suite of technologies, which can be used to remediate mine waste contaminated sites. Decision trees, through a series of questions, guide users to a set of treatment technologies that may be applicable to that particular site situation. Each technology is described, along with a summary of the applicability, advantages, limitations, performance, stakeholder and regulatory considerations, and lessons learned. Each technology overview links to case studies where the technology has been implemented. In this associated Internet-based training, instructors provide background information then take participants through the decision tree using example sites. Project managers, regulators, site owners, and community stakeholders should attend this training class to learn how to use the ITRC Web-based Mining Waste Technology Selection site to identify appropriate technologies, address all impacted media, access case studies, and understand potential regulatory constraints.

Integrated DNAPL Site Strategy

Interstate Technology Regulatory Council Sites contaminated by chlorinated solvents present a daunting environmental challenge, especially at sites with dense nonaqueous phase liquid (DNAPL) still present. Restoring sites contaminated by chlorinated solvents to typical regulatory criteria (low parts-per-billion concentrations) within a generation (~20 years) has proven exceptionally difficult, although there have been successes. Site managers must recognize that complete restoration of many of these sites will require prolonged treatment and involve several remediation technologies. To make as much progress as possible requires a thorough understanding of the site, clear descriptions of achievable objectives, and use of more than one remedial technology. Making efficient progress will require an adaptive management approach, and may also require transitioning from one remedy to another as the optimum range of a technique is surpassed. Targeted monitoring should be used and re-evaluation should be done periodically.

This ITRC Integrated Dense Nonaqueous Phase Liquid Site Strategy (IDSS-1, 2011) technical and regulatory guidance document will assist site managers in development of an integrated site remedial strategy. This course highlights five important features of an IDSS including:

  1. A conceptual site model (CSM) that is based on reliable characterization and an understanding of the subsurface conditions that control contaminant transport, reactivity, and distribution
  2. Remedial objectives and performance metrics that are clear, concise, and measureable
  3. Treatment technologies applied to optimize performance and take advantage of potential synergistic effects
  4. Monitoring based on interim and final cleanup objectives, the selected treatment technology and approach, and remedial performance goals
  5. Reevaluating the strategy repeatedly and even modifying the approach when objectives are not being met or when alternative methods offer similar or better outcomes at lower cost

This IDSS guidance and training is intended for regulators, remedial project managers, and remediation engineers responsible for sites contaminated by chlorinated solvents. Because the subject matter is complex, this guidance assumes a functional understanding of the field and is targeted towards experienced users; however, novices will benefit through descriptions and references of the latest evolution of site characterization challenges; realistic planning of site restoration; evolving treatment techniques; and evaluating, monitoring and interpreting mass transport in the subsurface aqueous and vapor phases. While the primary focus of the document is on DNAPL sites, other types of contaminated sites (e.g. petroleum, mixed contaminants, etc.) can use the same fundamental process described in this guidance.

For reference during the training class, participants should have a copy of the flow diagram, Figure 1-2 on page 6 of the ITRC Technical and Regulatory Guidance document, ITRC Integrated Dense Nonaqueous Phase Liquid Site Strategy (IDSS-1, 2011) and available as a 1-page PDF at http://www.cluin.org/conf/itrc/IDSS/ITRC-IDSS-1-Figure1-2.pdf.

Biochemical Reactors for Treating Mining Influenced Water

Interstate Technology Regulatory Council Mining influenced water (MIW) includes aqueous wastes generated by ore extraction and processing, as well as mine drainage and tailings runoff. MIW handling, storage, and disposal is a major environmental problem in mining districts throughout the U.S and around the world. Biochemical reactors (BCRs) are engineered treatment systems that use an organic substrate to drive microbial and chemical reactions to reduce concentrations of metals, acidity, and sulfate in MIWs. The ITRC Biochemical Reactors for Mining-Influenced Water technology guidance (BCR-1, 2013) and this associated Internet-based training provide an in-depth examination of BCRs; a decision framework to assess the applicability of BCRs; details on testing, designing, constructing and monitoring BCRs; and real world BCR case studies with diverse site conditions and chemical mixtures. At the end of this training, you should be able to complete the following activities:
  • Describe a BCR and how it works
  • Identify when a BCR is applicable to a site
  • Use the ITRC guidance for decision making by applying the decision framework
  • Improve site decision making through understanding of BCR advantages, limitations, reasonable expectations, regulatory and other challenges
  • Navigate the ITRC Biochemical Reactors for Mining-Influenced Water technology guidance (BCR-1, 2013)

For reference during the training class, participants should have a copy of Figure 2-1, decision flow process for determining the applicability of a biochemical reactor. It is also available as a 1-page PDF at http://www.cluin.org/conf/itrc/BCR/ITRC-BCRforMIW-DecisionFlow.pdf.

Participants should also be familiar with the ITRC technology and regulatory guidance for Mining-Waste Treatment Technology Selection (MW-1, 2010) and associated Internet-based training that helps regulators, consultants, industry, and stakeholders in selecting an applicable technology, or suite of technologies, which can be used to remediate mining sites.

Remedy Selection for Contaminated Sediments

Interstate Technology Regulatory Council The sediments underlying many of our nationís major waterways are contaminated with toxic pollutants from past industrial activities. Cleaning up contaminated sediments is expensive and technically-challenging. Sediment sites are unique, complex, and require a multidisciplinary approach and often project managers lack sediments experience. ITRC developed the technical and regulatory guidance, Remedy Selection for Contaminated Sediments (CS-2, 2014), to assist decision-makers in identifying which contaminated sediment management technology is most favorable based on an evaluation of site specific physical, sediment, contaminant, and land and waterway use characteristics. The document provides a remedial selection framework to help identify favorable technologies, and identifies additional factors (feasibility, cost, stakeholder concerns, and others) that need to be considered as part of the remedy selection process. This ITRC training course supports participants with applying the technical and regulatory guidance as a tool to overcome the remedial challenges posed by contaminated sediment sites. Participants learn how to:
  • Identify site-specific characteristics and data needed for site decision making
  • Evaluate potential technologies based on site information
  • Select the most favorable contaminant management technology for their site
For reference during the training class, participants should have a copy of Figure 2-1, Framework for Sediment Remedy Evaluation. It is available as a 1-page PDF at http://www.cluin.org/conf/itrc/ContSedRem/ITRC-SedimentRemedyEvaluation.pdf.

Participants should also be familiar with the ITRC technology and regulatory guidance for Incorporating Bioavailability Considerations into the Evaluation of Contaminated Sediment Sites Website (CS-1, 2011) and associated Internet-based training that assists state regulators and practitioners with understanding and incorporating fundamental concepts of bioavailability in contaminated sediment management practices.

Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management

Interstate Technology Regulatory Council Chemical contaminants in soil and groundwater can volatilize into soil gas and migrate through unsaturated soils of the vadose zone. Vapor intrusion (VI) occurs when these vapors migrate upward into overlying buildings through cracks and gaps in the building floors, foundations, and utility conduits, and contaminate indoor air. If present at sufficiently high concentrations, these vapors may present a threat to the health and safety of building occupants. Petroleum vapor intrusion (PVI) is a subset of VI and is the process by which volatile petroleum hydrocarbons (PHCs) released as vapors from light nonaqueous phase liquids (LNAPL), petroleum-contaminated soils, or petroleum-contaminated groundwater migrate through the vadose zone and into overlying buildings. Fortunately, in the case of PHC vapors, this migration is often limited by microorganisms that are normally present in soil. The organisms consume these chemicals, reducing them to nontoxic end products through the process of biodegradation. The extent and rate to which this natural biodegradation process occurs is strongly influenced by the concentration of the vapor source, the distance the vapors must travel through soil from the source to potential receptors, and the presence of oxygen (O2) in the subsurface environment between the source and potential receptors.

The ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and this associated Internet-based training provides regulators and practitioners with consensus information based on empirical data and recent research to support PVI decision making under different regulatory frameworks. The PVI assessment strategy described in this guidance document enables confident decision making that protects human health for various types of petroleum sites and multiple PHC compounds. This guidance provides a comprehensive methodology for screening, investigating, and managing potential PVI sites and is intended to promote the efficient use of resources and increase confidence in decision making when evaluating the potential for vapor intrusion at petroleum-contaminated sites. By using the ITRC guidance document, the vapor intrusion pathway can be eliminated from further investigation at many sites where soil or groundwater is contaminated with petroleum hydrocarbons or where LNAPL is present.

After attending this ITRC Internet-based training, participants should be able to:
  • Determine when and how to use the ITRC PVI document at their sites
  • Describe the important role of biodegradation impacts on the PVI pathway (in contrast to chlorinated solvent contaminated sites)
  • Value a PVI conceptual site model (CSM) and list its key components
  • Apply the ITRC PVI 8 step decision process to screen sites for the PVI pathway and determine actions to take if a site does not initially screen out, (e.g., site investigation, modeling, and vapor control and site management)
  • Access fact sheets to support community engagement activities at each step in the process
For reference during the training class, participants should have a copy of the flowcharts, Figures 1-2, 3-2, and 4-1 from the ITRC Technical and Regulatory Guidance Web-Based Document, Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management (PVI-1, 2014) and are available as a 3-page PDF at http://www.cluin.org/conf/itrc/PVI/ITRC-PVI-FlowCharts.pdf

Starting in late 2015, ITRC will offer a 2-day PVI focused classroom training at locations across the US. The classroom training will provide participants the opportunity to learn more in-depth information about the PVI pathway and practice applying the ITRC PVI guidance document with a diverse group of environmental professionals. Email training@itrcweb.org if you would like us to email you when additional information is available.