

Reductive Dehalogenation of DNAPLs Using Emulsified Zero-Valent Iron

Suzanne O'Hara, Tom Krug, Dave Major & Eric Hood - GeoSyntec Consultants, 1-877-2SYNTEC Jackie Quinn - NASA, Kennedy Space Center Chris Clausen, Cherie Geiger & Debra Reinhart - University of Central Florida Contact: so'hara@geosyntec.com

Performance Evaluation of Emulsified Zero-Valent Iron (EZVI)

- · GeoSyntec and the University of Central Florida (UCF) are evaluating EZVI to treat a TCE DNAPL source area at Cape Canaveral, FL
- Evaluation is funded by a NASA STTR grant
- Performance evaluation is being simultaneously validated by USEPA Superfund Innovative Technology Evaluation (SITE) Program
- · Performance evaluation involves laboratory testing and a pilot-scale field demonstration to be conducted interior to the engineering services building (ESB) at Launch Complex 34 (LC34)

ummary of EZVI Tech<u>nology</u>

- EZVI is composed of surfactant, biodegradable oil, water and zero-valent nano-scale iron particles which form an emulsion of fine droplets or micelles (Figure 1)
- EZVI enhances destruction of DNAPL by creating intimate contact between DNAPL and nano-scale iron particles
- · Exterior oil membrane of micelles have similar hydrophobic properties as DNAPL and therefore emulsion miscible with DNAPI
- TCE diffuses through oil membrane of micelle and undergoes reductive dechlorination facilitated by zero-valent iron (Figure 2)
- While iron particles remain active, TCE continually degrades within micelle, concentration gradient across the oil membrane, the driving force for TCE migration into micelle
- Final by-products (non-chlorinated hydrocarbons i.e. ethene) diffuse back out of micelle into surrounding water

alent Iron EZVI Pilot Test De

адекатуск (²⁰¹⁷⁻¹⁰)

nes ______

"""**)**

»·*)

">=<<" ⊨×

IC ***

C 2017-201

">==<{" intere

3-- E ittane

C 2017-201

 $vc = \frac{1}{N} c = c \zeta_{11}^{H} \qquad H = c \equiv c - H \quad Acatylese$

C²⁰ Billineaton

Laboratory Studies Conducted at UCF

Initial lab tests demonstrated that EZVI could be delivered to a pool of DNAPL in a soil matrix and was able to degrade DNAPL while non-emulsified ZVI particles were
non-reactive with the DNAPL

Tests were run with both micro-scale (Figure 3a) and nano-scale iron particles (Figure 3b).

Laboratory Studies Conducted at UCF

- Smallest iron particles size possible produces a more stable and reactive emulsion that is capable of penetration in to smallest pore openings in porous matrix
- Micro-scale iron can be purchased from various manufacturers
- Nano-scale iron must be synthesized in the laboratory or purchased from foreign
- Nano-scale iron particles synthesized by slowly adding an aqueous solution of NaBH₄ to and aqueous solution of FeCl₃.6H₂O; iron particles precipitate and can be separat
- from solution
- Micrographs were taken of an emulsion made with water that was dyed green to show the different fluid phases (Figure 4).

Field Demonstration

 Documented presence of DNAPL beneath the building (Figure 7, Figure 8)

Stability, mobility and physical properties of each emulsion was evaluated

 Interested parties are invited to come & learn about two technology demonstrations (Bioaugmentation & EZVI) Tentative date for open house at Cape Canaveral November 7, 2002

Emulsion was successfully pulse pumped through columns packed with sand from LC34 but was difficult to pump (pressures as high as 160 psi).

- Micrographs of emulsion were taken of effluent to confirm that micellular structure
- A variety of vial studies were conducted to test the efficiencies of the emulsions made
- Chlorinated by-products were not detected in the headspace of any of the Only ethene by-products and small concentrations of other non-chlorinated
- If emulsion was sonicated to break up the micelles, cis 1,2-DCE and VC were detected
- Iron consumption studies were conducted by adding varying amounts of TCE in soil and measuring the production of ethene (Figure 6)

- - - - €mulsions were created using different biodegradable oils and surfactan in varying concentrations and with various emulsion preparation procedu
 - Vial and column tests were conducted to test reactivity, stability and "pumbability" of emulsion (Figure 5a & b)

I C34 former launch site for Saturn rockets from 1960 to 1968

- . Chlorinated solvents, including TCE, used to clean rocket engines inside and outside of ESB
- DNAPL distribution in vicinity of pilot test area (PTA) characterized by taking 8 cores and extracting them with methanol to get estimates of TCE mass
- Based on results of coring the PTA is 9.6 x 15 ft in area with a target depth interval for treatment from 14 to 24 ft bas . PTA hydraulically controlled for containment and to maintain consistent groundwater velocity in treatment zon-

EZVI Injection Testing

 Scale up emulsifying process from lab scale to field scale (Figure 9) Based on lab tests, decided that pumping emulsion into the ground through wells would not be feasible

- Considered injecting EZVI within PIA in a grid pattern using a direct push technique through drive point
- Tested injection method in the field and found most of the emulsion short circuited up borehole (Figure 10)
- Radius of influence small and channeling likely
- Now considering other injection techniques
- Inject EZVI with a low pressure, high velocity nitrogen "carrier" through pneumatic injection techniques
- •ARS Technologies Inc. testing emulsion to see if nitrogen can work as an effective carrier (Figure 11a & b)
- •Also considering using a pressure pulse technology to distribut EZVI from
- •Wave Front is now testing pressure pulse methods of distributing EZVI

Technology Open House

