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Abstract 
This paper describes recent advances in discrete fracture network (DFN) modeling and analysis.  These 
advances represent a significant convergence between DFN and EPM methods for flow, combined with 
significant increases in geological realism, and more appropriate solute transport conceptual models.  

Introduction 
Since its introduction in the late 1970’s, considerable controversy has raged in the hydrogeologic community 
over the value of discrete fracture network (DFN) approach, and particularly about the merits of the DFN 
approach as compared to the stochastic continuum approach.  Much of this controversy has been related to the 
fundamental concept of the representative elementary volume (REV) which underpins all continuum 
approaches (Bear, 1972).   

According to the REV concept, there exists a scale at which individual heterogeneities and discrete features can 
be ignored, due to a process of averaging to produce an effective continuum medium.  The fundamental 
motivation of discrete fracture network (DFN) modeling is the recognition that at every scale, groundwater 
transport in fractured and carbonate rocks tends to be dominated by a limited number of discrete pathways 
formed by fractures, karts, and other discrete features.  The DFN approach can thus be defined as “analysis and 
modeling which explicitly incorporates the geometry and properties of discrete features as a central component 
controlling flow and transport.” 

Discrete Fracture Network related research carried out over the past twenty years has focused on identifying 
those individual discrete features and karts which provide discrete connections which carry the most important 
portion of flow.  The task of hydrogeology then becomes to characterize these individual pathways, rather than 
the average or REV properties of the medium.  To achieve this, it is necessary to understand the geometry and 
properties of the discrete fractures and karts which form these pathways.   

The development of this discrete feature conceptual model is the essence of the DFN approach.  The DFN 
approach provides the three dimensional framework of discrete features which concentrate flow and transport, 
and also the flow barriers such as faults and argillaceous layers which provide partial or complete seals.  This 
DFN conceptual model can be referred to as a discrete feature “hydrostructural model” (Winberg et al., 2003). 

Once the DFN hydrostructural model has been implemented, and the discrete features of importance are know 
deterministically, or at least stochastically, the DFN can then be solved to address the specific flow and 
transport engineering issues of concern. 

This paper highlights several trends in DFN modeling including: 

• Convergence of DFN and Continuum Methods, 

• Increasing Geologic Realism, and 

• Multiple Immobile Zone Transport 

Convergence of DFN and Continuum Methods 
DFN analysis is fundamentally about the development of an appropriate hydrostructural model which considers 
the role of known and unknown discrete features in controlling flow and transport.  As such, DFN analysis is as 
essential for conventional continuum approaches using volume elements as it is for flow and transport models 
built on pipe or plate discrete feature elements.  If you don’t know the nature of discrete feature transport 
pathways or flow barriers, you can’t carry out conventional continuum modeling any more than you can DFN 
flow and transport modeling.   

A recent example of this is shown in Figures 1, 2, and 3.  Figure 1 illustrates the hydrostructural model 
developed to describe a 200 m scale block of Äspö granite within the Äspö hard rock laboratory.  Figures 2 and 
3 illustrate DFN and EPM implementations of this model.  The EPM implementation of the model (Gomez-
Hernandez et al.,2003) fits the definition of a DFN model, since it explicitly considers the discrete features 
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identified within the discrete feature hydrostructural model.  However, the EPM implementation uses volume 
elements at the scale of 5 m, which is coarse considering the 2 cm in total thickness of the fractures being 
modeled. 

Comparison of Figures 2 and 3 demonstrates that the debate over EPM vs. DFN is no longer about the value of 
the DFN hydrostructural approach, but only about the most efficient implementation.  Both EPM and DFN 
models were built on a common DFN hydrostructural model, developed using DFN analysis techniques. 

During recent years, this has led increasingly to the development of hybrid DFN/EPM models such as 
ConnectFlow (Serco, 2004) and FracWorks XP (Dershowitz et al., 2004).  There are three types of integration 
for DFN/EPM models.  

• Layered DFN/EPM Models, 

• EPM Implementation of DFN Hydrostructural Models, and 

• Nested DFN/EPM Models. 

Layered DFN/EPM Models 
In many geological environments, heterogeneously connected karstic or fractured rocks occur within 
stratigraphic columns containing units best represented by continuum elements.  Layered DFN/EPM Models 
meet this by incorporating both EPM volume elements, and DFN (pipe or plate) elements.  Figure 4 illustrates a 
layered DFN/EPM model, with the EPM representing primarily sandstone layers, and the DFN representing 
fractured granite.  The advantage of this approach is that it is able to more accurately model the response of the 
groundwater table and shallow wells using continuum EPM elements, while still using the DFN for evaluating 
connectivity between wells in the fractured granite.   
 
The key to implementation of the layered DFN/EPM approach is the linkage between DFN nodes, which occur 
at the intersections between and edges of polygonal fracture elements, and EPM nodes, which occur at the 
corners of tetrahedral or hexahedral volumes.   
 
In general, the DFN elements and EPM elements are on different scales such that there may be many DFN 
nodes corresponding to a single EPM node, or vis-versa. The linkage between DFN and EPM nodes is achieved 
by recognizing this difference in discretizations, and providing for a node based linkage.  This type of linkage is 
illustrated in Figure 5.  In this example, DFN nodes within a distance d from any EPM node are linked to the 
closest EPM node.  This linkage can be achieved by setting the linked EPM and DFN nodes to the same head 
value, or by placing a pipe element of specified transmissivity between the nodes, if there is some special 
material at the DFN/EPM interface. 
 

EPM Implementation of DFN Hydrostructural Models 
Approaches for implementation of DFN hydrostructural models using EPM technologies include  

• Explicit modeling of a key faults and fractures, 

• Geostatistical simulation of faults and fractures, and 

• Oda Tensor approaches. 

EPM models have always been able to represent a limited number of faults and fractures explicitly using the 
same volumetric elements that are used to represent other geologic materials.  Where these few discrete features 
carry the vast majority of flow and transport, these EPM models could be considered a fairly straightforward 
DFN hydrostructural model implementation.  In examples reviewed for this paper, examples were found where 
over 95% of the flow occurred in the explicitly modeled discrete features, such that the EPM model was 
functionally identical to a DFN.   

EPM models of discrete features have been implemented using finite element (Figure 6), finite difference 
(Figure 7), and finite volume methods.  Of these, the finite element method is attractive since the grid can be 
adjusted to conform to the fracture geometry.  In contrast, the finite difference method generally requires a 
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stairstepped approximation.  The finite volume method is frequently significantly less computationally efficient 
than either the finite element or finite difference methods, but has advantages for modeling coupled processes. 

Geostatistical Simulation of Faults and Fractures 
 

Traditional geostatistical simulation derives variograms from the spatial pattern of hydraulic properties, and 
then attempts to reproduce this pattern by kriging from these variograms.  Given the complex, three dimensional 
nature of faults and fractures, this method is unlikely to be able to regenerate the pattern of semi-planar discrete 
features.   

During the past ten years, advances in geostatistical modeling has made it possible to implement geostatistical 
models which reproduce and also enhance DFN hydrostructural models. 

a)  indicator kriging – cells can be marked based on the occurance of fractures or flow barrier faults, and the 
geostatistically derived property fields can be adjusted accordingly.  This produces fields which correspond to 
the location and properties of the discrete features. 

b)  co-kriging – cell hydraulic properties can be adjusted based on a combination of both the hydraulic test 
results which provide permeability and storativity, and the geophysical fields which are indicators for the 
location of faults. 

c) numerical inversion – geostatistical EPM model cell hydraulic properties can be optimized by a combined 
inversion of the underlying DFN hydrostructural model, geophysical data, and hydraulic data.   

The effectiveness of the integrated hydrostructural, hydrologic, and geophysical numerical inversion approach 
is illustrated in Figure 6 (Will et al., 2003). 

Oda Tensor Approaches 
The Oda (1985) method for calculating EPM properties from DFN fractures is now twenty years old, and has 
been re-derived with variations many times.  The advantage of the Oda approach is that it can obtain EPM 
properties for grid cells based directly on the geometry and properties of the fractures within those cells. 

The Oda approach begins by generating the full, three dimensional DFN.  While DFN flow and transport 
modeling is limited to on the order of 104 to 105 fractures by computational constraints, the Oda approach can 
be applied to patterns of 107 or more fractures.  The Oda approach overlays an EPM grid on the fractures, and 
derives EPM properties for each grid cell based on the DFN contained in that cell.  

The orientation of fractures in each grid cell is expressed as a unit normal vector n.  Integrating the fractures 
over all of the unit normals N, Oda obtained the mass moment of inertia of fracture normals distributed over a 
unit sphere: 

 
∫
Ω

Ω=
2

)( dnEnnN ji

                                           (1) 
where: 

 N  = number of fractures in Ω. 
 ni, nj  = the components of a unit normal to the fracture n 
 E(n)  = probability density function that describes the 

number of fractures whose unit vectors n are  
oriented within a small solid angle dΩ 

 Ω  = entire solid angle corresponding to the surface of a  
     unit sphere  
 

For a specific grid cell with known fracture areas, Ak, and transmissivities, Tk, obtained from the DFN model, 
an empirical fracture tensor can be calculated by adding the individual fractures weighted by their area and 
transmissivity: 
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where: 

 Fij  = fracture tensor 
 V  = grid cell volume 
 N  = total number of fractures in grid cell 
 fk  = percolation factor for fracture k (generally assumed to equal 1) 
 Ak  = area of fracture k 
 Tk  = transmissivity of fracture k 
 nik, njk  = the components of a unit normal to the fracture k 
 

Oda’s permeability tensor is derived from Fij by assuming that Fij expresses fracture flow as a vector along the 
fracture’s unit normal.  Assuming that fractures are impermeable in a direction parallel to their unit normal, Fij 
must be rotated into the planes of permeability  

 
( )ijijkkij FFk −= δ

12
1

                                              (3) 
where: 

 kij  = permeability tensor 
 Fij  = fracture tensor 
 δij  = Kroenecker delta 
 
The Oda approximation derives an equivalent permeability tensor, according to a specific grid.  This tensor can 
also be derived by using a numerical permeameter, in which a boundary condition is applied to the edges of the 
grid cell (see e.g., Long, 1984).  At the extreme of fine discretization (mm scale grid cells), the Oda 
approximation reproduces the underlying discrete fracture hydrostructural model, both for flow and for 
transport.  However, at the practical and much coarser discretizations of tens or hundreds of meters, the Oda 
approximation produces results which are less accurate.   
 
The Oda tensor approach thus represents a balance between the accuracy of directly modeling each of the 
structures in the hydrostructuctural model, against the computational efficiency of coarser numerical model 
discretizations.   
 

Nested EPM/DFN Models 
 
The inherent compromise of using EPM models to represent DFN hydrostructural models can be reduced 
through the recent development of nested EPM/DFN Models.  These models combine the use of DFN elements 
in the locations where fracture geometry is of most concern, such as at intersections with boreholes and tunnels, 
with EPM elements at less sensitive locations.  
 

Figure 9 illustrates a nested EPM/DFN model.  This model utilizes a coarse Oda based EPM grid for most of 
the model, while maintaining a direct implementation of the DFN hydrostructural model using DFN elements in 
the direct vicinity of the boreholes of interest. 

 

The key to the implementation of Nested EPM/DFN models is the same as for layered EPM/DFN models, i.e., 
the linkage between the EPM and DFN elements, both for flow and for transport.  The approach described 
above for layered EPM/DFN models has also been used successfully for nested EPM/DFN models. 

Advances in Geological Realism 
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Discrete fracture network hydrostructural models are implemented by integration of  

• geology 

• geophysics, and 

• hydrogeology 

Recent advances in geophysics such as 3D VSP  and AVO/AVAZ have made it possible to develop DFN 
hydrostructural models with explicitly incorporate the 3D geometry of structures greater than on the order of 
100 m (Parney and La Pointe, 2002).  This increasingly explicit information about fault geometry perhaps 
surprisingly increases the need for geologically and hydrologically based methods to a) derive the properties of 
those identified structures, and b) extrapolate from the seismic scale structures to the sub-seismic features. 

In sites where geophysical characterization of structures is either economically or technically infeasible, 
geological and hydrogeological methods are also necessary for deriving the location and properties of both 
seismic and sub-seismic structures. 

Below, we present three key recent advances in the geologic realism of DFN hydrostructural models: 

• DFN Fault Models 

• Carbonate Solution Features 

• Geocellular and Bootstrap Models 

DFN Fault Models 

Figure 10 (after Caine, 1999) presents a schematic view of the internal structure of faults.  Faults generally 
combine conductive and flow barrier features – a flow barrier at the fault core, combined with conductive 
fractures, particularly in the fault “damage zone”.  Recent advances in DFN modeling provide approaches for 
implementing the full range of conductive, flow barrier, and partially sealing fault behaviors: 

• Purely conductive faults can generally be represented as a planar or tessellated non-planar discrete 
feature.  The variability within the fault can be represented by applying varying transmissivities to the 
elements defining the fault, 

• Purely flow barrier faults can be represented by truncating the fractures intersecting at their fault 
intersection, or reducing fracture transmissivity in the vicinity of the fault intersection (Figure 11), 

• Faults flowing primary in the footwall and hangingwall damage zones can be modeled by generating 
special fracture sets for these regions, or by representing this transmissivity within the fault surface 
itself, and 

• Partially sealing faults can be represented by reducing the transmissivity of fractures where they 
connect to or pass through the fault. 

These fault barrier models are an essential aspect of an increasing percentage of DFN modeling, as an 
increasing proportion of sites show evidence of hydraulic compartmentalization.  Figure 12 illustrates an 
example of hydraulic compartmentalization at the “Block Scale” experiment in Sweden.  Despite a strong 
hydraulic gradient toward the northeast due to the presence of unlined tunnels, the salinity indicates the 
presence of a NNW oriented flow barrier compartmentalizing the system into saline and fresh groundwater 
regimes. 

DFN Carbonate Solution Feature Models 

While some fractured rocks can be treated as single porosity materials, carbonate rocks are frequently three 
porosity systems, combining a significant matrix permeability with fractures and solution features such as vugs 
and solution enhanced discrete pathways.  These features are particularly difficult to model with EPM 
approaches.   DFN approaches for simulating carbonate solution features include the following: 

Vugs:  Vugs are solution features which can range in size from millimeters to tens of meters, with on the order 
of 100% porosity.  Within DFN models, vugs can be modeled as three dimensional discrete features using either 
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volume element or as a storage interaction term in the approximate dual porosity approach.  Figure 13 illustrates 
an approach for modeling vugs as storage terms interacting with fractures.  In this approach, the storage in the 
vug interacts with the fracture through a 1-D interaction term.  

Wormhole Channels:  Solution enhanced fracture intersections are major form of transport pathway in 
fractured carbonates.  These channels frequently have apertures 10 to 50 times larger than those of the 
intersecting fractures, such that the channel itself has a transmissivity 103 to 105 that of the fractures (assuming 
the cubic law applies). This can now be implemented in DFN models by adding pipe elements at karst enhanced 
fracture intersections.  The extra storage and transmissivity of the wormhole channels can then be represented 
by a separate parameter.  The geometry of the wormhole channels can then be defined by a geological 
simulation process reflecting the geologists conception of solution evolution. 

Karstic Porosity on Fracture Planes:  One of the key features of karstic carbonates is that certain portions of 
fracture planes have dramatically increased transmissivity and storage due to local solution enhancement of the 
fracture aperture.  This may be part of a continuous pathway (as in wormholes), or it may be a local effect.  For 
example, at the Yates Carbonate Oil Reservoir in Texas, vuggy areas on fracture plan account for most of the 
locations at which oil flows freely to the production wells (Wadleigh, 1998).   

The karstic porosity on fracture planes can be modeled by tessellating the fracture surfaces, and applying the 
appropriate spatial pattern of karstic porosity to the planes.  The pattern of karst porosity can be described by 
geostatistical or fractal methods, or on a geological basis if there is a geological theory for the spatial 
distribution of karstic porosity (Figure 14).   

In general, the karstic porosity on the fracture plan is described by three parameters – the karsted percentage of 
the fracture plane area (“karstic persistence”) , the aperture distribution for the karsted regions, and the spatial 
pattern (e.g., range or correlation length for a geostatistical field). 

Geocellular and Bootstrap Models 

Fractured rock DFN hydrostructural models covering areas of more than about 1 km2  generally have a spatial 
variability in the fracture pattern.  The orientation, size, and intensity of fracturing tend to vary across the site, 
such that statistically homogeneous models are inadequate.  The need for such models has been filled over the 
past five years through the development of geocellular and boostrap models.   

Geocellular models fill the entire 3D space with information extrapolated from geology, geophysics, and 
hydrogeologic.  This information is commonly stored in Geomatic/GIS systems such as for example ArcInfo 
(ESRI, 2004), Petrel (Schlumberger, 2004), EarthVision (Dynamic Graphics, 2004), or StrataModel (Landmark, 
2004).   In these systems, the rock volume is discretized to volumetric cells, and each cell is linked to 
appropriate properties.  In a geocellular DFN model, the fractures and faults, and their properties are generated 
directly from that cell-based information.  For example, at the Yates field, fracture intensity was directly tied to 
shale content.  The geocellular DFN model therefore generated fracture intensity P32 (m2/m3) at every location 
based on the relative shale content.   

Another application of the geocellular approach is in generating 3D DFN hydrostructural models based on an 
interpreted 3D stress or strain field.  In this approach, the geologic or rock mechanics analysis interprets the 
present or recent stress or strain field throughout the rock mass.  This field may be based on, for example, stress 
cell measurements, or a palinspastic reconstruction of the strain history (La Pointe et al., 2003).  In either case, 
the geocellular grid then contains a stress or strain tensor, and the fracture orientation, intensity, and 
transmissivity can be generated at each location in the rock contingent on the local tensor information.  An 
example stress tensor grid based DFN model is shown in Figure 15.  

Bootstrap models start with know values at specific locations (generally geophysical measurements or 
boreholes), and use this information directly to extrapolate the three dimensional population, without creating 
an intermediate synthetic geocellular field.  The bootstrap algorithm is summarized as follows.  When 
generating a fracture at a specific location, the model looks for data which is relevant, and ranks that data by its 
relative relevance.  For example, for generating a fracture orientation, the most relevant data would be near by, 
in the same stratigraphic unit, and on the same side of any significant structural feature such as a fault.  The 
fracture orientation at that location would then be generating by choosing a single measured value from the 
table of relevant measurements, with a probability weighted by relevance.  Once a particular value was chosen, 
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a small dispersion factor would be applied to account for the stochastic and spatial variability.  This process is 
illustrated in Figure 16.   

The advantage of the bootstrap approach is that it directly utilizes available data, rather than an interpolated 
field, as in the geocellular approach.   This works well when there is good spatial coverage for data,  or where 
there is no appropriate method for populating a geocellular field. 

Multiple Immobile Zone Transport 
The key advance in fractured rock transport analysis over the past ten years is the gradual realization of the 
importance of the interaction between mobile and immobile zones in fractured rock.   The conventional EPM 
approach assumes a single, mobile (advective) porosity, with retardation occurring through sorption to grain 
surfaces within that porosity.  In fractured rock, in situ experiments such as those at Äspö, Sweden (Winberg at 
al., 2003) have demonstrated that the transport in fractured rock is strongly dependent on the interaction 
between advective transport in fractures, and the storage of solutes in immobile zones.  These immobile zones 
include a) gouge, breccia, cataclasite, calcite, and mylonite in the fracture itself, b) fracture coatings, c) the 
higher porosity altered/damaged zone surrounding many fractures, and d) intact rock (Figure 17).  The 
geometry and properties of these immobile zones are characterized as the “microstructural model” for the 
fractures, and are as important as the DFN hydrostructural model discussed above for many transport analysis 
applications. 

Four basic types of transport approaches have been developed to describe transport in fractured rock with 
multiple immobile zones:   

Diffusive Exchange (Sudicky and McLaren, 1992).  This approach implements the conventional advection-
dispersion-diffusion equation in the Laplace domain.  In this approach, the exchange between mobile and 
immobile zones is exclusively due to a diffusive process expressed by the concentration gradient between the 
advective and immobile zones.  Multiple immobile zones can be defined both in parallel and in series, allowing 
explicit use of measured values for each immobile zone.  

Multirate Diffusion (Fleming and Haggerty, 2001, Cvetkovic et al.,1999).  Rather than depending on a 
characterization of the properties of each of the immobile zones listed above, the multirate approach assumes a 
continuous distribution of immobile zone porosities, generally defined by a Pareto or Powerlaw distribution.  
This assumption allows a single exchange term between the mobile and immobile zones, while recognizing the 
importance of the different characteristics of different immobile zones. In the Cvetkovic et al (1999) 
implementation “LaSAR”, advection and diffusion are described by a lumped immobile zone retention 
parameter κ and by the distribution of inverse aperture weighted advective velocity β. 

CTRW Continuous Time Random Walk (Berkowitz et al., 2000) treats both diffusion and Gaussian 
dispersion as special cases of multi-rate advection, and can reproduce both diffusive and Gaussian transport on 
the basis of a single parameter β, the power for the assumed powerlaw (Pareto) distribution of velocity.   

Advective exchange (AX) (Miller, 1996) assumes that the process of exchange between mobile and immobile 
zones occurs at a fixed rate of exchange per meter of advection, rather than at a rate proportional to differences 
in concentration.  The approach is based on two parameters:  β, the number of advective exchanges per meter, 
and fimm, the ratio of the immobile zone volume to the mobile zone volume. 

The above approaches have several common features of interest to practical applications 

• They all depend on accurate characterization of fracture immobile porosities through an appropriate 
microstructural model 

• They all recognize explicitly that transport is occurring on discrete features, and assume that the 
advective velocity within fractures (rather than the effective EPM velocity) is the relevant parameter 

• They all have been used successfully in predictive simulations of solute transport at 10 to 50 m scales 

• They generally use β as a key universal parameter! 
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Conclusions 
This paper has attempted to highlight recent advances in the discrete fracture network approach to flow and 
transport modeling for fractured and karstic rock. Major advances have been made in the development and 
implementation of hydrostructural models for fracture geometry, and microstructural models, for the immobile 
zones influencing solute transport.  These advances have made it possible to build more accurate three 
dimensional hydrogeologic models, and to better analyse both flow and transport processes.   
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Figure 6  Finite Element Implementation of 
DFN Hydrostructural Model (Taivassalo and 
Meszaros, 1994) 
 

 
Figure 7.  Finite Difference EPM 
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Model 

 Figure 10.  Conceptual Models for Faults in 
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1999) 
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EPM Models Using geophysical and 
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respectively.  The inversion simultaneously 

adjusted the DFN hydrostructural model, 
then transformed this model to an EPM 
using the Oda tensor approach (after Will et 
al., 2003) 
 
` 

 
Figure 9.  Nested DFN/EPM Model 
 
 

after Caine et al. (1996)
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Figure 11.  Flow Barrier Fault 
implementation in DFN Model.  
Hangingwall and Footwall fractures both 
terminate against surface representing fault.  
Conductivity across fault is therefore 
controlled by the permeability of the fault 
plane inself.  

 
Figure 12.  Representation of Vug Storage 
Oorosities in DFN Models 
 

 

 

Figure 14.  Pattern of Karst Porosity on 
Fracture Plane 
 

 
Figure 12.  Geochemical Evidence of 
Hydraulic Compartmentalization at Äspö 
TRUE Block Scale (after Doe et al., 2002).  
Contours should compartmentalized 
concentration of Cl-, despite strong NE 
gradient . 

 
Figure 15.  Stress Model Based DFN 
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` 
Figure 16.  Bootstrap DFN Model 
 
 
 

 
Figure 17.  Immobile Zones (after Winberg 
et al, 2003)  
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