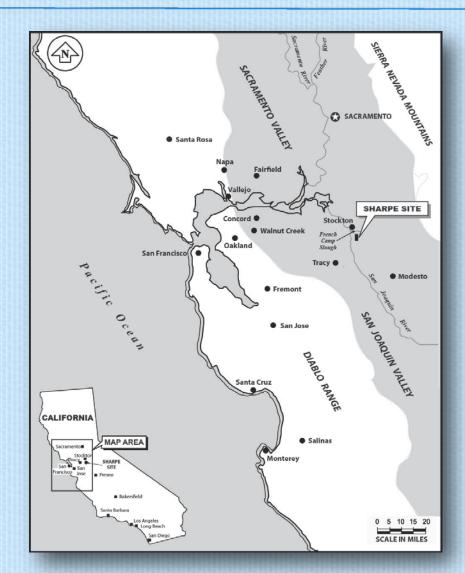
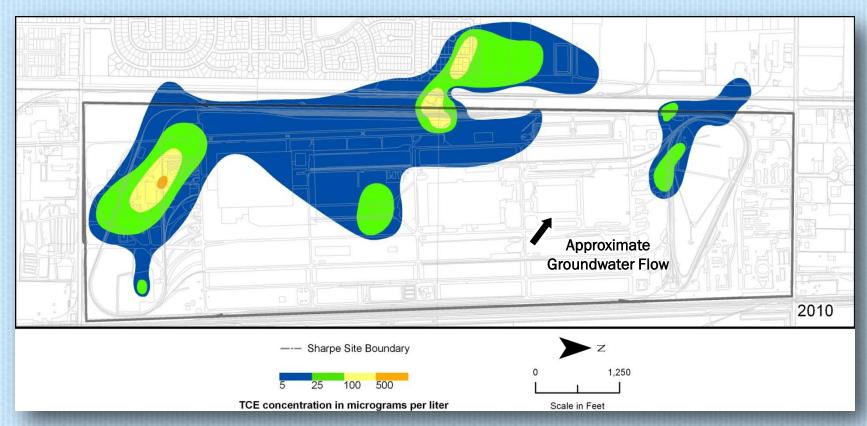
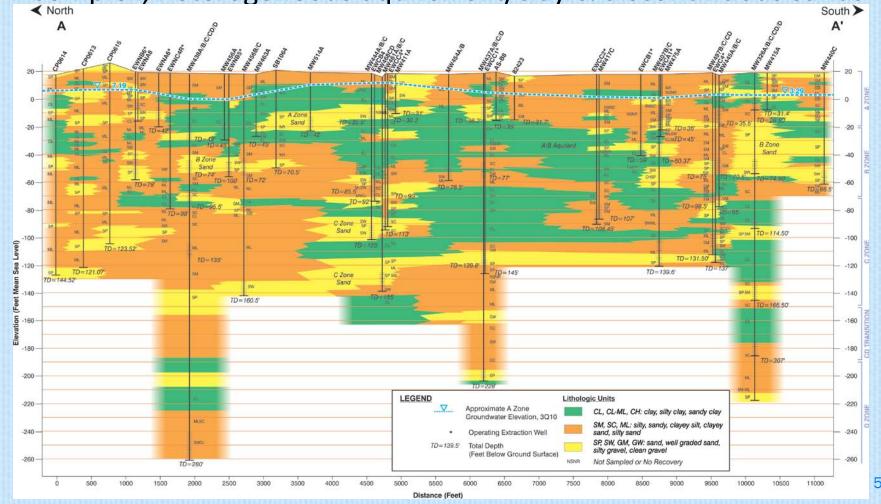
Comparison of EHC®, EOS®, and Solid Potassium Permanganate Pilot Studies for Reducing Residual TCE Contaminant Mass


Defense Distribution Depot San Joaquin-Sharpe Site Lathrop, California

Corinne Marks, PE URS Corporation


Presentation Outline

- Project Site Overview
- Pilot Study Selection
- EHC® Pilot Study
- EOS® Pilot Study
- Solid KMnO₄ Pilot Study
- Pilot Study Comparison
- Benefits of Remedy Enhancement


- Defense Distribution Depot San Joaquin – Sharpe Site, Lathrop, CA
- Principal mission since 1940s:
 - Storage
 - Shipment
 - Packaging of general supplies
 - Maintenance of equipment
- Groundwater contaminated primarily with TCE
- Added to National Priorities List in 1987
- ROD established TCE cleanup level at 5 μg/L

- Maximum TCE concentration is 1,020 μg/L (monitoring well data)
- Large plumes

- Groundwater depth ~ 20 feet bgs
- Complex, heterogeneous aquifer. Silt/clay & discontinuous sands

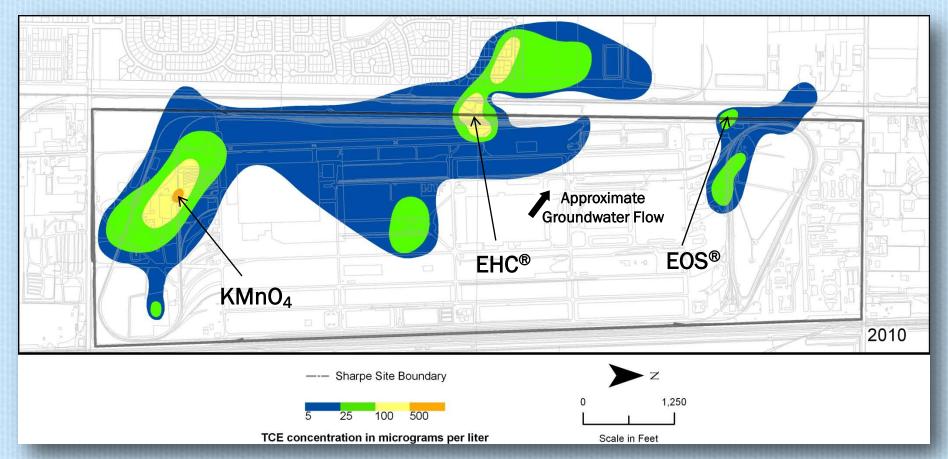
Remedy Enhancement Evaluation

- Pump and treat operating since 1987
- In 2010, 57 pounds removed at ~\$20,000/lb
- In situ remediation alternatives were evaluated to:
 - Improve the effectiveness of the existing groundwater remedy
 - Decrease energy consumption
 - Reduce lifecycle costs

Site Characteristics

Technology Criteria

Heterogeneous lithology Readily dispersed


- Neither strongly oxidative or reductive
- *Either a reductive dechlorination or oxidation technology
- Contamination extends deeper than 100 feet
- Can cost-effectively inject deeper than 100 feet
- Residual contamination primarily located in finegrained soils (silts/clays)
- Access fine-grained soils
 - Long lasting

- Pilot Study Objective
 - Compare TCE Destruction Effectiveness
 - Reducing amendments
 - Oxidizing amendments
 - Compare Delivery Methods
 - Two delivery methods' amendment distribution into finegrained soils

Amendment and Distribution Selection

- Three amendments and two delivery methods were selected to target residual mass in finegrained soils
 - EHC® injected by hydraulic fracturing
 - Emulsified vegetable oil (EOS®) injected via gravity fed injection wells
 - Solid potassium permanganate (KMnO₄) injected by hydraulic fracturing

Pilot Study Locations

EHC® Pilot Study

EHC® contains fibrous organic material and zero valent iron

Promotes biotic and abiotic (chemical) reductive dechlorination

EHC® benefits

- Long lasting
- Combines reducing potential of both organics and reduced metals

EHC® Pilot Study

Pilot Study Activities

- Baseline CPT/HydroPunch® sampling
- Inject EHC® at four depths using hydraulic fracturing (rhodamine red dye and bromide added as tracer)
- Monitor performance:
 - Fracture radius determination
 - Groundwater sampling using both CPT/HydroPunch® and monitoring wells

Assessment of vertical and lateral diffusion of EHC® (HSA core at 12 months)

EHC® Pilot Study

Pilot Study Results

Distribution

- The fractures extended 15 feet horizontally in a southwest direction
- Fracturing was not predictable or uniform

TCE Destruction

- TCE concentrations were reduced from 600-760 μg/L to ND-0.8 μg/L (100-99% reduction) in two wells after 24 months
- EHC® influence continuing to expand at 24 months

EOS® Pilot Study

- ◆ EOS® 598 B42 =
 - Emulsified soybean oil (longer lasting hydrogen source)
 - Lactate (immediate source)
 - Nutrients
- EOS® stimulates biological reduction of chlorinated solvents (TCE, DCE, VC, etc)
- EOS® benefits
 - Long lasting
 - Easily dispersed/distributed

EOS® Pilot Study

Pilot Study Activities

- Install short-screened injection wells in two different soil types
 - Fine-grained soils
 - Sands
- Baseline groundwater well and CPT/HydroPunch® sampling
- Injected EOS® -water-bromide tracer emulsion via gravity feed
- Performance monitoring
 - Groundwater sampling using monitoring wells
 - Slug testing to determine effect on hydraulic conductivity

EOS® Pilot Study

Pilot Study Results

Distribution

- Radius of injection was at least 5 feet in fine-grained soils to 8 feet in sands
- Radius of influence increased by 5 feet due to advection
- Non-uniform distribution
- Slug testing EOS[®] no effect on permeability

TCE Destruction

 TCE concentrations reduced from ~200 µg/L to < 5 µg/L where dissolved organic carbon concentrations remained > 20 mg/L

Solid KMnO₄ Pilot Study

Source: http://www.liboxgoa.com

- KMnO₄ oxidizes chlorinated solvents
 - CO₂ + MnO₂ + K⁺ + H⁺
 + Cl⁻
- Solid KMnO₄ benefits:
 - Long lasting
 - Diffuses into finegrained soils

Solid KMnO₄ Pilot Study

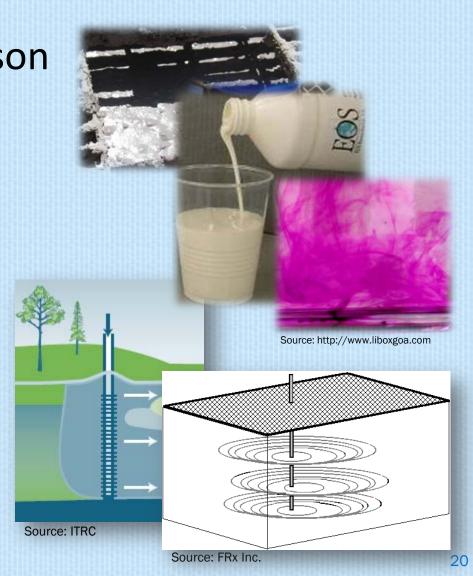
Pilot Study Activities

- Baseline CPT/HydroPunch® sampling
- ❖Inject <u>solid</u> KMnO₄ as a KMnO₄ solids-gel slurry at four depths using hydraulic fracturing
- Monitor performance
 - Fracture radius determination (HSA cores)
 - Groundwater sampling using both CPT/HydroPunch® and monitoring wells
 - Assessment of vertical and lateral diffusion of KMnO₄ (6 & 12 month HSA cores)

Solid KMnO₄ Pilot Study

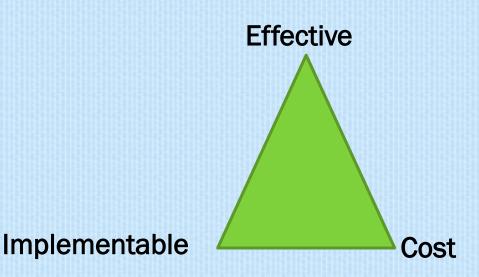
Pilot Study Results

Distribution


- The fractures extended 15 feet generally in a southwest direction
- Fracturing was not predictable or uniform
- Vertical diffusion rate ~10 inches/month

TCE Destruction

TCE Reduced from
 > 1,000 μg/L to < 5 μg/L in
 less than 6 months in all locations</p>


- Amendment Comparison
 - EHC®
 - EOS®
 - KMnO₄
- Delivery Comparison
 - Injection Wells
 - Hydraulic Fracturing

Basis for Evaluation of Pilot Studies

- Evaluate based on:
 - Effectiveness
 - Implementability

Cost

Amendment Comparison

	EHC [®]	EOS [®]	Solid Potassium Permanganate
Destruction Mechanism	Biotic and abiotic (chemical) reductive dechlorination	Biotic reductive dechlorination	Chemical oxidation
TCE Destruction	1,000 μg/L to <5 μg/L (in 2 of 4 wells)	200 μg/L to <5 μg/L (if DOC > 20 mg/L)	>1,000 µg/L to <5 µg/L (in all locations)
Treatment Time	24 months for TCE >24 months for cis- 1,2-DCE	3-6 month for TCE 12-28 months for cis-1,2-DCE	< 6 months for all VOCs (based on first post- fracture sampling event)

Amendment Comparison (continued)

	EHC [®]	EOS®	Solid Potassium Permanganate
Formation of TCE daughter products	Yes	Yes	No
Rebound or influx from upgradient	Yes	Yes	None observed after 12 months
Distribution (by diffusion and advection) after injection	5 feet horizontally in 12 months	5 feet horizontally in 12 months	5 feet horizontally in 12 months 5 to 15 inches/month vertically (in first 6 months)

Amendment Comparison (continued)

	EHC [®]	EOS [®]	Solid Potassium Permanganate
Secondary Water Quality Changes	• Increased calcium, potassium, sodium, magnesium, arsenic, barium, boron, iron, manganese, strontium, TDS	 Increased arsenic, iron, manganese, TDS Decreased pH 	 Increased barium, chromium, manganese, TDS Decreased arsenic and cadmium Did not increase chromium VI

Amendment Comparison (continued)

	EHC [®]	EOS [®]	Solid Potassium Permanganate
Amendment Dosage (Design)	1,635 gallons (0.20% EHC by soil mass)	 3,300 gallons Clays/Silts: 1,000 gallons of 12% EOS®-water emulsion Sands: 2,300 gallons of 5% EOS®-water emulsion followed by 440 gallons of "chase" water 	1,490 gallons (2,000 lbs/ fracture [equiv. to 12,000 gallons 2% solution])
Pilot Study Amendment Cost per Cubic Yard Soil (Design)	\$14 (sands or fines)	• \$39 (fines) • \$13 (sand)	\$19 (sands or fines)

Amendment Comparison Conclusions

- All three amendments:
 - Reduced TCE concentrations to less than 5 µg/L (cleanup level)
 where amendment contacted contaminant
 - Continued to distribute/diffuse horizontally after injection
 - Had secondary water quality impacts
- Solid KMnO₄ was selected as the preferred amendment
 - KMnO₄ distributed/diffused significantly more in fine-grained soils than the other two amendments
 - Destroyed TCE more quickly than other amendments without daughter products
 - Cost effective since multiple injections are not necessary

Delivery Method Comparison

	Injection Wells	Hydraulic Fracturing
Extent of Delivery	5 to 8 feet	6.5 to 12.5 feet
Distribution	 Non-uniform Distributed more in coarse-grained soils 	 Non-uniform Distributed in both fine- grained and coarse- grained soils Short circuiting potential
Time to Inject	2 days	1 to 4 days
Pilot Study Cost (Injection cost only. No oversight costs included)	\$40k	\$60k – EHC® \$80k – KMnO ₄

Delivery Method Conclusions

- Both delivery methods resulted in non-uniform distribution
- Hydraulic fracturing costs more initially but can be cost effective since multiple injections are not necessary
- Hydraulic fracturing was selected as the preferred delivery method
 - Hydraulic fracturing increased the distribution of the amendment in fine-grained soils when compared to gravityfed injection wells

Benefits of Remedy Enhancement

- Benefit of effective destruction of residual contaminant mass in fine-grained soils is that it increases the effectiveness of the existing system by:
 - Reducing overall cleanup time
 - Reducing long-term costs
 - Reducing long-term energy demands

