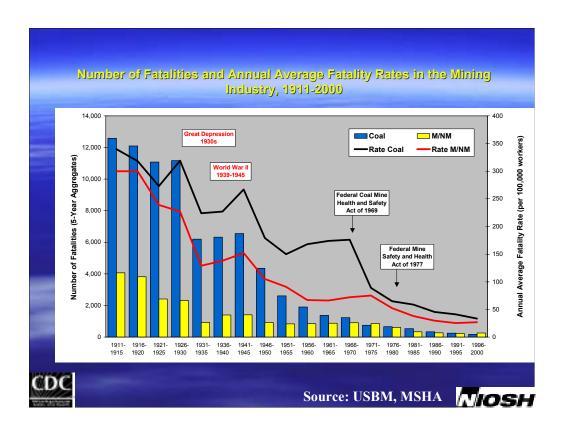


Topics For Today

- A brief overview of the National Institute for Occupational Safety and Health/ Pittsburgh Research Laboratory
- >A brief overview of US minerals mining
- ➤ A review of the NIOSH/DOE sponsored RAND Critical Issues in Mining Report

Pittsburgh Research Laboratory

 Providing practical solutions to real world occupational safety and heath challenges



Shows the total number of fatalities (summed over 5-year periods) and the average annual fatality rate within each 5-year period from 1911-2000.

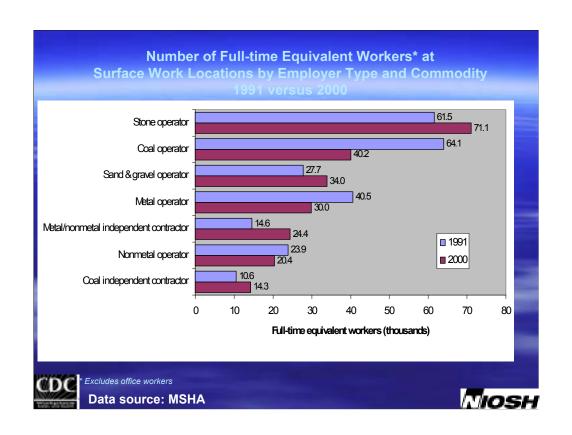
PRESENCE: The Research Program

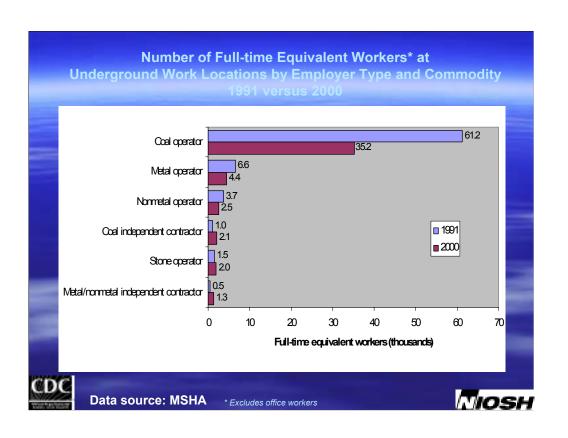
- Diesel Monitoring and Control
- Dust Monitoring and Control
- Ergonomics & Machine Safety
- Fire Fighting & Prevention
- Hearing Loss Prevention & Engineering Noise Controls
- Emergency Response & Rescue

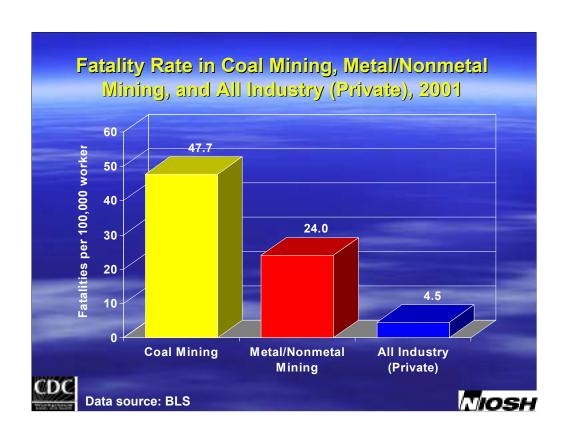
- Electrical Safety
- Explosives
- Ground Control
- Mine Ventilation
- Surveillance
- Training Research

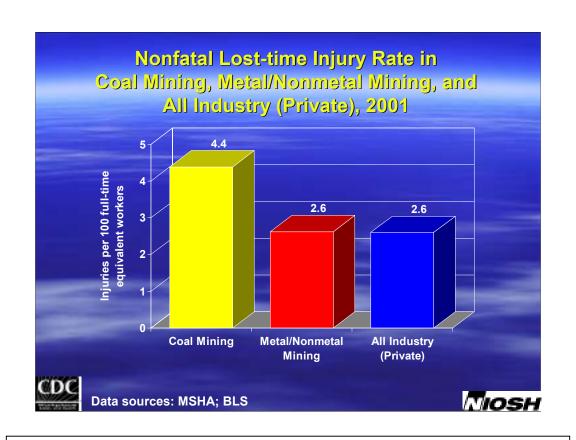
Potential: Prepared to Address Future Safety and Health Threats

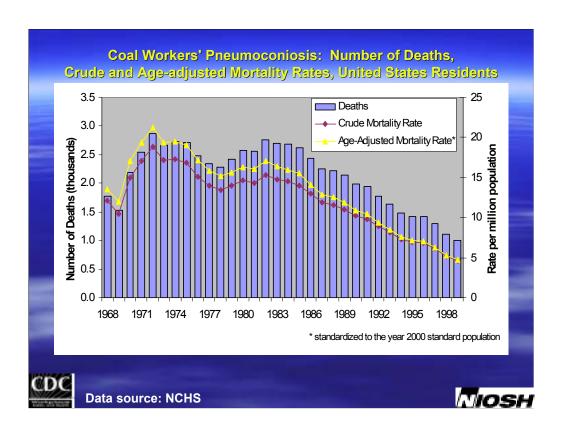
- World Class Expertise
- World Class Facilities
- Strong Constituencies
- Close Customer Communications
- Detailed Surveillance











About the Study

- RAND
 - An independent, non-profit research institution
- The Task
 - Conduct in-depth discussions with key members ("statesmen") of the mining community
- The Goal
 - To identify those technologies critical to the success of their operations now and over the coming decade

Who Requested the Study?

- NIOSH: National Occupational Research Agenda
 - Identified "emerging technologies" as a priority topic for research
 - Proactive effort to anticipate hazards rather than respond to accidents
- DOE Mining Industry of the Future
 - Identifying technology needs & research priorities for government and industry
 - Consensus-building process

A Range of Organizations **Participated**

MATERIALS (4)

US Borax

Hanson

COAL (8)

American Coal Company

American Electric Power

Arch Coal

A.T. Massey

CONSOL

Interwes t Mining

Jim Walter Resources

Inco

Newmont

METALS (11)

AS ARC O Barrick

Canyon Resources

Cleveland Cliffs Echo Bay Mines

Hecla

Homestake

Kenne cott Utah Copper

Phel ps-Dodge

TECHN OLG IES & SERVICES (29)

Atlas Copco Wagner Austin Powder

Bucyrus Caterpillar

Martin Marietta Materials Dyno Nobel Vulc an Materials Exx onM obil

Lubrica nts Fosroc Goodyear P& H

Joy Komatsu Master Builders Modular Mining

Orica Sandvik Tamrock

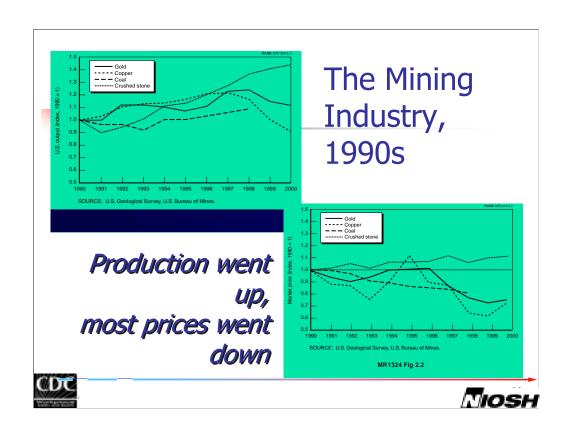
Trimble Navigation Others...

RESEARC H & OTHER (7)

Carne gie -Mell on Robotics Institute

Colorado School of Mines

MIRARC O / Laurentian University


Pennsyl vani a DE P

University of Arizon a University of Utah

Virgini a Poly techni c Institute

26

Mining is a Risk-Averse Sector

- Little spending on R&D
 - In-house R&D programs have been shut down
 - "R&D" targeted to site-specific problem-solving
- Wariness of unknown technologies & those requiring large capital commitments
- Breakthrough innovations require sustained and collaborative R&D efforts
- Result: Current innovations are incremental

Regulation is not Critical

- Not mentioned as a leading technology driver
- Main concerns when asked
 - Diesel emissions
 - Dust (ambient & occupational)
 - Noise
- Two views on compliance
 - Technology solutions will be available (diesel)
 - See no technology solutions (dust, noise)
- Entitlement is the issue
 - Realm of politics, not technology

Few New Facilities are being Developed

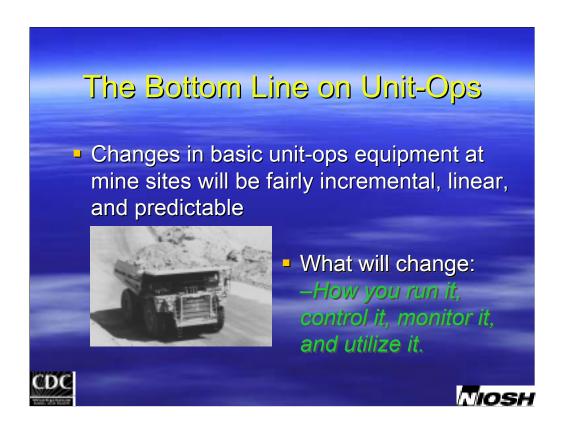
- Mining entitlement process in the US is complex, lengthy, and costly (~10 years)
- Existing facilities are being reengineered
 - Going deeper
 - Going underground
 - More thorough extraction
 - Reducing footprint to access to new reserves
- Result: Newer mines abroad are often seen as technology leaders

Stone & Aggregates is an Exception

- Strong demand scenario
- Permitting issues are pushing the number of quarries down and their average size up
- New product specifications call for better crushing and screening technologies
- Result: Quarries may see some of the greatest technology advances in the future

Bigger, Stronger, Faster Equipment Larger capacity machinery

- - 340-400 ton trucks now; 1000 tons < 20 years
 - 50 yard³ shovels now; 150 yard³ < 20 years
 - Faster, more powerful conveyors, crushers
- Implications
 - Health & Safety (noise, visibility)
 - Facility scale-up (roads, other equipment)
 - Maintenance (larger sheds, mechanical assists)
- Question: Is bigger better? Trade-offs on reliability, shipping costs, and field assembly


Emerging Unit-Ops Innovations

- Blasting
 - Trend from packaged to bulk products
 - High-precision delivery vehicles
 - Electronic detonation
- Mechanical cutting of hard rock
 - Alternative to blasting in narrow-vein operations
 - May increase noise and dust problems
- Ground control
 - Bolter miners
 - Cable bolts

- Advanced shotcrete mixtures

Information Technologies are Critical

- Sensors
 - Equipment status (tire pressure/temp)
 - Duty cycle (excessive speed/revs)
 - Hazards (proximity)
 - Geological (rock anomaly/deformation)
- Computers
 - Cheaper & more powerful
 - Ruggedized
- Result: Real-time decision making
- Concern: Knowledge management—
 Data is not as interesting as insight.

Communications is Critical

- Wired and wireless systems
- High-resolution GPS
- Results:
 - Real-time & remote decision making
 - Automated dispatch, surveying, placement
 - Faster break-down & emergency response
 - Remote controls
 - Process integration (tying unit-ops together)
 - Process intervention (layering-in support)

Autonomous Equipment Looks Promising

- Viewed by leaders as "the next big step"
 - Reducing operator-induced wear-and-tear
 - Increasing equipment utilization
 - Reducing labor costs
- Expected availability
 - Surface haul trucks: 2002-2005
 - Drills: 2003
 - LHDs: 2005

CDC

- Shovels: 2005

Uncertainty about Autonomous Equipment

- Slowed by the complex mine environment
 - The technologies for driving machines have been around for a long time. But to do this with high reliability 24/7 is very hard.
- Questions:
 - Where will it be adopted first?
 - Is ventilation needed?
 - Role of mine personnel
 - Is it worth the cost?

CDC

Result: Semi-autonomous systems are an intermediate step (drilling, U.G. haulage)

Maintenance is Critical

- Better engineering (robust systems, easy access ports, modular components)
- Better facilities and practices
 - On-site: cleaner, more careful
 - Off-site: specialized facilities, diagnostics
- Trend towards predictive maintenance
- Results:
 - Maintenance done only when necessary
 - Problems predictable and detected earlier
 - Can better control the "terms of engagement"

Human Resources is Critical

- Decision-making is being pushed downwards
- Roles are changing from following rules to solving problems
- Hard to compete for and retain qualified personnel in a "bricks and mortar" industry
- A safe and enjoyable workplace helps attract, retain, and motivate employees
- Result: People are *more* critical
- Challenge: Getting people to think.

Management Matters

- On predictive maintenance— "Changing the way we've done it for the last 40 years" requires "selling the program to the people."
- On boosting productivity—
 "We did it not by buying new equipment, but by motivating the workforce."
- On mission success—
 "Technology won't solve problems. It's a combination of technology and people."

Many Questions Remain Open

- Tech views in the industry are very diverse
- Where to invest in productivity enhancements?
 —Improvements on the back end have a big impact on the front end.
- How do you measure benefits of new techs?
 —It's surprising to find an operation that understands their costs from beginning to end.
- Who is responsible for new technologies?
 You need everyone at the table to work things out.

Contacts George Bockosh **DJ Peterson** National Institute for Occupational Safety and Health The RAND Corporation Santa Monica, CA 90407-2138 (310) 393-0411x7611 626 Cochrans Mill Road Fax: (310) 451-7036 Pittsburgh, Pa 15241 djp@rand.org (412) 386-6465 Fax (412) 386-6465 gbockosh@cdc.gov Access the entire report: www.rand.org/publications/ MR/MR1324/ Nosh