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How can we leverage NAMs to inform how environmental
contaminants cause thyroid imbalance and effects in humans

ADVERSE OUTCOME PATHWAY MODELING COMPLEX IN VITRO

Molecular Cellular / Tissue Adverse Outcomes
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THYROID IMBALANCE REPRESENTS TH KINETICS, TH ACTION DRIVES
PHYSIOLOGY
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Legacy and Emerging Superfund Contaminants Disrupt
Thyroid Homeostasis Through Undetermined Mechanisms

LEGACY

*  POLYCHLORINATED BIPHENYLS (PCBS)
» DIOXINS

*  ORGANOCHLORINE PESTICIDES

EMERGING

*  PERFLUOROALKYL SUBSTANCES (PFAS)

*  POLYBROMINATED DIPHENYL ETHERS (PBDES)
»  CURRENT-USE PESTICIDES

AOP MODELING DOES NOT SUPPORT CURRENT

MECHANISM USED TO MAKE REGULATORY DECISIONS
(RICHARDSON ET. AL., 2010; KATO ET. AL. 2004 AND 2014)

ADVERSE OUTCOME PATHWAY MODELING

Molecular Cellular / Tissue Adverse Outcomes
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Published in final edited form as:

Toxircol Appl Pharmacol 2010 October 1; 248(1): 38—44. do1:10.1016/j.taap.2010.07.010.

CAR induction
PXR induction
AhR induction

RATS >>> HUMAN

Disruption of thyroid hormone homeostasis in Ugt1a-deficient
Gunn rats by microsomal enzyme inducers is not due to
enhanced thyroxine glucuronidations

Terrilyn A. Richardson' and Curtis D. Klaassen”

Departm f y, Toxicology and Therapeutics, University of Kansas Medical
Center, City USA
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AOP IDENTIFIES CRITICAL COMPARTMENTS TO MODEL

AOP IDENTIFIES CRITICAL COMPARTMENTS
TO MODEL THYROCYTES, HEPATOCYTES
AND SERUM (NOYES, ET. AL, 2019)

HYPOTHESIS — THYROID HORMONE
ACTION IS A SHARED KEY
INTERMEDIATE EVENT LEADING TO

ADVERSE OUTCOMES

ADVERSE OUTCOME PATHWAY NETWORK
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AOP IDENTIFIES ENDPOINTS TO MEASURE

ADVERSE OUTCOME PATHWAY NETWORK

AOP IDENTIFIES CRITICAL ENDPOINTS:
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PLUG AND PLAY COMPLEX IN VITRO MODELING — HUMAN HEPATOCYTES

Human Hepatocytes Human Thyrocyte Follicles
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COMPLEX IN VITRO

Development of an In .o fuman Thyroid
Microtissue Model fo! Chemi al Screening
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2D OR 3D COMPATIBLE 2D OR 3D FORMAT 2D+ FORMAT



Human Thyrocyte Follicles
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FOLLICLES RESPOND TO TSH AND CHEMICALS
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PLUG AND PLAY COMPLEX IN VITRO MODELING — HUMAN HEPATOCYTES
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Human Hepatocytes Human Thyrocyte Follicles

COMPLEX IN VITRO

Developmentofan InVitro Human Thyroid
Microtissue Model for Chemical Screening
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CELL SEGMENTATION AND QUANTIFICATION OF CONFOCAL IMAGES

Nucleus segmentation: Use Hoechst image to define nucleus. Apply image filter to delete noise - Set
intensity threshold to identify nucleus - Set minimum point distance to segment connected nucleus.

Cell body Segmentation: Use Bodipy, and ’s images to define cell body. Apply
image filter to delete noise - Merge with hoechst image to pair cell body with nucleus - Set intensity
threshold to identify cell body from image - Set minimum point distance to segment connected cell body.
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MITOCHONDRIAL MEMBRANE POTENTIAL FOLLOWS TEQ SHOWS INCREASE
ACTIVITY

SENSITIVITY OVER CYP1A1

Table 1. WHO 2005 Mammalian TEFs for Dioxin and DLCs

Mitochondrial Membrane Potential Dose-Response

cas
Number

Full Congener Name

Shorthand
Congener Name"

Dioxin Congeners
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To S o TeetD

39227-28-6

1,2,3,4,7,8-Hexachloro dibenzo-p-dioxin

1,2,3,4,7,8-HxCDD
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1,2,3,6,7,8-Hexachloro dibenzo-p-dioxin

1,2,3,6,7,8 HxCDD
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1,2,3,7,8,9-Hexachloro dibenzo-p-dioxin

1,2,3,7,8,9-HxCDD
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0CDD
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TCDD AND PFOS INDUCE OPPOSITE EFFECTS

Mitochondrial Membrane Potential

Dose-Response
PFOS
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Testing a HepG2 3D Spheroid Culture Assay

Thyroid Hormone Response in HepG2 Monolayer
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Responsiveness to Thyroid Hormone is Enhanced in Rat

Hepatocytes Cultured as Spheroids Compared with that in

Monolayers: Altered Responsiveness to Thyroid Hormone

Possibly Involves Complex Formed on Thyroid Hormone
Response Elements
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MMP IN HEPG2 3D RESPONSES TO TH,TCDD,PFOS
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TEST THR ACTIVITY AND ENERGY METABOLISM ENDPOINTS IN OTHER POTENTIAL
HEPATOCYTE CELL LINES

* Test THR activity and energy metabolism endpoints in other potential hepatocyte cell lines
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Dynamics e vKinetics :
PHH Models
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LC-MS/MS AssAY FOR TH AND METABOLITES IN 100UL MEDIA

Optimization
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« 3,3 ,5-triodo-L-thyronine (T3), thyroxine (T4), 3,3'.5'-triodo-L-thyronine (r13), 3,5-diiodo-L-thyronine
(3,5-T2), 3,3'-diiodo-L-thyronine (3,3'-T2), thyroxine glucuronide (T4-G) and thyroxine sulfate (T4-S)
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PLUG AND PLAY COMPLEX IN VITRO MODELING

COMPLEX IN VITRO

MICRODUO

Functional integration of thyroid and

liver monocultdres assays microDUO.

Preserves individual model strengths
while enabling cross-talk.

Human Hepatocytes/ Thyrocyte Follicles
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IVIVE - Human population HPT model that predicts in vivo TH changes

COMPUTATIONAL PBK AND IVIVE
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TAKE-HOMES

Combining AOPs, advanced in vitro systems,
and computational modeling creates a
powerful framework for predicting thyroid
disruption.

Scalability and low-cost/n facilitate CIVM 158
assay development

Integrated approach is a blueprint for future _—f,,“ e
NAMSs. s - “dﬁ/?::
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