

CCMS Meeting, Prevention And Remediation Issues In Selected Industrial Sectors Pilot Study. Baia Mare (Romania), Sept. 7-11, 2003

General Index

- Geology and mining
- Metallurgy
- Environmental concerns
- ► Hazards/risks
- Remediation issues
 - Work done
 - Work to do

Geology

Location

- Regional geology
- Types of cinnabar deposits

Geology: Types of Hg deposits

Stratiform mineralizations: Almadén Type

- Disseminated cinnabar (1-7% Hg) in the "Criadero" Quartzite
- Zonal relationship with the "*frailesca*" rock
- Vary scarce pyrite
- Very variable dimensions: 7.5 Mfl. in Almadén, 350.000 fl. in El Entredicho

Flask: commercial unit for mercury trade. 1 fl: 34.5 kg

Geology: Types of Hg deposits

- Stratabound mineralizations: Almadén Mine
 - Active since more than 2.000 years
 - Non-stop mining activity

Almadén mine

► Two branches (*ramas*):

- Rama Sur: the first in activity, closed from 18 Century to the 80s, active again until May 2002 (final closure)
- Rama Norte: discovered in 1700, in activity until 1992

Almadén mine

Underground mining: Cut & fill

Geology: Types of Hg deposits

- Epigenetic (discordant) mineralizations: Las Cuevas type
 - Cinnabar in veins and semimassive replacements
 - Cross-cutting the "frailesca" rock
 - Pyrite much more common than in stratiform deposits
 - Minor size Las Cuevas: 150.000 fl.

Las Cuevas mine

Underground mining, VCR (Vertical Crater Retreat)

Metallurgy

- ▶ Roasting: HgS + hot \rightarrow Hg⁰ + S⁰
- Evolving methods, with reduction of Hg vapor emission:
 - "Xabecas" furnaces (12 Century 1646)
 - "Bustamante" furnaces (1646 1930)
 - "Idrija" and others furnaces (1930-1957)
 - "Pacific" furnaces, propane fuelled (1954-2005)

Metallurgy

- Xabecas furnaces
- ► Hand work made by prisoners

HORNO DE XABECAS (S XII-1646)

- Mercury cycle
- In air
- ▶ In soils and mine dumps
- ▶ In water and stream sediments
- ► In plants
- In fauna

Mercury in soils

Site	N	Hg (ppm)		
		Range	Mean	StDev
ALM	18	6-8,889	2,573	2,979
ECH	8	12-132	57.8	33.1
RD	19	10-188	61.2	55.0
FIT	22	6-69	22.0	16.5

Table 1: Mercury concentrations in soils from different sampling sites. ALM: Almadenejos; ECH: Chillón; RD: Rodoviejo; FIT: Phytoremediation site; N: number of data; StDev: Standard deviation.

Higueras et al. (2003) Journal of Geochemical Exploration, 80: 95-104

<image>

Mercury in mine dumps

Ore dump Las Cuevas Cinnabar Metallic Hg Schuetteite

Mercury in mine dumps

Mercury emission from mine dumps

Mercury in waters and stream sediments

- Research in course, with John Gray (USGS) and Mark Hines (Univ. Massachusetts Lowell)
- Sampling of the main river course (Valdeazogues) and other sites

Valdeazogues river: 9 samples, from upstream the mining area to some 20 km downstream

- Streams from the mining areas to the Valdeazogues river: Azogado stream
 - Hg_w: 12,500 ng/L
 - Hg_{SS}: 2,260 μg/g

Mercury in wild plants: several species are very well adapted to soils very rich in mercury

Mercury in wild plants: several species are very well adapted to soils very rich in mercury

Mercury in wild plants: hyperacumulators

Mercury in wild plants: hyperacumulators

Puddles in mine dumps

Mercury in wild plants: eatable – wild asparragus

Mercury in fauna: no data

- ► For mine workers
- ► For local inhabitants
- ► For trophic chain
- Methylmercury presence

- For mine workers:
 - Working schedule: 8 days a month, 6 hours in underground jobs
 - Health monitoring by the mining company health service: blood and urine

► For local inhabitants:

 Hg vapor in air over WHO standard (1 µg/m³) in inhabitad areas

► For local inhabitants:

Hg vapor concentrations in some buildings

- **For trophic chain:**
 - Water
 - Fishing
 - Vegetables

- ► For trophic chain:
 - Water: low Hg contents in most natural waters
 - Very low Hg content in drinking water

 Drinking water comes from a reservoir away from the mining area

- ► For trophic chain: Fishing
 - Local people uses to fish in the Valdeazogues river and reservoirs (sport)
 - Black Bass (*Micropterus salmoides*), Carp (*Cyprinus carpio*)
 - Need to control the Hg and MeHg contents

- ► For trophic chain: Vegetables
 - Cattle and wild fauna: high risk, since some wild plants contain quite high mercury levels
 - Humans: low mercury contents in agricultural plants (see phytoremediation section)
 - Some wild eatable plants with higher mercury levels

Methylmercury contents: data on study

- Natural waters
- Soils and stream sediments
 - Valdeazogues
 - ► Azogado stream
 - Entredicho pit lake
- Calcine heaps
- Almadenejos furnaces ruins

Remediation issues

- ► Work done
 - Phytorremediation phytoextraction
 - Study of crandallitic immobilizator
- ► Work to do

- A collaboration between the E.U.P. Almadén (UCLM), the mining company and CIEMAT
- ► Trees
- Agricultural plants
- Spontaneous vegetation

► Trees: *Eucalyptus*

• 5 plots, on soils with Hg contents between tens and hundreds gr Hg/t (ppm)

• 4 years of "activity"

• Resulting on Hg contents in dry matter between 500 and 2.080 ppb

Agricultural plants

- Wheat (*Triticum aestivum*), barley (*Hordeum vulgare*) and lupine (*Lupinus luteus*)
- 15 subplots 10x10 m, 3x plant, 3 fallow land, 3 spontaneous vegetation (2 years)
- 1 plot 100x50 m, barley (2nd year)
- Hg contents in plots: tens of Hg ppm
- Samples of the crops were taken at different growth stages analyzing the Hg loading in the aerial part and in the root separately

Agricultural plants: soils characterization

- PHYSICAL CHARACTERIZATION

✓ Granulometry
✓ Real and apparent density
✓ Moisture

- CHEMICAL CHARACTERIZATION

✓ Total mercury
✓ Organic matter
✓ pH (H₂O, KCl)
✓ Carbonates, sulfates and nitrates
✓ Cation Exchange Capacity
✓ Conductivity

- MERCURY CHARACTERIZATION

✓ Mercury speciation: determination of inorganic mercury and methylmercury methylmercury ✓ Sequential extraction: geochemical partitioning of mercury

Soils characteristics

Soils characteristics

MERCURY SPECIATION

- Volatile organomercuric compounds not detected (detection limit = 1 ng g⁻¹)

- Methyl-mercury content lower than 1% of total Hg in all the analyzed samples

Agricultural plants: results

First year (2000-2001):

		Straw	Grain	Total (grain+straw)		
	Wheat	0.61475	0.03575	0.47872		
	Barley	0.46400	0.05700	0.33873		
	Lupine	0.25900	0.04800	0.19550		
	Wild veget.	0.32900		0.32900		
Mercury content in dry matter (mg/kg)						

Laboratory experiments:

- Study of the mercury availability in soils by means of monitorized lisimeters
- Being carried out by CIEMAT in Madrid

Mercury recovery from biomass

- Biomass combustion in a fluidized bed oven
- Recovery from the effluent gas by means of carbon active filters
- Pyrometallurgy of the Hg-rich carbon active
- To be carried out by CIEMAT + Chemical Engineering Dept., UCLM

Wild plants: already seen

Lab synthesis of crandallitic compounds

 $3AI(OH)_3 + 2H_3(PO_4) + 1/2SrCO_3 + 1/2CaCO_3 \rightarrow$ $\rightarrow Ca_{0.5}Sr_{0.5}AI_3(OH)_6(HPO_4)(PO_4) + CO_2 + 4H_2O$

- Reaction carried out at 60°C in 1 dm³ flasks magnetically stirred at 700 rpm under environmental pressure
- ► Reaction time: 15 days

Monteagudo et al. (2003) Journal of Chem. Technol. Biotechnol., 78: 399–405

Characterization of the product

Chemical analysis

\searrow	Composition (% w/w)	Amorphous	Crystal
uluulukhmeter	0	36.11	51.37
	Al	24.10	18.75
	Sr	13.06	10.83
	Р	21.94	14.35
	Ca	4.79	4.70

Characterization of the product

- Chemical analysis
- Grain size
- Scanning Electron Microscopy (SEM)

15 days, 60°C, Room press.

6 months, 200°C, 15 bar

Equilibrium and kinetic studies

 Experimental isotherms for the Hg²⁺/(Ca²⁺-Sr²⁺) exchange

	Parameters of the Langmuir equation					
	Solid	n^{∞} (meq g ⁻¹)	K ₁	s* 10 ⁴ (%)		
	Crandaline	0,93	30.13	7.54		
	Ion exchange reaction:					
2	2 Ca _{0,5} Sr _{0,5} Al ₃ (OH) ₆ (HPO ₄)(PO ₄) + 2 Hg ²⁺ ↔					
hundruchung	$\leftrightarrow 2 \text{ HgAl}_3(\text{OH})_6(\text{HPO}_4)(\text{PO}_4) + \text{Ca}^{2+} + \text{Sr}^{2+}$					

Equilibrium and kinetic studies

- Experimental isotherms
- Experimental kinetics: equilibrium in \approx 30 s

Equilibrium and kinetic studies

- Experimental isotherms
- Experimental kinetics: Lagergren plot, first order reaction

Recovery studies

- Thermal treatment: $800^{\circ}C \rightarrow 99,9\%$ recovery
- Chemical treatment: Cl⁻ (10⁻⁴ to 5 10⁻² M) to form soluble HgCl₄²⁻

Work done: Conclusions

Phytoextraction:

- Poor results with agricultural plants
- Some possibilities with wild vegetation

Crandallitic immobilizator:

- Good synthesis conditions
- High Hg²⁺ exchange capacity from mercurial waste waters, similar to that obtained with commercial exchangers such as resins

Work to do

- Relay on National and European founding
- Techniques to apply
 - Immobilizator field application
 - Phytoremediation using wild vegetation
 - Electrodecontamination: Collaboration from the University of Malaga (Spain)
 - Soil and dumps covering to avoid light enhanced mercury vaporization