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How can we leverage NAMs  to inform how environmental 

contaminants cause thyroid imbalance and effects in humans

ADVERSE OUTCOME PATHWAY MODELING
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THYROID IMBALANCE REPRESENTS TH KINETICS, TH ACTION DRIVES 

PHYSIOLOGY

Thyroid Hormone Regulation of Metabolism,  Mullur R, et. al. 2014



Legacy and Emerging Superfund Contaminants Disrupt 

Thyroid Homeostasis Through Undetermined Mechanisms

LEGACY

• POLYCHLORINATED BIPHENYLS (PCBS)

• DIOXINS

• ORGANOCHLORINE PESTICIDES

EMERGING

• PERFLUOROALKYL SUBSTANCES (PFAS)

• POLYBROMINATED DIPHENYL ETHERS (PBDES)

• CURRENT-USE PESTICIDES

AOP MODELING DOES NOT SUPPORT CURRENT

MECHANISM USED TO MAKE REGULATORY DECISIONS
(RICHARDSON ET. AL., 2010; KATO ET. AL. 2004 AND 2014)

ADVERSE OUTCOME PATHWAY MODELING

RATS >>> HUMAN



AOP IDENTIFIES CRITICAL COMPARTMENTS TO MODEL

AOP IDENTIFIES CRITICAL COMPARTMENTS

TO MODEL THYROCYTES, HEPATOCYTES

AND SERUM (NOYES, ET. AL, 2019)

ADVERSE OUTCOME PATHWAY NETWORK

(NOYES, ET. AL, 2019)

HYPOTHESIS – THYROID HORMONE

ACTION IS A SHARED KEY

INTERMEDIATE EVENT LEADING TO

ADVERSE OUTCOMES



AOP IDENTIFIES ENDPOINTS TO MEASURE

AOP IDENTIFIES CRITICAL ENDPOINTS:

TH KINETICS - HORMONE SYNTHESIS

(T3/T4), METABOLISM (TH-G/TH-S), 
TRANSPORT (INTRA/EXTRACELLULAR)     
LC-MS/MS

TH ACTION – TRANSCRIPTIONAL

ACTIVATION, CELLULAR ENGERGETICS (FA 
UPTAKE, MITOCHONDRIAL DYNAMICS, 
CHOLESTEROL BIOSYNTHESIS ETC.).  
CONFOCAL IMAGING

MANY SUPERFUND CHEMICALS ARE ALSO

KNOWN TO DISRUPT CELLULAR ENERGETICS

ADVERSE OUTCOME PATHWAY NETWORK



Microchannel

ELEGANTLY SIMPLE

FULLY HTS COMPATIBLE

MULTI-ENDPOINT

2D OR 3D CO-CULTURE AND MULTICULTURE

US Patent Number 10,518,266 



Plug and Play Coculture

Human Thyrocyte Follicles Human Hepatocytes

COMPLEX IN VITRO

MICRODUO

PLUG AND PLAY COMPLEX IN VITRO MODELING – HUMAN HEPATOCYTES

2D OR 3D COMPATIBLE 2D OR 3D FORMAT 2D+ FORMAT
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CELLS

WELL 52K

FOLLICLES RESPOND TO TSH AND CHEMICALS



Plug and Play Coculture

Human Thyrocyte Follicles Human Hepatocytes

COMPLEX IN VITRO

MICRODUO

PLUG AND PLAY COMPLEX IN VITRO MODELING – HUMAN HEPATOCYTES

2D OR 3D COMPATIBLE 2D OR 3D FORMAT 2D+ FORMAT



Nuclear

FA uptake

Mito. Mem. Pot.

Mitochondria

ENDPOINT DEVELOPMENT
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Brooks
9/27/23

0.03nM 

TCDD

0.1nM 

TCDD
0.3nM 

TCDD

01nM 

TCDD

5nM 

TCDD
V

e
h

No 

cell

0.03nM 

TCDD

0.1nM 

TCDD
0.3nM 

TCDD

01nM 

TCDD

5nM 

TCDD
V

e
h

No 

cell

TCDD DOSE-

RESPONSE

CQ-1 SPINNING

DISK CONFOCAL

VITAL IMAGING



Nucleus 

Segmentation
Cell Body 

Segmentation

Linked Nucleus and 

Cell Body

Nucleus segmentation: Use Hoechst image to define nucleus. Apply image filter to delete noise → Set 
intensity threshold to identify nucleus → Set minimum point distance to segment connected nucleus.

Cell body Segmentation: Use Bodipy, MitoTracker Deep Red and TMRM’s images to define cell body. Apply 
image filter to delete noise → Merge with hoechst image to pair cell body with nucleus → Set intensity 
threshold to identify cell body from image → Set minimum point distance to segment connected cell body.

MitoTracker Deep Red-Active Mitochondria
TMRM-Mitochondrial Membrane Potential

Bodipy-Lipid Uptake
Hoechst-Nucleus

CELL SEGMENTATION AND  QUANTIFICATION OF CONFOCAL IMAGES



MITOCHONDRIAL MEMBRANE POTENTIAL FOLLOWS TEQ SHOWS INCREASED

SENSITIVITY OVER CYP1A1 ACTIVITY
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MMP IN HEPG2 3D RESPONSES TO TH,TCDD,PFOS

Rifampicin
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Lonza Donor 1 (D1)Novabiosis

• Test THR activity and energy metabolism endpoints in other potential hepatocyte cell lines

Quad culture spheroid

(Kupffer, Hepatocytes, 

Stellate, sinusoidal 

endothelial cell types)

HepaSH 

monolayer

Single culture spheroid

(Various Suppliers)

Lonza Donor 2 (D2)

TEST THR ACTIVITY AND ENERGY METABOLISM ENDPOINTS IN OTHER POTENTIAL

HEPATOCYTE CELL LINES



PHH Models
• Test THR activity and energy metabolism 

endpoints in other potential hepatocyte 
cell lines

Lonza 1 Lonza 2 Novabiosis Quad (+Non-

Parenchymal)

Hepa SH Huh7 HepG2

TCDD 1nM ↑Cyp1A1

(20x)

↑Cyp1A1

(22x)

↑Cyp1A1 (3x) ↑Cyp1A1 (3x) ↑Cyp1A1

(3x)

↑Cyp1A1 ↑Cyp1A1 

(115x)

Rifampicin 

5uM

↑Cyp3A4

(5x)

↑Cyp3A4

(23x)

No Change ↑Cyp3A4 (7x) ↑Cyp3A4

(2x)

No 

Change

No change



LC-MS/MS ASSAY FOR TH AND METABOLITES IN 100UL MEDIA

• 3,3′,5‐triiodo‐L‐thyronine (T3), thyroxine (T4), 3,3′,5′‐triiodo‐L‐thyronine (rT3), 3,5‐diiodo‐L‐thyronine 

(3,5‐T2), 3,3′‐diiodo‐L‐thyronine (3,3′‐T2), thyroxine glucuronide (T4-G) and thyroxine sulfate (T4-S) 

T4-G

T4

T4-S

3,5-T2

3,3’-T2

T3

rT3



Plug and Play Coculture

/ Thyrocyte Follicles Human Hepatocytes

COMPLEX IN VITRO

MICRODUO

PLUG AND PLAY COMPLEX IN VITRO MODELING

• Functional integration of thyroid and 
liver monocultures assays microDUO. 

• Preserves individual model strengths 
while enabling cross-talk. 



IVIVE - Human population HPT model that predicts in vivo TH changes
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TAKE-HOMES

Combining AOPs, advanced in vitro systems, 

and computational modeling creates a 

powerful framework for predicting thyroid 

disruption.

Scalability and low-cost/n facilitate CIVM 

assay development  

Integrated approach is a blueprint for future 

NAMs.
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