

FINAL REPORT

Standardizing Sediment Porewater Passive Samplers for Inorganic Constituents of Concern

Jason Conder Florent Risacher Michaela Lawrence *Geosyntec Consultants*

Jeff Roberts Brent Pautler Alex Sweett *SiREM*

Andrew Jackson Texas Tech University

Gunther Rosen Naval Information Warfare Center Pacific

January 2023

ESTCP Project ER20-5261

This report was prepared under contract to the Department of Defense Environmental Security Technology Certification Program (ESTCP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense.

	REPO		IENTATION PAG	iΕ		Form Approved OMB No. 0704-0188		
sources, gathering and aspect of this collection Operations and Report	I maintaining the on of information, in ts (0704-0188), 12 son shall be subje	data needed, and cluding suggestion 215 Jefferson Dav oct to any penalty fo	completing and reviewing the s for reducing the burden, t ris Highway, Suite 1204, A or failing to comply with a co	ne collection of inf to Department of D rlington, VA 22202	ormation. Send o efense, Washing 2-4302. Respond	time for reviewing instructions, searching existing data comments regarding this burden estimate or any other gton Headquarters Services, Directorate for Information dents should be aware that notwithstanding any other display a currently valid OMB control number.		
1. REPORT DATE 31/01/2023	(DD-MM-YYYY) 2. REPOR ESTCP Fin				3. DATES COVERED (From - To) 9/29/2020 - 9/11/2024		
4. TITLE AND SUE					52 00			
		Passive Sample	ers for Inorganic Constitu	ients of Concern	20-C-00			
						ANT NUMBER		
					5c. PR	OGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PR ER20-52			
Jason Conder, Flor	ent Risacher an	d Michaela Law	rence: Geosyntec Consu	ultants	LIN20-52	201		
Jeff Roberts, Brent					5e. TA	SK NUMBER		
Andrew Jackson: T Gunther Rosen: Na			Pacific		5f. WO	RK UNIT NUMBER		
7. PERFORMING (Geosyntec Consulta 2100 Main Street, S	ants	N NAME(S) ANI	D ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER		
Huntington Beach, (ER20-5261		
Environmental Secu 4800 Mark Center E	urity Technology Drive, Suite 16F	Certification Pro	(S) AND ADDRESS(ES) ogram)		10. SPONSOR/MONITOR'S ACRONYM(S) ESTCP		
Alexandria, VA 223	50-3005					11. SPONSOR/MONITOR'S REPORT NUMBER(S) ER20-5261		
12. DISTRIBUTION DISTRIBUTION STA			ic release: distribution ur	nlimited.				
13. SUPPLEMENT	ARY NOTES							
constituents such a	as metals, metal	loids and anions		This document of	details the resu	epers for passive sampling of inorganic Ilts of a field demonstration in which peepers October 2022.		
15. SUBJECT TER Sediment Porewate		olers, Inorganic (Constituents of Concern					
			47 1 10/1747/00/ 05	40 00000000	40- 1445			
16. SECURITY CL	ASSIFICATION	OF: c. THIS PAGE	17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NAME	OF RESPONSIBLE PERSON		
UN	NCLASS	UNCLASS	UNCLASS	PAGES				
UNCLASS		JINULAUU		161	19b. TELEPHONE NUMBER (Include area code) 714-465-1226			

FINAL REPORT

Project: ER20-5261

TABLE OF CONTENTS

EXE	CUT	VE SUMMARY ES-1
1.0	INT	RODUCTION 1
2.0	SITI	DESCRIPTION
	2.1	SITE LOCATION AND HISTORY
	2.2	SITE GEOLOGY/HYDROGEOLOGY
	2.3	CONTAMINANT DISTRIBUTION
3.0	FIEI	D METHODS
	3.1	FIELD MOBILIZATION
	3.2	PASSIVE SAMPLER DEPLOYMENT7
	3.3	PASSIVE SAMPLER RETRIEVAL
	3.4	PASSIVE SAMPLER PROCESSING
	3.5	SAMPLE STORAGE AND SHIPMENT17
	3.6	SAMPLE ANALYSIS
	3.7	PEEPER EQUILIBRIUM CALCULATIONS 19
	3.8	DGT POREWATER CONCENTRATION CALCULATIONS
4.0	RES	ULTS 22
	4.1	SEDIMENT POREWATER CONCENTRATION RESULTS MEASURED WITH PEEPERS
	4.2	SURFACE WATER CONCENTRATIONS MEASURED
		WITH PEEPERS
	4.3	COMPARISON OF PEEPER RESULTS ESTIMATED WITH LITHIUM TRACERS VERSUS BROMIDE TRACERS
	4.4	COMPARISON OF SEDIMENT POREWATER AND SURFACE WATER PEEPER RESULTS
	4.5	SURFACE WATER PEEPER RESULTS
5.0		
5.0		LYSIS OF PEEPER FIELD SAMPLING LOGISTICS RECOMMENDATIONS FOR CONDUCTING
		PER INVESTIGATIONS
6.0	REF	ERENCES
APP	END	X A PEEPER CALCULATION SHEETS

TABLE OF CONTENTS (Continued)

	Pa	age
APPENDIX B	DGT CALCULATION SHEETS	B-1
APPENDIX C	FIELD NOTES AND FORMS	C-1
APPENDIX D	CHAIN OF CUSTODY	D- 1
APPENDIX E	ANALYTICAL LABORATORY REPORTS	E-1
APPENDIX F	PEEPER DEPLOYMENT, RETRIEVAL AND PROCESSING METHOD .	F-1

LIST OF FIGURES

Figure 1.	Paleta Creek Site Location	. 3
Figure 2.	Ranges of Recent Concentrations of Metals in Sediment	
	and Porewater (Table, Right) Collected at Three Stations (map, left)	
	in Paleta Creek (Drygiannaki et al., 2020a) Compared to Approximate	
	Method Detection Limits for Peepers to Be Used in the Field Study	. 4
Figure 3.	Dredging Footprint (Shown in Grey Shading) at Paleta Creek (USACE, 2020)	. 5
Figure 4.	Field Sampling Sediment Stations.	. 6
Figure 5.	Peeper Frame (Top) and Frame with Peepers Being Inserted (Bottom)	. 8
Figure 6.	Peeper with Membrane Damage (Left) and Peeper with No Damage (right)	. 9
Figure 7.	Fully Assembled Frame (Left) with Detail Showing Portion of	
	Frame that Will Be Exposed to the Surface Water (Right)	. 9
Figure 8.	Fully Assembled Frame (Left) with Detail Showing Portion of	
	Frame that Will Be Exposed to the Surface Water (Right)	10
Figure 9.	Grappling Hook and Retrieval Rope	12
Figure 10.	Diver Retrieval and Marker Buoy	13
Figure 11.	Peeper and DGT Storing After Retrieval.	14
	Recovery Summary of the 80 Peepers that Were Deployed in	
	Surface Water and Sediment at the 10 Stations.	14
Figure 13.	Washing Peepers to Remove Sediments from the Membrane	15
Figure 14.	Contaminated Peeper with Particles (Left) vs Peeper without Any	
	Contamination (Right).	16
Figure 15.	Peeper processing	17
Figure 16.	Percentage of Equilibration Achieved by the Bromide and Lithium	
	Tracers for Peepers Deployed in Sediment and Surface Water	27
Figure 17.	Concentrations of Copper, Manganese, and Zinc, as Estimated	
	Using the Lithium Tracer (y-axis) Compared to Concentrations	
	as Estimated Using the Bromide Tracer (x-axis) for Peepers	
	Deployed in Sediment and Surface Water.	29
Figure 18.	Concentrations of Copper, Manganese, and Zinc, as Estimated	
	Using the Lithium Tracer (y-axis) Compared to Concentrations	
	as Estimated Using the Bromide Tracer (x-axis) for Peepers	
	Deployed in Sediment and Surface Water.	31
Figure 19.	Concentrations of Copper, Manganese, and Zinc, as Estimated	
	Using Peepers and the Lithium Tracer (x-axis) Compared to	
	Concentrations as Estimated Using DGTs (x-axis) for Peepers	
	and DGTs Deployed in Surface Water.	34

LIST OF TABLES

Table 1.	Field Demonstral and Desmansibilities for this Field Study	7
	Field Personnel and Responsibilities for this Field Study	
Table 2.	Sampling Locations and Associated Sample Collection	11
Table 3.	Analytical Specifications for Inorganic Analytes in Peeper Water	
Table 4.	Analytical Specifications for Inorganic Analytes in DGT	19
Table 5.	Free-water Diffusion Coefficient (D) for Inorganics	20
Table 6.	Peeper Porewater Equilibrium Results	
Table 7.	Bromide Corrected Porewater Results	
Table 8.	Lithium Corrected Porewater Results	
Table 9.	Peeper Surface Water Equilibrium Results	25
Table 10.	Bromide Corrected Surface Water Results	25
Table 11.	Lithium Corrected Surface Water Results	
Table 12.	DGT Surface Water Results	32
Table 13.	Comparison of Sediment Porewater Metal Concentration in Paleta Creek	35
Table 14.	Preparation and Deployment Time	38
Table 15.	Retrieval Times for Day 2	40

ACRONYMS AND ABBREVIATIONS

ANOVA	Analysis of Variance
Br	Bromide
cc	Cubic Centimeters
CCC	Criterion Continuous Concentration
Cd	Cadmium
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
cm	Centimeter
Cr	Chromium
Cu	Copper
DGT	Diffusive Gradients in Thin-Films
DOC	Dissolved Organic Carbon
DoD	Department of Defense
ESTCP	Environmental Security Technology Certification Program
Fe	Iron
FY	Fiscal Year
HDPE	High Density Polyethylene
Hg	Mercury
km	Kilometer
Li	Lithium
mg	Milligram
mg/L	Milligrams per liter
mL	Milliliter
Mn	Manganese
NBSD	Naval Base San Diego
Ni	Nickel
NIWC	Naval Information Warfare Center
P	P-value associated with statistical test
Pb	Lead
PP	Polypropylene
QA/QC	Quality Assurance / Quality Control
SD	Standard Deviation

SERDP	Strategic Environmental Research and Development Program
SCCWRP	Southern California Coastal Water Research Project
SCUBA	Self-Contained Underwater Breathing Apparatus
SWRCB	State Water Resources Control Board
USA	United States of America
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
Zn	Zinc
µg/L	Micrograms per liter

EXECUTIVE SUMMARY

The overall objective of SERDP Project ER20-5261 (https://serdp-estcp.org/projects/details/db871313fbc0-4432-b536-40c64af3627f) is to enhance the standardization of, and confidence in, the use of peepers for passive sampling of inorganic constituents such as metals, metalloids and anions in sediment porewater. This document details the results of a field demonstration in which peepers were deployed in surface sediment and surface water at Naval Base San Diego, San Diego, California, in October 2022. Over the course of 2 days, commercially available peepers were deployed at 10 stations, left to equilibrate for approximately 10 days, then retrieved over a course of 2 days, after which they were processed and shipped to a commercial analytical laboratory. Ninety percent of peeper samples were successfully analyzed (peepers at 1 station were not able to be retrieved) for target metal analytes cadmium, chromium, copper, iron, lead, manganese, mercury, and zinc. Lithium and bromide tracers spiked into the peepers indicated that greater than 70% equilibration was reached for all target metals during the 10-day exposure. Both tracers performed similarly. In the future, use of the lithium tracer (rather than bromide) is recommended, as the use of a lithium tracer is most efficient in terms of method simplicity and analytical cost savings. Method detection limits for peepers were sufficiently sensitive to detect concentrations lower than USEPA's saltwater Criterion Continuous Concentration (CCC) for aquatic life. All metals except for mercury (detection limit of approximately 0.1 to 0.4 μ g/L) were detected in at least one peeper sample. Differences in concentrations in sediment porewater and surface water were noted for some, but not all, metals. Detailed methods are presented, as well as logistical details and recommendations for planning and executing successful peeper investigations.

1.0 INTRODUCTION

The overall objective of SERDP Project ER20-5261 (https://serdp-estcp.org/projects/details/db871313fbc0-4432-b536-40c64af3627f) is to enhance the standardization of and confidence in the use of peepers for passive sampling of inorganic constituents such as metals, metalloids and anions in sediment porewater. This work would support the critical priorities highlighted by the Workshop on Research and Development for Long-Term Management of Contaminated Sediments (SERDP, 2016) as well as the FY2020 Broad Agency Announcement (ESTCP, 2019) which re-iterates interest in facilitating the application/ commercialization of passive samplers.

The technical objectives of this project are intended to enhance the commercial application of sediment porewater passive sampler and capture the latest technological advances that have been made in the field of passive sampling, following the successful approaches for passive samplers for organic chemicals pioneered by SERDP and ESTCP research.

The primary objective of the work described in this Field Report was to demonstrate best practices for the field deployment of sediment porewater passive samplers ("peepers") for inorganic contaminants at an active Department of Defense (DoD) sediment site. This field deployment was a culmination of the laboratory work conducted as part of ER20-5261, and served to implement, in the field, the methods developed and optimized in the laboratory experiments. The field deployment focused on quantifying the logistical aspect of a field mobilization and highlight the required effort to successfully ship, deploy, retrieve and process peepers in the field. The intended audience for this information is project managers and consultants that wish to plan and conduct field projects using peepers to measure metals in sediment and/or surface water at a freshwater or marine sediment site.

This remainder of this report describes the work and results of the Field Campaign that was conducted in October 2022 in San Diego, consisting of the following sections:

- Section 2 Site Description: Describes the site at which the peepers were deployed.
- Section 3 Field Methods: Describes the methods and materials used for the field work, including the peeper deployment, retrieval, processing, analysis, and data procedures.
- Section 4 Results: Provides the concentrations of metals in sediment porewater and surface water, as measured by the peepers, and metals in surface water, as measured by the DGTs, as well as other ancillary results associated with the measurements.
- Section 5 Results: Provides logistical information associated with the field work, with a focus on recommendations for conducting peeper investigations.
- Section 6 References: Provides a list of the references cited.

The following appendices are also provided:

• Appendix A: Detailed peeper calculation sheets, which are also provided attached to this PDF as Microsoft ExcelTM files.

- **Appendix B:** Detailed Diffusive Gradient in Thin Film (DGT) calculation sheets, which are also provided, which are also provided attached to this PDF as Microsoft ExcelTM files.
- Appendix C: Field notes and forms used during the field work.
- Appendix D: Chain of custody produced for the peeper and DGT samples.
- Appendix E: Analytical laboratory reports for the analyses of the peeper water and DGTs.
- Appendix F: Step-by-step methods for peeper deployment, retrieval, and processing.

2.0 SITE DESCRIPTION

The site selected for the demonstration of the inorganic passive samplers was the mouth of Paleta Creek (hereinafter referred to as "Paleta Creek"), located in the Naval Base San Diego (NBSD), San Diego Bay, San Diego, California, USA. Access to the site was facilitated though a collaboration with Mr. Gunther Rosen from US Navy NIWC Pacific (San Diego), who had agreement with NBSD to access the proposed demonstration site. The following section describes the selected site.

2.1 SITE LOCATION AND HISTORY

Paleta Creek is a man-made urban creek located on the eastern shoreline of the Naval Base of San Diego, California, USA (32°40' 21.49"N, 117° 7'1.93"W) (Figure 1). At this location, Paleta Creek joins with San Diego Bay, and the Paleta Creek site location can be considered a cove area of San Diego Bay. San Diego Bay is relatively long and narrow, 25 km length and 1–3 km wide, and tides and currents within the bay can move sediment around, and in and out, of the bay, as can storm events and resuspension from propeller wash (Wang et al., 2000; ESTCP, 2016). The California State Water Resources Control Board has characterized Paleta Creek as a high priority toxic hot spot due to amphipod sediment toxicity findings in the Consolidated Toxic Hotspots Cleanup Plan (SWRCB, 1999), and added Paleta Creek to the Federal list of impaired waters for impaired benthic communities, sediment toxicity, sediment contamination, or a combination of these three (SCCWRP, 2007).

Figure 1. Paleta Creek Site Location

(Naval Base San Diego, San Diego Bay, San Diego, California)

2.2 SITE GEOLOGY/HYDROGEOLOGY

Paleta Creek receives high water flow from winter storms as well as low flow during dry periods for the rest of the year from Seventh Street Channel. It receives stormwater from an urbanized (San Diego) watershed and is tidally influenced by San Diego Bay. Water depths in Paleta Creek are between approximately 15 to 26 feet (USACE, 2020), which is shallow enough to allow the use of

the diver-less push-pole deployment system for peepers, even during the highest tides (+4 to +5 feet) that occurred during our field work (October 2022). Creek flow is minimal (unless during storms), so water salinity is consistent with the saline nature of the remainder of San Diego Bay.

2.3 CONTAMINANT DISTRIBUTION

Recent studies (Drygiannaki et al., 2020; Hayman et al., 2019; Rosen et al. 2017) identified Paleta Creek as a site of sediment contamination due to stormwater and observed sediment toxicity resulting in impacts on the benthic community. Other studies have been conducted to characterize sediments at the mouth of Paleta Creek, and metals like copper, lead, and zinc are contaminants of concern (City of San Diego, 2009; SCCWRP, 2007). Spatial and temporal impacts of metals in sediment were investigated near the mouth of Paleta Creek using a 95% prediction limit based on a pool of stations representing baseline conditions in San Diego Bay. Sediment samples from monitored stations at Paleta Creek presented Cd, Cr, Cu, Pb, Ni, and Zn concentrations that exceeded the baseline threshold values and/or the 95% prediction limit. Concentrations of silver (Ag), arsenic (As), and Cr were within a factor of two of concentrations from reference sites, and concentrations of Cu, Hg, Pb, and Zn were approximately three times higher than concentrations at reference sites (SCCWRP, 2011).

A SERDP-funded research effort by Drygiannaki et al. (2020) provides some of the most relevant recent data on metals in surface sediments in Paleta Creek. In general, data indicate the presence of metals in sediment, with detectable levels of metals in porewater (as measured by DGT) that exceed the approximate method detection limits for target metals. Consistent with other studies in this area, Drygiannaki et al. (2020) results indicated that surface sediments at this location were fine grained (60 to 85% fines (clay plus silt)), indicating an ideal sediment substrate for the insertion of peepers.

Paleta P11 P17	Metal		et al. (2020a) P11, and P17 Concentrations in surface sediment porewater, measured by DGT (μg/L)	Approximate method detection limit in porewater for peepers (this study, (µg/L)
	Ni	17 - 23	0.7 - 3.6	0.5
P08 Creek	Cu	210 - 260	1.7 - 16	0.6
PO8 Cree	Zn	290 - 620	6.2 - 68	3
100	Cd	0.09 - 2.3	non-detect - 0.34	0.2
	Hg	0.35 - 1.1	non-detect - 0.18	0.1
	Pb	78 - 260	0.18 - 1.3	0.1

Figure 2. Ranges of Recent Concentrations of Metals in Sediment and Porewater (Table, Right) Collected at Three Stations (map, left) in Paleta Creek (Drygiannaki et al., 2020a) Compared to Approximate Method Detection Limits for Peepers to Be Used in the Field Study.

Dredging was conducted in 2020 (USACE, 2020) to remove a portion of sediment along the northwest edge of Paleta Creek (Figure 3). This area was not sampled by Drygiannaki et al. (2020), as shown in Figure 3. This study was not conducted in this dredged area since it is possible that the area may now be relatively uncontaminated and may not yield samples containing elevated or detectable levels of metals in porewater.

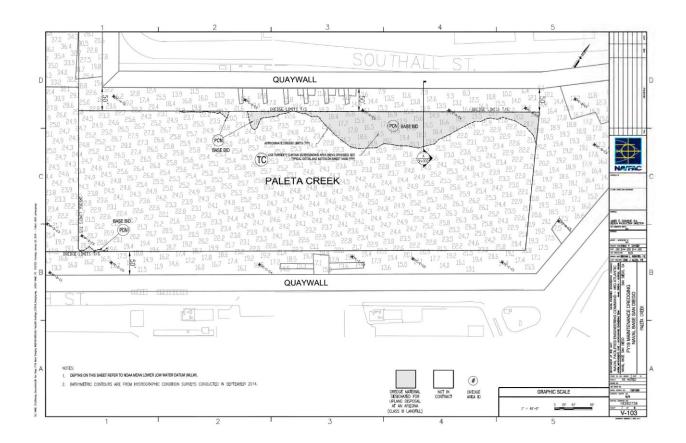


Figure 3. Dredging Footprint (Shown in Grey Shading) at Paleta Creek (USACE, 2020)

3.0 FIELD METHODS

This section provides a description of the field experimental design, sampling methods, and analytical methods that were used in the field demonstration. Peeper passive samplers were deployed at eight sampling locations (Figure 4). Two passive samplers consisting of four peepers samplers each were deployed at each sampling location, one for porewater and one for surface water analysis. Two surface water diffusive gradients in thin films (DGTs) were also deployed at each sampling location (Table 2). Field Notes can be found in Appendix C. A general step-by-step guide for deployment, retrieval, and processing of peeper samplers is provided in Appendix F.

Figure 4. Field Sampling Sediment Stations.

The dots are the sampling stations and the lines represent the direction of the deployed anchor line.

3.1 FIELD MOBILIZATION

The field mobilization effort started four months ahead of the field event by scheduling the final field dates and reserving the services of a vessel and its crew. Field personnel that would be involved were also notified to ensure availability of key staff. In total, six people were selected, each with a defined role (Table 1).

Field Personnel	Responsibilities
Field Coordinator	Coordinate field deployment. Organize material shipping and receiving. Direct staff during field event.
Principal Investigator	Overseeing of field event. Taking detailed notes during field event.
Site Access Contact	Direct contact with site owner for access and onsite scheduling.
Boat Captain	Vessel support.
Deck Hand	Vessel support.
Staff Support	Support for field event.

 Table 1.
 Field Personnel and Responsibilities for this Field Study

Material orders for the peepers, peeper frames, and DGT were placed 3 months ahead of the field event to allow for any delays due to potential supply chain issues. Peepers and frames were prepared by SiREM laboratories (<u>https://www.siremlab.com/</u>) and DGT were ordered from DGT Research (<u>https://www.dgtresearch.com/</u>). The diverless push-pole system that was used for this deployment was reserved from SiREM alongside the peeper order. S.ampling bottles were ordered from Eurofins Environment Testing America (Eurofins). All materials were shipped to the local Geosyntec office to be picked up by staff ahead of deployment. Peepers and DGTs were both shipped in a cooler, on ice, and were stored in the fridge until the first field deployment day.

3.2 PASSIVE SAMPLER DEPLOYMENT

Peeper passive samplers were deployed from a boat using the push-pole and camera system to ensure proper deployment and placement. Deployment took place from October 3 and 4, 2022. Prior to deployment, the peeper frames (each frame holding 4 peepers) were assembled by attaching plastic wings to support frames using supports and screws. The wings were attached to the frames to prevent the frame from over-penetrating the sediment. Two frames were attached together as to have one embedded in the sediment and one (above the wings) in the surface water. A laminated sample ID card was secured to one side of the frame, using a zip-tie and a sinking anchor line approximately 35 feet in length was attached to the other (Figure 5).

Peepers were removed from the Mylar® peeper bags, visually inspected for bubbles and damage during shipment, and secured into the peeper frame. Damaged peepers were discarded and not used for sampling purposes (Figure 6). Four peepers were inserted into the frame for porewater and four inserted for surface water sampling. One Agarose DGT, for mercury and one Chelex DGT, for other metals (i.e., cadmium, chromium, copper, iron, lead, manganese, nickel, and zinc) were attached to the peeper frame using a loop of monofilament fishing line (Figure 7), with the following exceptions: Two Agarose DGTs for mercury and no Chelex DGTs for metals were deployed at stations SPW-1A, SPW-1B and SPW-1C. Two Chelex DGTs for metals and no agarose DGTs for mercury were deployed at SPW-6. This modification in the sampling approach for DGT served as a "duplicate" to compare the precision of surface water results.

Figure 5. Peeper Frame (Top) and Frame with Peepers Being Inserted (Bottom).

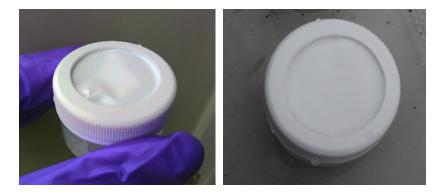


Figure 6. Peeper with Membrane Damage (Left) and Peeper with No Damage (right).

Figure 7. Fully Assembled Frame (Left) with Detail Showing Portion of Frame that Will Be Exposed to the Surface Water (Right).

After positioning the vessel at each station, the vessel anchored to secure position. The water depth was confirmed at each sampling location using GPS and sonar. Two aluminum push poles were attached together and the deployment head containing the release mechanism was attached. The camera system (SondeCAM HD) was secured to the bottom of the push poles. The fully assembled and loaded peeper frame was inserted into the deployment head slot on the push-pole deployment device (Figure 8) and a spring-loaded pin was inserted into the water and managed on board the boat to ensure no tangling occurred during deployment. To deploy, the attached peeper frames were slowly lowered into the water and poles were added to the top of the push-pole system until the length was enough to reach the sediment. The peeper frame was then inserted into the sediment until the frame wings were flush with the sediment. This was visually confirmed using the camera system, which was

viewed on cell phone wirelessly. After confirmation, the anchor line was tossed into the water, and the line direction was recorded as a cardinal direction. The spring-loaded pin was released, and the push poles were slowly removed from the frame and back onto the boat.

Figure 8. Fully Assembled Frame (Left) with Detail Showing Portion of Frame that Will Be Exposed to the Surface Water (Right).

GPS coordinates were collected and recorded immediately upon deployment of the peeper frame. The coordinates for SPW-8 were recorded after the frame had been deployed and the boat position had shifted. Therefore, the coordinates for SPW-8 are considered approximate and may not reflect the actual location of the deployed frame. In total 10 frames were deployed at all the planned locations (Table 2).

Sampling Station Platforms		Coordinates as Deployed	Water depth (feet)	Samplers Deployed
SPW-1A	1	32°40'25.039"N	24.4	1 porewater metal (peeper)
		117° 6'58.693"W		1 surface water metal (peeper)
				2 surface water mercury (DGT)
SPW-1B	1	32°40'25.060"N	24.4	1 porewater metal (peeper)
		117° 6'58.079"W		1 surface water metal (peeper)
				2 surface water mercury (DGT)
SPW-1C	1	32°40'25.174"N	25.2	1 porewater metal (peeper)
		117° 6'58.623"W		1 surface water metal (peeper)
				2 surface water mercury (DGT)
SPW-2	1	32°40'23.907"N	25.0	1 porewater metal (peeper)
		117° 6'58.064"W		1 surface water metal (peeper)
				1 surface water mercury (DGT)
				1 surface water metal (DGT)
SPW-3	1	32°40'23.915"N	28.0	1 porewater metal (peeper)
		117° 6'58.833"W		1 surface water metal (peeper)
				1 surface water mercury (DGT)
				1 surface water metal (DGT)
SPW-4	1	32°40'24.489"N	25.1	1 porewater metal (peeper)
		117° 6'59.771"W		1 surface water metal (peeper)
				1 surface water mercury (DGT)
				1 surface water metal (DGT)
SPW-5	1	32°40'23.427"N	28.0	1 porewater metal (peeper)
		117° 6'59.051"W		1 surface water metal (peeper)
				1 surface water mercury (DGT)
				1 surface water metal (DGT)
SPW-6	1	32°40'24.044"N	25.8	1 porewater metal (peeper)
		117° 6'59.293"W		1 surface water metal (peeper)
				2 surface water metal (DGT)
SPW-7	1	32°40'23.874"N	26.3	1 porewater metal (peeper)
		117° 6'59.816"W		1 surface water metal (peeper)
				1 surface water mercury (DGT)
				1 surface water metal (DGT)
SPW-8 ¹	1	32°40'23.058''N	27.9	1 porewater metal (peeper)
		117° 6'59.640"W		1 surface water metal (peeper)
				1 surface water mercury (DGT)
				1 surface water metal (DGT)
FB	-	-	-	1 Trip Blank (peeper)
		Total Samples	Deployed	21 Peeper, 19 DGT

 Table 2.
 Sampling Locations and Associated Sample Collection

¹Peeper array and samples were deployed, but not retrieved from SPW-8. Samples were not collected or processed from this location.

3.3 PASSIVE SAMPLER RETRIEVAL

Prior to retrieval, the peeper passive samplers and DGTs were allowed to equilibrate for ten days after deployment. Retrieval took place on October 13-14, 2022. Retrieval of the passive samplers was initially attempted using a grappling hook attached to a retrieval rope (Figure 9). Using this method for ~ 1 day, only one of the peeper frames was able to be retrieved. This low recovery rate was due to a combination of debris found in Paleta Creek (old oil booms, ladders) and the short length of the anchor lines. Anchor lines were cut at 36 feet long. Since the water depth was between 25 to 28 feet at the stations, this resulted in only 6 to 10 feet of line extending laterally on the seabed. This small amount of lateral length was not sufficiently long to be efficiently targeted using the grappling hook. After multiple unsuccessful attempts using the grappling hook, a diver was employed to retrieve the sampler frames. The diver conducted a circle search around a dropped buoy deployed at the GPS coordinates to locate and retrieve the passive samplers (Figure 10).

Figure 9. Grappling Hook and Retrieval Rope.

Figure 10. Diver Retrieval and Marker Buoy.

Upon retrieval of the samplers from the diver, the peepers were immediately removed from the frame and placed flat in a Mylar® bag with 3-4 500-cc oxygen absorbing packets (Figure 11). Three of the 80 peepers exhibited broken membranes, and these were discarded (Figure 12); the damage may have occurred due to mishandling during retrieval (finger pokes were noted on the membrane). The outside of the storage bag was labeled with the sample nomenclature and stored in a cooler with wet ice until processing. DGTs were also removed from the frames, placed flat inside a labeled Mylar® bag and stored on wet ice until shipped.

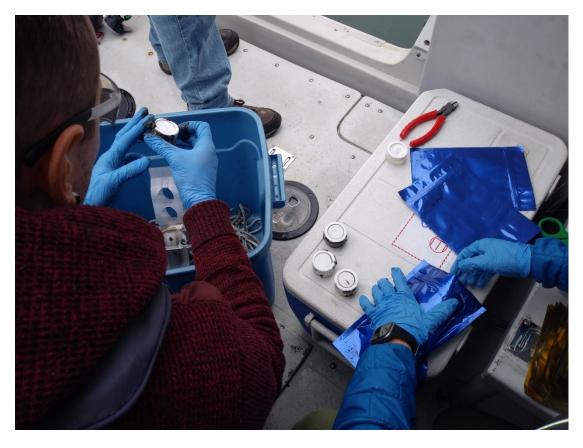


Figure 11. Peeper and DGT Storing After Retrieval.

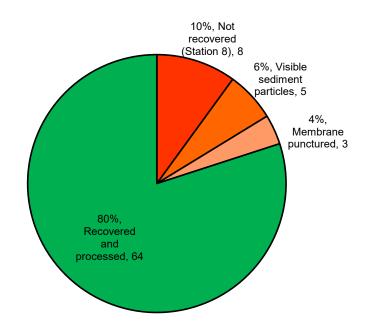


Figure 12. Recovery Summary of the 80 Peepers that Were Deployed in Surface Water and Sediment at the 10 Stations.

3.4 PASSIVE SAMPLER PROCESSING

At the end of each field day, the passive samplers were processed at a secure location onshore. Each peeper was removed from the storage bag and the membrane was washed with distilled water dispensed from a spray bottle (Figure 13). Each peeper was inspected for contamination by sediments (Figure 14). If particles were seen inside the peeper (5 of the 80 peepers, Figure 12), the peeper was not processed, as this can affect the metal concentration results (i.e., particle bound metals inside the peeper would cause an overestimation of the freely dissolved concentration of metals). Particles inside peepers were likely a result of inadvertently pressing upon the membranes by the diver and field crew. Peepers were also inspected for any biofilm or other biological growth on the membrane that could have impacted the performance of the device. No biofilm or any biological growth was noted on the membranes, the sampler or the frames. In total, 80% of the peepers (64 of 80) were recovered for processing (Figure 12). As peeper samples for the metals analysis can be comprised of 1, 2, or 3 peepers, however, 90% of the peeper samplers were able to be submitted for analysis. Only the sediment peeper sample and surface water peeper sample from station 8 was unable to be analyzed, as the peepers from this station were not able to be recovered. Thus, overall, the sampling effort achieved a 90% success rate.

Figure 13. Washing Peepers to Remove Sediments from the Membrane.

Figure 14. Contaminated Peeper with Particles (Left) vs Peeper without Any Contamination (Right).

To process and sample the peeper water, a 25-mL serological pipette was inserted into the bottom of the peeper by puncturing the membrane, and the water inside the peeper was drawn up (Figure 15). The water from one peeper (~20 mL) was dispensed into a sample container for bromide analysis (100-mL polypropylene bottle, supplied by the analytical laboratory). The remaining three peepers (~60 mL) were dispensed into the sample container for metal analysis (100-mL HDPE bottle containing 2.5 mL 1:4 concentrated nitric acid:water, supplied by the analytical laboratory)¹. The following exceptions are noted:

- One of the peepers retrieved from SPW-1A for surface water was punctured and not useable for sampling purposes while another peeper was contaminated by sediment particles Therefore, only one peepers was used for metals analysis, instead of three.
- One of the peepers retrieved from SPW-1A for sediment porewater was contaminated by sediment particles. Therefore, only 2 peepers were used for metals analysis, instead of three.
- One of the peepers retrieved from SPW-3 for sediment porewater was punctured and not useable for sampling purposes. One of the peepers was contaminated by sediment particles. Therefore, only one peeper was used for metals analysis, instead of three.
- Two of the peepers retrieved from SPW-4, one for surface water, and one for porewater were contaminated with sediments. Therefore, only two peepers were used for metals analysis for surface water and porewater at this location.

¹ It is recommended that a small volume from each peeper (e.g., 5 mL) should be used for the bromide analysis, rather than the entire 20-mL originating from a single peeper (as reflected in the recommended standard operating procedures attached to this document). For this experiment, using 20 mL from a single peeper did not affect the results; however, in sediments that are very heterogenous in texture in the top 5 to 10 cm, differences in diffusion among the four peepers could be significant.

• One of the peepers retrieved from SPW-6 for surface water was punctured and not useable for sampling purposes. Therefore, only two peepers were used for metals analysis, instead of three.

In cases in which only one peeper (i.e., 20 mL) was available for analysis, this resulted in an approximate increase in detection limit by a factor of 2 to 3. As long as 40 to 60 mL were available, detection limit was not affected.

One field blank was prepared using four unexposed peepers which was brought to the field during deployment and retrieval. All sample bottles were capped and labeled with their sample IDs.

No further processing was required for the DGTs.

Figure 15. Peeper processing.

3.5 SAMPLE STORAGE AND SHIPMENT

Sample bottles and Mylar® bags containing the DGTs were stored on wet ice immediately after processing, until sample shipment. Samples were shipped on ice via Fedex, under Chain of Custody procedures (Appendix D), to Eurofins Environment Testing America of Seattle and Pittsburgh.

3.6 SAMPLE ANALYSIS

Peeper samples were analyzed for metals and bromide by Eurofins Pittsburgh, Pennsylvania laboratory using the analytical specifications outlined in Table 3. All method detection limits were below the USEPA's saltwater Criterion Continuous Concentration (CCC) for aquatic life (<u>https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table#table</u>). The analytical report is available in Appendix E.

Analyte	Analytical Method	Sample Type	Container	Preser- vative	Holding Time (days)	Average Method Detection Limit (µg/L)	USEPA Saltwater Criterion Continuous Concentrati on (µg/L)
Cadmium (Cd)	EPA Method 6020B		100-mL HDPE bottle	Nitric Acid	180	0.22	7.9
Chromium (Cr)	EPA Method 6020B		100-mL HDPE bottle	Nitric Acid	180	1.5	NA
Copper (Cu)	EPA Method 6020B		100-mL HDPE bottle	Nitric Acid	180	1.1	3.1
Iron (Fe)	EPA Method 6020B	60 mL of	100-mL HDPE bottle	Nitric Acid	180	28	NA
Lead (Pb)	EPA Method 6020B		100-mL HDPE bottle	Nitric Acid	180	0.17	8.1
Total Mercury (Hg)	EPA Method 7470A	peeper water from three peepers	100-mL HDPE bottle	Nitric Acid	180	0.13	0.94
Manganese (Mn)	EPA Method 6020B		100-mL HDPE bottle	Nitric Acid	180	1.3	NA
Nickel (Ni)	EPA Method 7470B		100-mL HDPE bottle	Nitric Acid	180	0.52	8.2
Zinc (Zn)	EPA Method 6020B		100-mL HDPE bottle	Nitric Acid	180	2.9	81
Lithium (Li)	EPA Method 6020B		100-mL HDPE bottle	Nitric Acid	180	0.83	NA
Bromide (Br)	EPA Method 9056A	20 mL of peeper water from one peeper	100-mL HDPE bottle	None	180	2,700	NA

 Table 3.
 Analytical Specifications for Inorganic Analytes in Peeper Water

Note: NA: Not Available

DGTs were analyzed for metals and mercury by Eurofins Tacoma, Washington laboratory using the analytical specifications outlined in Table 4. Results are reported as the total μ g of analyte detected from the gel portion of the DGT. The analytical report is available in Appendix E.

Analyte	Analytical Method	Sample Type	Container	Preserv- ative	Holding Time (d)	Method Detection Limit (µg/sample)
Cadmium (Cd)	EPA Method 1638		Plastic zipseal bag containing DGT	None	180	0.00075
Chromium (Cr)	EPA Method 1638		Plastic zipseal bag containing DGT	None	180	0.0053
Copper (Cu)	EPA Method 1638		Plastic zipseal bag containing DGT	None	180	0.01
Iron (Fe)	EPA Method 1638	DGT resin obtained	Plastic zipseal bag containing DGT	None	180	0.075
Lead (Pb)	EPA Method 1638	from one general metals DGT	Plastic zipseal bag containing DGT	None	180	0.00068
Manganese (Mn)	EPA Method 1638		Plastic zipseal bag containing DGT	None	180	0.0045
Nickel (Ni)	EPA Method 1638		Plastic zipseal bag containing DGT	None	180	0.0058
Zinc (Zn)	EPA Method 1638		Plastic zipseal bag containing DGT	None	180	0.021
Total Mercury (Hg)	EPA Method 1631B	DGT resin obtained from one mercury- specific DGT	Plastic zipseal bag containing DGT	None	180	0.00001

 Table 4.
 Analytical Specifications for Inorganic Analytes in DGT.

3.7 PEEPER EQUILIBRIUM CALCULATIONS

For all peepers deployed in the sediments and in the surface water, the bromide and lithium tracer data was used to estimate the equilibrium freely-dissolved concentration of the target metals using the modeling techniques of Thomas and Arthur (2010). Thomas and Arthur (2010) studied the use of the bromide reverse tracer to estimate percent equilibrium in lab experiments and a field application. They concluded that bromide can be used to estimate concentrations in porewater using measurements obtained before equilibrium is reached. The study included a mathematical model for estimating concentrations of ions in external media ($C_{e,i}$) based on measured concentrations in the peeper chamber ($C_{p,i}$), the elimination rate of the target analyte (K_i) and the deployment time (t):

$$C_{e,i} = \frac{C_{p,i}}{1 - e^{-K_i t}}$$

Where K_i is the elimination rate of the target analyte, calculated using the ratio of the free-water diffusion coefficient of the tracer (D_t) and the target analyte (D_i) (Thomas and Arthur, 2010):

$$K_i = K_t \left(\frac{D_i}{D_t}\right)$$

D values for the 7 target analytes and 2 tracers are provided in Table 5.

Analyte	D (x10 ⁻⁵ cm ² /s)	Reference
Cadmium (Cd)	0.63	
Chromium (Cr)	0.52	
Copper (Cu)	0.62	
Iron (Fe)	0.63	
Lead (Pb)	0.83	D_{1}
Manganese (Mn)	0.62	Buffle et al. (2007)
Mercury (Hg)	0.74	
Nickel (Ni)	0.62	
Zinc (Zn)	0.61	
Lithium (Li)	0.90	
Bromide (Br)	1.8	

 Table 5.
 Free-water Diffusion Coefficient (D) for Inorganics.

The elimination rate of the tracer (K_t) is calculated using the following equation:

$$K_{t} = \frac{-ln \left(1 - \frac{Tr_{p,t} - Tr_{p,0}}{Tr_{e,t} - Tr_{p,0}}\right)}{t}$$

Where:

- Tr_{p,0} is the measured concentrations of the tracer in the peeper prior to deployment (mg/L or µg/L),
- $Tr_{p,t}$ is the measured concentrations of the tracer in the peeper at time of retrieval (mg/L or μ g/L),
- Tr_{e,t} is the concentrations of the tracer in the external media (mg/L or μ g/L) which for seawater is 65 mg/L for bromide and 100 μ g/L for lithium, and
- t is the deployment time (days)
- K_t is the elimination rate of the tracer

Additional laboratory experiments conducted by our team indicated that for marine sediment, lithium can be used in conjunction with bromide as a tracer to provide more robust equilibrium calculations.

These calculations were conducted on every porewater and surface water sample obtain from each station. This resulted in a corrected "at equilibrium" metal concentrations that was used to assess the peepers and was compared to the DGT. Details of the calculations and Excel file attachments can be found in Appendix A.

3.8 DGT POREWATER CONCENTRATION CALCULATIONS

The data obtained from the analysis of metals in the gels obtained from the DGTs used in the surface water were processed to be converted to a concentration due to their non-equilibrium mechanism (i.e. binding layer adsorbs continuously for the deployment length) using the approach detailed by Zhang and Davison (1995). The calculation of the aqueous concentration of any metal species using DGT data is as follows:

$$C_{DGT} = \frac{M\Delta_g}{D^{mdl}A_n t}$$

Where:

- C_{DGT} (ng/L for Hg, μg/L for other metals) is the concentration of metal in water measured by the DGT.
- M (ng for Hg, µg for other metals) is the mass of analyte in the gel from the binding layer of the DGT. It is obtained from the laboratory analysis (Appendix E).
- Δg (cm) is the total thickness of the materials (diffusive gel and membrane) in the diffusion layer (0.094 cm, as indicated by the DGT manufacturer).
- D^{mdl} (cm²/s) is the diffusion coefficient of the metal in the diffusion layer for the assumed deployment temperature (15°C, table of values provided by the DGT manufacturer, see Appendix B).
- A_p (cm²) is the physical area of the exposed filter membrane (3.14 cm², as provided by the manufacturer).
- t (s) is the deployment time (as determined from the field notes, Appendix C).

The mass, M, of analyte in the binding layer, of volume V^{bl} (mL), is calculated from the measured concentration of analyte c_e in the acid eluent of the volume V_e (mL) of DGT gel, remembering to consider any subsequent dilution.

$$M = \frac{c_e(V^{bl} + V_e)}{f_e}$$

Each DGT deployed in the surface water at each station was processed using these formulas to obtain a dissolved metal concentration that can be compared to the concentration obtained using peepers deployed in surface water. Details of the DGT calculation can be found in Appendix B.

4.0 **RESULTS**

4.1 SEDIMENT POREWATER CONCENTRATION RESULTS MEASURED WITH PEEPERS

Bromide and lithium results for the sediment porewater peepers are presented in Table 6 for each station. Deployment time varied between 9 to 11 days. The percentage of the equilibrium reached was calculated using the equations presented in section 3.7 and the initial peeper concentrations (980 mg/L Br, 86,000 µg/L Li) measured in the trip blank peeper, the concentrations of bromide and lithium measured in each peeper, and assumed concentration of bromide and lithium in seawater (65 mg/L Br, 100 µg/L Li). Results from peeper bromide and lithium concentrations both indicated that 80% to 100% equilibrium for bromide and lithium had been reached in the peepers deployed in sediment. However, because the target metals diffuse more slowly than tracers (Table 5), the percentage of equilibration estimated for the target metals was less than this 80% to 100% range. For example, the least amount of equilibration was observed for chromium in sediment peepers. Based on calculations using the lithium tracer, the average (SD) percentage equilibration reached by chromium in sediment was 74% (16%) among the 10 sediment peepers. Assuming this corresponds to a site-specific K_i value of 0.12 (day⁻¹), approximately 20 days would be needed to achieve approximately 90% equilibration in sediment. However, 3 to 5 days of deployment time would be sufficient to allow an approximate 30% to 50% equilibration for chromium in sediment (this time period would allow a higher percentage of equilibration for other target metals); this deployment time could be used (with tracers) to estimate the equilibrium concentration of chromium.

Overall, these results indicate that the deployment duration was sufficient to reach equilibrium during the ~10-day deployment period, and little to no correction are needed to account for partial equilibrium between porewater and peepers. Pre-equilibrium corrections were applied to all measured concentrations of metal analytes using the equations provided above. It is acknowledged that peepers that indicate nearly 100% of the equilibrium for lithium or bromide cannot provide exact cues as to when near 100% of equilibrium will be reached for target metals, because the target metals analytes measured in this study diffuse more slowly than lithium and bromide. Conceptually, this could prevent accurate pre-equilibrium correction. For example, among the metal analytes measured in this experiment, chromium is the slowest to reach equilibrium (lowest D value, Table 5). Given the equilibrium equations, if results indicated lithium has reached 96% of equilibrium, chromium would be expected to be only at 82% of equilibration. For this example, the concentration of chromium measured in the peeper water would be corrected by a factor of 1.2 (i.e., $1 \div 82\%$) to estimate the concentration of chromium at equilibrium. This pre-equilibration correction is relatively minor such that if no multiplication of chromium results were applied, the uncorrected (pre-equilibrated result) would be a factor of 1.2 or less than the true equilibrated concentration of chromium. This error rate is at most 20%, and would be lower for other metals diffusing at faster speeds. A \pm 20% uncertainty or error rate is a reasonable level of uncertainty for measurements of metals in water (USEPA, 2014). Thus, overall, for samples that indicate a high degree of equilibration for lithium (e.g., approximately 95% or more), the amount of uncertainty in predicting the equilibration of the other analytes lies in a reasonable \pm 20% range typical of analytical measurement uncertainty. In cases in which lithium has equilibrated 95% or more, the use of pre-equilibrium correction is not likely to indicate meaningfully different results from the uncorrected results for the metals measured in this study. Overall, despite the fact that lithium and bromide diffuse faster than the slowest analytes in this study (chromium), the difference is minor

such that, even when tracers are fairly well equilibrated, equilibrium estimated for the metals are likely to be within $\pm 20\%$ of true equilibrated values, which is a reasonable level of uncertainty. Extending the deployment time would decrease this error rate even further.

Samula	Deployment	Bromide	Lithium	Br Equilibrium	Li Equilibrium
Sample	Duration (d)	mg/L	μg/L	%	%
1A-PW	11.10	220	16000	83	81
1B-PW	11.06	120	510	94	100
1C-PW	10.92	230	19000	82	78
2-PW	9.14	120	5100	94	94
3-PW	10.96	230	18000	82	79
4-PW	10.16	130	170	93	100
5-PW	10.27	170	15000	89	83
6-PW	10.08	220	17000	83	80
7-PW	10.23	140	9600	92	89

 Table 6.
 Peeper Porewater Equilibrium Results

Equilibrium porewater concentrations were calculated from the measured peeper concentrations, as described in section 3.7. Two different tracers were used (bromide and lithium) and thus two different final porewater concentration were calculated for bromide (Table 7) and lithium (Table 8). Concentrations of cadmium, copper, lead, total mercury, and nickel that are highlighted yellow were in exceedance of USEPA's saltwater CCC (Table 3). Copper frequently exceeded the CCC value; this does not indicate that copper is resulting in aquatic toxicity, only that the CCC screening level is exceeded. Despite equilibrium being reached at many stations, the approach was used on all samples to confirm the accuracy of the method. Note that detection limits were also corrected to provide the "at equilibrium" minimum detection limit.

64-4°	Bromide corrected values (µg/L)										
Station	Cd	Cr	Cu	Fe	Pb	Mn	Hg	Ni	Zn		
1A-PW	< 0.59	< 4.8	7.1	480	1.6	55	< 0.25	< 1.4	29		
1B-PW	< 0.35	< 2.7	7.8	7100	0.54	370	< 0.19	1.6	33		
1C-PW	< 0.49	< 3.9	5.9	510	< 0.31	81	< 0.26	< 1.2	13		
2-PW	< 0.35	< 2.7	5.8	2300	< 0.24	120	< 0.19	< 0.84	5.1		
3-PW	< 0.8	< 6.7	< 4.3	340	< 0.52	41	< 0.66	2.5	25		
4-PW	< 0.37	< 2.8	10	< 47	0.29	8.8	< 0.5	1.9	27		
5-PW	< 0.42	< 3.3	3.5	2800	< 0.27	210	< 0.22	< 1	5.8		
6-PW	< 0.48	< 3.8	< 2.4	6800	< 0.31	330	< 0.25	< 1.1	< 6.5		
7-PW	< 0.38	< 2.9	< 1.9	2100	< 0.25	170	< 0.2	1.3	11		
USEPA Saltwater CCC	7.9	NA	3.1	NA	8.1	NA	0.94	8.2	81		

 Table 7.
 Bromide Corrected Porewater Results

Stattan.	Lithium corrected values (µg/L)										
Station	Cd	Cr	Cu	Fe	Pb	Mn	Hg	Ni	Zn		
1A-PW	< 0.39	< 3	4.7	320	1.1	36	< 0.17	< 0.95	19		
1B-PW	< 0.23	< 1.6	4.9	4500	0.39	240	< 0.13	1	21		
1C-PW	< 0.34	< 2.6	4	350	< 0.23	56	< 0.18	< 0.8	8.7		
2-PW	< 0.25	< 1.9	4.2	1600	< 0.18	90	< 0.14	< 0.61	3.6		
3-PW	< 0.54	< 4.4	< 2.9	220	< 0.37	27	< 0.46	1.7	17		
4-PW	< 0.22	< 1.5	6.2	< 28	0.2	5.2	< 0.33	1.1	16		
5-PW	< 0.31	< 2.4	2.6	2100	< 0.21	160	< 0.17	< 0.74	4.3		
6-PW	< 0.32	< 2.5	< 1.6	4600	< 0.22	220	< 0.18	< 0.77	< 4.3		
7-PW	< 0.28	< 2.1	< 1.4	1500	< 0.2	130	< 0.16	0.99	8		
USEPA Saltwater CCC	7.9	NA	3.1	NA	8.1	NA	0.94	8.2	81		

 Table 8.
 Lithium Corrected Porewater Results

The range of porewater concentration results between lithium and bromide correction are overlapping showing that both tracers are equally appropriate. Copper in the porewater was measured between < 1.4 to $10 \mu g/L$, iron between < 28 to $6800 \mu g/L$, lead between < 0.18 and $1.6 \mu g/L$, manganese between 5.2 and 370 $\mu g/L$, nickel between < 0.61 and 2.5, and zinc between < 4.3 and 33. Cadmium, chromium and mercury were not detected in any of the porewater samples.

4.2 SURFACE WATER CONCENTRATIONS MEASURED WITH PEEPERS

Equilibrium results of the surface water peepers are presented in Table 9 for each station. Deployment time varied between 9 to 11 days. The percentage of the equilibrium reached was calculated using the equations presented in section 3.7 and uses the initial peeper concentrations (980 mg/L Br, 86,000 µg/L Li) and the seawater concentration (65 mg/L Br, 100 µg/L Li). Results from peeper bromide and lithium concentrations both indicated that 92% to 100% equilibrium had been reached. As in sediment, the least amount of equilibration was observed for chromium in surface water peepers. Based on calculations using the lithium tracer, the average (SD) percentage equilibration reached by chromium in water was 98% (0.15%) among the 10 surface water peepers. Assuming this corresponds to a site-specific K_i value of 0.39 (day⁻¹), approximately 6 days would be needed to achieve approximately 90% equilibration in surface water. However, 1 to 2 days of deployment time would be sufficient to allow an approximate 30% to 50% equilibration for chromium in surface water (this time period would allow a higher percentage of equilibration for other target metals); this deployment time could be used (with tracers) to estimate the equilibrium concentration of chromium. These results indicate that the deployment duration was sufficient to reach equilibrium during the ~10-day deployment period, and little to no correction are needed to account for partial equilibrium between surface water and peepers. As for the treatment of peepers deployed in sediment porewater, corrections based on lithium and bromide tracer measurements were applied to all measured concentrations. Because the percentage of equilibration for lithium was approximately 99.9% and 92% or greater for bromide for all samples, little correction was needed.

Sample	Deployment	Br Li		Br Equilibrium	Li Equilibrium
-	Time (d)	mg/L	μg/L	%	%
1A-SW	11.10	120	150	94	100
1B-SW	11.06	120	180	94	100
1C-SW	10.92	120	180	94	100
2-SW	9.14	110	180	95	100
3-SW	10.96	140	170	92	100
4-SW	10.16	130	170	93	100
5-SW	10.27	130	170	93	100
6-SW	10.08	130	180	93	100
7-SW	10.23	130	190	93	100

 Table 9.
 Peeper Surface Water Equilibrium Results

Equilibrium porewater concentrations were calculated from the measured peeper concentration as described in section 3.7. Two different tracers were used (bromide and lithium) and thus two different final porewater concentration were calculated for bromide (Table 10) and lithium (Table 11). Concentrations of cadmium, copper, lead, total mercury, and nickel that are highlighted yellow were in exceedance of USEPA's CCC (Table 3). Copper frequently exceeded the CCC value and nickel exceeded its CCC at one station (1A-SW); this does not indicate that copper or nickel are resulting in aquatic toxicity, only that the CCC screening level is exceeded. Despite equilibrium being reached at many stations, the approach was used on all samples to confirm the accuracy of the method. Note that detection limits were also corrected to provide the "at equilibrium" minimum detection limit.

Station			Bromide corrected values (µg/L)								
Station	Cd	Cr	Cu	Fe	Pb	Mn	Hg	Ni	Zn		
1A-SW	< 0.58	36	21	180	0.5	19	< 0.48	47	38		
1B-SW	< 0.35	< 2.7	16	< 45	0.62	8.4	< 0.19	1.6	54		
1C-SW	0.58	< 2.7	12	< 45	< 0.24	11	< 0.19	1.3	25		
2-SW	< 0.34	< 2.6	10	< 43	0.24	9.8	< 0.18	1.1	17		
3-SW	< 0.38	< 2.9	11	< 48	< 0.25	11	< 0.2	1.4	18		
4-SW	< 0.4	< 3.2	8.9	110	< 0.26	15	< 0.2	1.7	15		
5-SW	< 0.37	< 2.8	9.4	< 47	0.33	13	< 0.2	1.6	20		
6-SW	< 0.37	< 2.8	8.1	< 47	0.37	12	< 0.5	1.3	17		
7-SW	< 0.37	< 2.8	9.3	48	0.37	13	< 0.2	1.6	22		
USEPA Saltwater CCC	7.9	NA	3.1	NA	8.1	NA	0.94	8.2	81		

 Table 10.
 Bromide Corrected Surface Water Results

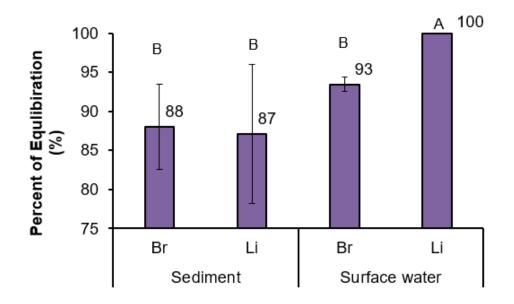

Station.	Lithium corrected values (µg/L)										
Station	Cd	Cr	Cu	Fe	Pb	Mn	Hg	Ni	Zn		
1A-SW	< 0.36	20	13	110	0.36	12	< 0.33	29	23		
1B-SW	< 0.22	< 1.5	10	< 28	0.45	5.2	< 0.13	1	33		
1C-SW	0.36	< 1.5	7.5	< 28	< 0.17	6.7	< 0.13	0.8	15		
2-SW	< 0.22	< 1.5	6.7	< 28	0.18	6.4	< 0.13	0.72	11		
3-SW	< 0.22	< 1.5	6.2	< 28	< 0.17	6.5	< 0.13	0.8	10		
4-SW	< 0.24	< 1.7	5.3	63	< 0.18	9	< 0.13	1	9		
5-SW	< 0.22	< 1.5	5.6	< 28	0.23	7.8	< 0.13	0.98	12		
6-SW	< 0.22	< 1.5	4.8	< 28	0.26	7	< 0.33	0.78	10		
7-SW	< 0.22	< 1.5	5.5	29	0.26	7.6	< 0.13	0.97	13		
USEPA Saltwater CCC	7.9	NA	3.1	NA	8.1	NA	0.94	8.2	81		

 Table 11. Lithium Corrected Surface Water Results

The range of peeper surface water concentration results between lithium and bromide correction are overlapping showing that both tracers are equally appropriate. Cadmium in the surface water was measured between < 0.22 to 0.58 μ g/L, chromium between < 1.5 and 36 μ g/L, copper between 4.8 and 21 μ g/L, iron between < 28 to 180 μ g/L, lead between < 0.17 and 0.62 μ g/L, manganese between 5.2 and 19 μ g/L, nickel between 0.72 and 47, and zinc between 9 and 54 μ g/L. Mercury was not detected in any of the surface water samples.

4.3 COMPARISON OF PEEPER RESULTS ESTIMATED WITH LITHIUM TRACERS VERSUS BROMIDE TRACERS

Concentrations of metals in peepers, as calculated with the bromide (Table 7 and Table 8) and lithium (Table 10 and Table 11) were similar. This lack of difference was not unexpected given that the tracers indicated that the sediment and water peepers were near equilibrium (87% on average for all peepers). As shown in Figure 16, the percentage of equilibration was generally higher in the surface water peepers compared to the sediment peepers, which, is to be expected given that water flows around the peepers that were deployed in surface water which will agitate the boundary layer at the outside surface of the peeper membrane, facilitating a faster diffusive transfer. For the sediments, the amount of equilibration achieved by the lithium tracer was not statistically different than that achieved with the bromide tracer (average of 88% versus 87%), while for surface water the amount of equilibration achieved by the lithium tracer (average of 99.9%) was statistically significantly higher than that achieved with the bromide tracer (average of 93%).

Figure 16. Percentage of Equilibration Achieved by the Bromide and Lithium Tracers for Peepers Deployed in Sediment and Surface Water.

Note: Columns are average (SD) values; numerical labels are averages; columns with the same letter are not statistically different (ANOVA with Tukey's Honestly Significant Difference).

Data were further evaluated by comparing the concentrations of copper, manganese, and zinc in sediment porewater and surface water as estimated by the bromide tracer to those estimated using the lithium tracer (Figure 17). These three metals were evaluated because they were the metals with the highest percentages of detected results in both sediment and water. Results indicated that in all cases, the concentrations for copper, zinc, and manganese estimated using the bromide tracer were an average of 37%, 24% and 31% higher, respectively, than the concentrations indicated using the lithium tracer. Specifically:

- The average (SD) concentration of copper estimated using the bromide tracer (8.3 (5.0) μ g/L) was statistically different from that estimated using the lithium tracer (5.2 (3.0) μ g/L)), based on a paired t-test (P < 0.0001).
- The average (SD) concentration of zinc estimated using the bromide tracer (17.3 (10.1) μ g/L) was statistically different from that estimated using the lithium tracer (13.1 (7.6) ug/L)), based on a paired t-test (P = 0.0001).
- The average (SD) concentration of manganese estimated using the bromide tracer (83.2 (114.1) µg/L) was not statistically different from that estimated using the lithium tracer (57 (78) ug/L)), based on a paired t-test (P < 0.0001).

Overall, the 24-37% difference between the approaches is within an acceptable level of uncertainty for the measurement approaches such that either the concentrations estimated using the lithium tracer or the concentrations estimated using the bromide tracer would be assumed to be accurate measurements. However, it is important to note that diffusion coefficient for bromide $(1.8 \times 10^{-5} \text{ cm}^2/\text{s}, \text{ Table 5})$ is much higher compared to lithium $(0.9 \times 10^{-5} \text{ cm}^2/\text{s}, \text{ Table 5})$ and thus bromide is expected to diffuse faster than lithium in sediments and in surface water.

Since the opposite is observed for surface water while no difference is observed for sediments, we can hypothesize that either the diffusion of lithium is faster that theorical values or that the diffusion of bromide is slower that theorical values. However, based on the diffusion coefficients, bromide should have reached equilibrium earlier in the given deployment time, thus using bromide correction may slightly overestimate porewater and surface water concentrations for this study. Indeed, corrections using lithium provided concentrations of copper, manganese and zinc that were only within a factor of 1.06 to 1.2 from the measured concentrations, which is expected based on the samplers having reached equilibrium. For this reasons, the lithium tracer results will be used for the remainder of the discussion in this study.

It is important to note that both lithium and bromide tracer indicate 80% or more of the equilibrium has been reach in both porewater and surface water peepers. Corrections are still applied in this study to provide the methods to other studies that may retrieve peepers before equilibrium is established.

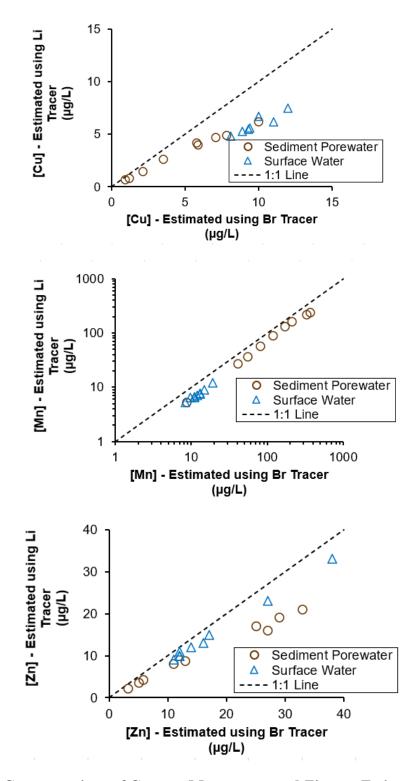


Figure 17. Concentrations of Copper, Manganese, and Zinc, as Estimated Using the Lithium Tracer (y-axis) Compared to Concentrations as Estimated Using the Bromide Tracer (x-axis) for Peepers Deployed in Sediment and Surface Water.

4.4 COMPARISON OF SEDIMENT POREWATER AND SURFACE WATER PEEPER RESULTS

Concentrations of copper, manganese, and zinc in peepers deployed in sediment were compared to concentrations in surface water (calculated using the lithium tracer, Figure 18). There was a lack of a clear correlation between concentrations of metals in sediment porewater and the corresponding concentration in surface water at each station. Differences in concentrations between sediment porewater and surface water were noted for copper and manganese, but not zinc:

- The average (SD) concentrations of copper in sediment porewater (3.3 (2.0) ug/L) were statistically lower (by a factor of ~2) than that of surface water (7.2 (2.7) ug/L), based on paired t-test (P = 0.0014).
- The average (SD) concentrations of manganese in sediment porewater (107 (86) ug/L) were statistically higher (by a factor of 14) than that of surface water (7.6 (2.0) ug/L), based on paired t-test (P = 0.0087).
- The average (SD) concentrations of zinc were not statistically different between sediment porewater (11.1 (7.2) ug/L) and surface water (15 (7.9) ug/L), based on paired t-test (P = 0.1061).

Overall, the differences between sediment porewater and surface water for copper and zinc were minor (factor of 2 or less difference), indicating some degree of potential equilibration between surface sediment and surface water. In contrast, concentrations of manganese in sediment porewater were much higher (factor of 14) than surface water. This is expected given that the sediment was likely anoxic or partly anoxic, which would facilitate the presence of freely available manganese compared to the more oxygenated surface water, where manganese availability would be limited.

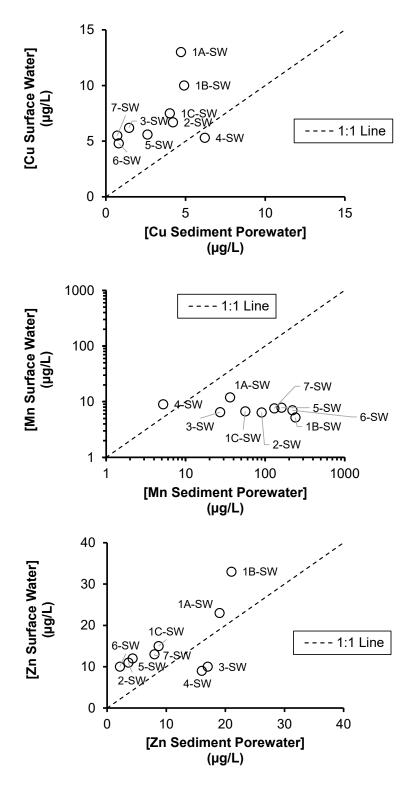


Figure 18. Concentrations of Copper, Manganese, and Zinc, as Estimated Using the Lithium Tracer (y-axis) Compared to Concentrations as Estimated Using the Bromide Tracer (x-axis) for Peepers Deployed in Sediment and Surface Water.

Note: Labels indicate stations.

4.5 SURFACE WATER CONCENTRATIONS MEASURED WITH DGTS

Concentrations of metals as measured by the DGTs is presented in Table 12. No concentrations of cadmium, copper, lead, total mercury, or nickel (measured by DGTs) were in exceedance of USEPA's saltwater CCC (Table 3).

S ();	Hg	Cd	Cr	Cu	Fe	Pb	Mn	Ni	Zn
Station	ng/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
1A-SW*	< 0.520	-	-	-	-	-	-	-	-
IA-SW*	< 0.520	-	-	-	-	-	-	-	-
1B-SW*	1.409	-	-	-	-	-	-	-	-
1B-5W*	< 0.522	-	-	-	-	-	-	-	-
1C-SW*	< 0.529	-	-	-	-	-	-	-	-
1C-SW*	< 0.529	-	-	-	-	-	-	-	-
2-SW	< 0.632	0.024	< 0.053	1.054	1.74	0.088	1.99	0.37	4.91
3-SW	< 0.527	0.030	< 0.044	0.743	< 0.52	0.068	2.38	0.38	5.06
4-SW	< 0.569	0.032	< 0.048	0.875	1.04	0.079	2.18	0.39	5.84
5-SW	< 0.562	0.030	< 0.047	0.865	2.50	0.078	2.07	0.30	4.44
6-SW*	-	0.031	< 0.048	0.808	< 0.56	0.068	2.51	0.36	5.13
0-5W*	-	0.029	< 0.048	0.808	< 0.56	0.068	1.88	0.34	4.82
7-SW	< 0.564	0.030	< 0.047	1.013	< 0.55	0.090	1.47	0.34	5.57

Table 12. DGT Surface Water Results

- : Not analyzed

*: Represents stations at which duplicate DGTs for mercury (1A-SW, 1B-SW, and 1C-SW) or other metals (6-SW) were deployed.

DGTs indicated lower method detection limits than peepers, but detection limits for peepers were generally an order of magnitude lower than USEPA's saltwater CCC for aquatic life (Table 3), making them sufficient for most investigations of metals that consider potential risks to aquatic life. Cadmium in the surface water was measured between 0.024 to 0.032 µg/L, chromium between < 0.044 and < 0.053 µg/L, copper between 0.743 and 1.054 µg/L, iron between < 0.52 to 2.50 µg/L, lead between 0.068 and 0.090 µg/L, manganese between 1.47 and 2.51 µg/L, nickel between 0.030 and 0.38, and zinc between 4.44 and 5.57 µg/L. Mercury was only detected in one of the surface water samples at 1.409 ng/L.

It is notable that the surface water peepers identified copper as consistently exceeding the saltwater CCC, but the DGTs did not identify copper as an issue. Copper is a known contaminant of concern at Naval Base San Diego (Drygiannaki et al., 2020; Hayman et al., 2019; Rosen et al. 2017).

The DGT data in Table 12 indicated lower concentrations of metals in the surface water compared to peepers (Table 10 and Table 11). For example, as shown in Figure 19, concentrations at the stations at which both peepers and DGTs were used to measure copper, manganese, and zinc in surface water (stations 2 through 7) were statistically different, with average values differing by a factor of 2 to 6 between DGTs and peepers:

- The average (SD) concentration of copper in peepers (estimated using the lithium tracer, 5.7 (0.67) µg/L, was statistically higher (by a factor of 6) than that indicated by DGTs (0.89 (0.12) µg/L) based on paired t-test (P < 0.0001).
- The average (SD) concentration of manganese in peepers (estimated using the lithium tracer, 7.4 (0.97) μ g/L, was statistically higher (by a factor of 4) than that indicated by DGTs (2.1 (0.31) μ g/L) based on paired t-test (P < 0.0001).
- The average (SD) concentration of zinc in peepers (estimated using the lithium tracer, 11 (1.5) μ g/L, was statistically higher (by a factor of 2) than that indicated by DGTs (5.1 (0.50) μ g/L) based on paired t-test (P = 0.0004).

The lower concentrations obtained from DGT in comparison to peeper data may be in part due to differences in the mechanisms by which metals are sampled by the devices. Strivens et al. (2019) hypothesized that Dissolved Organic Carbon (DOC) bound copper may not freely diffuse and bind to the chelex binding layer of DGT, thus recording lower dissolved metals concentrations in DOC rich environment compared to other methods. In comparison, peeper membranes may not prevent DOC-metal complexes from diffusing inwards allowing the measurement of DOC-metal complexes. Additional study may be needed to refine the differences in DGT and peeper measurements, although the fact that these very different measurement techniques were within an approximately factor of 5 agreement is notable. Given this relative level of agreement, differences between DGT and peeper measurements may be within typical levels of variation and measurement error, but more research would be beneficial to evaluate the comparison.

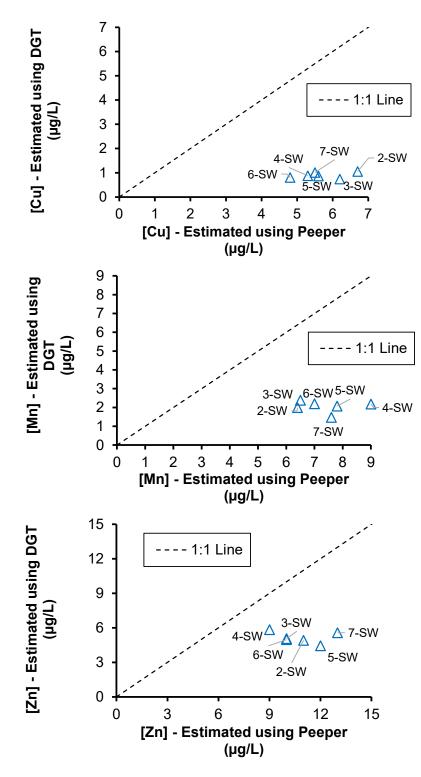


Figure 19. Concentrations of Copper, Manganese, and Zinc, as Estimated Using Peepers and the Lithium Tracer (x-axis) Compared to Concentrations as Estimated Using DGTs (xaxis) for Peepers and DGTs Deployed in Surface Water.

Note: Labels indicate stations.

Concentrations of metals in sediment porewater obtained from peepers were also compared to concentrations obtained in a previous SERDP-funded research effort by Drygiannaki et al. (2020) (Table 13). Ranges of concentrations of cadmium, copper, lead, total mercury, and nickel that are highlighted yellow included ranges that were in exceedance of USEPA's saltwater CCC (Table 3). Both studies were in agreement that copper exceeded the CCC value in sediment porewater. The Drygiannaki et al. (2020) study used DGT to measure availability of metals in the porewater at three locations in Paleta creek (Figure 2) that were in the vicinity of the locations sampled in this study (Figure 4).

Metal	Concentration Range Measured in DGT (µg/L) (Drygiannaki et al., 2020)	Concentration Range Measured in Peepers (µg/L) (this study)
Ni	0.7 - 3.6	< 0.6 - 1.7
Cu	1.7 – 16	< 1.3 – 7.4
Zn	6.2 - 68	< 4.2 - 23
Cd	ND-0.34	< 0.22 - < 0.54
Hg	ND - 0.18	< 0.17 - < 0.46
Pb	0.18 – 1.3	< 0.17 - 1.1

Table 13. C	omparison of	f Sediment Pol	rewater Metal	Concentration	in Paleta Creek
-------------	--------------	----------------	---------------	----------------------	-----------------

Overall, the concentration ranges for metals in sediment porewater measured in this study overlaps with the range measured by Drygiannaki et al. (2020), indicating that the peeper method provides similar results as DGT in sediment. Additional comparisons between peepers and DGTs may be needed to resolve the differences observed between peepers and DGTs deployed in surface water.

5.0 ANALYSIS OF PEEPER FIELD SAMPLING LOGISTICS AND RECOMMENDATIONS FOR CONDUCTING PEEPER INVESTIGATIONS

The purpose of this section is to review the logistical details associated with the field efforts and provide recommendations for future peeper field investigations. This information is provided to aid in the planning and execution of future efforts. Details are organized according to the basic steps involved in the peeper field investigation:

- 1. Planning
- 2. Preparation and Shipment of Peepers
- 3. Mobilization for Deployment
- 4. Deployment Period
- 5. Mobilization for Retrieval
- 6. Retrieval
- 7. Processing and Shipment

Step 1: Planning. Planning the field work was typical of that at an aquatic sediment site, and was initiated 3 to 4 months ahead of the planned deployment date. Key activities included identifying optimal dates, ordering the peepers, arranging the vessel support, and working with local site personnel regarding access to the site.

- Key recommendations for planning:
 - Plan field work well in advance, ideally several months ahead of the planned deployment date, if possible.
 - Assume a less than 100% success rate for peeper sampling, as peepers may be lost or samples compromised; it is recommended to deploy at least 1.25X to 1.5X the number of stations required for the investigation.

Step 2: Preparation and Shipment of Peepers. Peeper preparation was conducted at SiREM approximately 2 weeks in advance of the field deployment. It is recommended to coordinate the peeper preparation well in advance to allow adequate time for preparation and shipping of peepers to the field.

In this experiment, peepers were prepared using bromide and lithium tracers. For the peepers deployed in sediment, the amount of equilibration indicated by bromide and lithium did not greatly differ. The bromide data and lithium data from each deployed peepers were then used independently to calculate the concentrations of metals at equilibrium. Among the metals that were frequently detected in both sediment and water (copper, manganese, and zinc), average results estimated using the lithium tracer data were within approximately 24-37% of the results indicated using the bromide tracer. This difference has been observed in laboratory experiments as well (conducted by this team – available in a subsequent report), even when peepers were deployed for time periods that only allowed partial (i.e., 20%, 50%, etc.) equilibration.

Given the minimal difference between results estimated with bromide tracer versus the lithium tracer, the fact that bromide concentrations in seawater are likely much higher than concentrations lithium (resulting in some uncertainty regarding tracer elimination rates for bromide), and that fact that the analysis of bromide requires a separate sample preservation and analysis, the use of lithium as a single tracer may be advantageous for future work. This would save analytical costs (i.e., not having a separate analysis for bromide), simplify the processing step, and allow more peeper water sample to be devoted to the analysis of the target metal analytes, which will improve analytical precision.

- Key recommendations for peeper preparation and shipment:
 - Begin peeper preparation (ideally) at least 2-3 weeks in advance.
 - Peepers can be prepared with either bromide or lithium tracers (or both), although it is recommended to use lithium only.
 - Order at least 5-10% more peepers than required for deployment; this will provide a buffer against damage to peeper that may occur during shipping and handling and will not greatly increase investigation costs.
 - Arrange shipping of peepers to a secure location where peepers can be stored at room temperature (or refrigerated) at least one week in advance of the field deployment.
 - Immediately upon arrival of peepers and frames, verify the number of peepers and support frames that were shipped.
 - Immediately upon arrival of peepers and frames, have a field staff construct at least one peeper frame so that it is clear to staff the manner in which the frames are assembled and that all pieces required for the frame construction are available and line up properly.

Step 3: Mobilization for Deployment. Mobilization for retrieval was typical of field work at an aquatic sediment site. Approximately 2 hours during the first morning of the first field day (deployment) was spent organizing the deployment equipment, preparing the frames for deployment, launching the vessel, and coordinating the field staff. Although some portion of this work may have been able to have been accomplished prior to the start time, projects should plan on at least 1 to 2 hours at the beginning of field events to conduct this mobilization and organization activity. This allows extra time for troubleshooting if any issues arise and gives times to safely travel to and from the deployment locations.

- Key recommendations for deployment mobilization:
 - Plan for a "slow start" on the first day of field work.

Step 4: Deployment. Overall, 1.5 days were spent to deploy peeper frames at 10 stations, all which included 1 peeper frame with 4 surface water peepers, 4 porewater peepers, and 2 surface water DGTs. This time includes the approximate 30- to 45-minute transit time to and from the vessel launch area to the Site.

At the site, positioning of the vessel at each station required 5 to 37 minutes (average of 13 minutes per station, Table 14), although this was dependent on the wind conditions, which affected the ability to anchor securely at certain stations. It is important to note that boating to the locations and anchoring could take up to 40-60 minutes depending on the weather and site conditions, which can extensively add to the field effort. Deployment locations at the field site were within 10 to 50 feet of the planned locations.

Once on station, peepers and DGTs were assembled into a single peeper frame device deployed using a driverless push-pole system. The assembly of the frames, insertion of peepers and DGTs into the frames, and attachment of the frame to the push pole required approximately 5 minutes per frame (data not shown); this primarily accomplished by 1 field staff. After the peepers were attached to the push pole, the pole and peepers were inserted into the water. This process required at least two field staff to handle the push pole and attach the additional lengths of pole required (i.e., approximately 30 feet of pole), while a third field staff viewed the video camera feed to note when the peeper frame approached the sediment, monitor the insertion, and confirm detachment of the push pole from the peeper frame. From the time the peeper frame entered the water, the first station (1A) required approximately 26 minutes to install the peeper frame (Table 14). This was largely a factor of field staff optimizing and becoming familiar with the equipment and process. The next two deployments (1B and 1C) required only 5 and 3 minutes, respectively. Not counting station 1A, the peeper frame insertion process required an average of 5 minutes per peeper frame. This gain in efficiency can be attributed to field personnel familiarization with the material and efficiencies found during deployment. Example of these efficiencies include pre-assembly of material during anchoring and attribution of defined roles to field crew members.

Sampling station	Vessel Positioning Time (minutes)	Push Pole Deployment Time (minutes)
1A	16	26
1B	0 (same location as 1A)	5
1C	0 (same location as 1A)	3
2	14	5
3	37	8
4	9	6
5	9	4
6	5	3
7	7	6
8	13	8

Table 14. Preparation and Deployment Time

The optimal rate of efficiency for the deployment was realized on the second day of deployment. During the 3 hours spent on site (not counting transit time from the vessel launch to the site), 6 peeper frames were deployed at 6 different locations, an approximate 2 stations per hour rate of deployment. This rate would afford typical projects being able to deploy approximately 10 to 20 peeper frames in a single field day using this push pole method.

Deployment of peepers using divers is likely to be closer to the 10 peeper frames per day rate rather than 20 peeper frames per day rate. In this case, only 1 field staff would be needed to construct and arrange peepers and frames, although many more field staff would be needed for diving (i.e., 1 to 2 divers, 1 to 2 dive support staff, etc.). With that approach, stations are usually marked with a buoy, then the diver is provided the peeper frame on the vessel. The diver then descends to the station, manually inserts the peeper frame, and returns to the surface. Multiple stations can be coordinated on a single dive depending on site conditions.

- Key recommendations for deployment:
 - Deployment of peepers requires 2 to 3 field staff if using push pole system, or 1 field staff plus divers and associated diver support personnel if divers are used for deployment.
 - Deployment of peeper frames can likely achieve rates of 10 to 20 stations per day; this
 rate is highly depending on field staff, site conditions, arrangement of stations, transit
 times, deployment approaches, and other factors.
 - Once at a site, it is recommended to conduct a practice run using a sacrificial peeper frame so that push pole operators or divers (and field staff) can familiarize themselves with the process.

Step 5: Deployment Period. The final day of retrieval was on October 4, 2022. During the period of October 5 to October 12 (8 days), no active field work occurred. This period allowed the peepers to be exposed to the site sediment or surface water for approximately 10 days. Since retrieval was completed in 2 days' time (October 13-14, 2022), the entire field work program was completed in two working weeks.

As discussed in the results, the tracer data indicated that peepers used in this investigation were 70% to 100% equilibrated for all target metals over a period of 10 days. Data suggested that approximately 3 weeks would be needed for all target metals to approach 90% of equilibrium in sediment (6 days for surface water). However, 30% to 50% levels of equilibration could be achieved for the slowest diffusing metal (chromium) in as little as 3 to 5 days in sediment and 1 to 3 days in surface water. Reducing the deployment periods to less than one week (using the lithium tracer to correct for equilibrium) could enable more efficient field programs, especially when overnight travel for field staff is a logistical component. Additional field deployment kinetic studies may be useful in refining the ability to reduce the deployment period.

Alternately, the peeper design used in this experiment has been successfully deployed in sediment for periods of 28 days. Increasing the deployment period provides more assurance that equilibrium is attained for all analytes, but the risk of sampler loss increases with time. Additionally, for very long deployments in surface water, biofilms that impede diffusion may affect the peeper membrane. This issue has not been observed for typical long-term deployments (e.g., 28 days) with this type of peeper, however.

- Key recommendations for deployment periods:
 - Deployment periods for peepers in sediment and surface water may be able to be reduced to less than one week, depending on the peeper design being used.
 - Deployment periods of 2, 3, or 4 weeks are also acceptable, as full equilibration or all metals is expected at approximately 3 weeks (in sediment); although risk of sampler loss increases with deployment time.

Step 6: Mobilization for Retrieval. Mobilization for retrieval was typical of field work at an aquatic sediment site. Mobilization for retrieval on the first day was efficient (approximately 45 minutes), but a change in the retrieval approach (see below), required approximately 3 hours for mobilization.

- Key recommendations for retrieval mobilization:
 - Plan for a "slow start" on the first day of field work.

Step 7: Retrieval. Day 1 of retrieval was largely unsuccessful. Retrieval methods featured throwing a grappling hook from the vessel and dragging bottom in an attempt to snag anchor lines attached to the peeper frames. Because the anchor lines were only 36 feet in length and the water depth was > 20 feet, only 5 to 10 feet of anchor line extended laterally on the sediment surface. This was not a sufficient target to snag using the grappling hook. This was compounded by the heavy debris at the location, as noted per the diver that noted that peepers at stations 1A and 1B were under debris (a sunken boom). Only one peeper frame (station 2) was recovered using the grappling hook method, and the peeper samples from this station were processed at the end of the field day.

Day 2 of retrieval featured the use of a scuba diver to retrieve the peeper frames. On average, the diver required approximately 20 minutes per station to enter the water, search for the peeper frame, and return the frame to the vessel. Additional time was needed to mark the approximate locations of the sites with marker buoys and transit between stations.

Sampling station	Diver Retrieval Time (minutes)
1A	- 40*
1B	40.
1C	5
2	Retrieved on Day 1
3	15
4	10
5	30
6	30
7	30
8	-

Table 15. Retrieval Times for Day 2

* Station 1A and 1 B were recovered together within 40 minutes.

- Station 8 was not retrieved.

Once the peeper frame was aboard the vessel, 2 field staff quickly removed the peepers and DGTs from the frame and recorded information on the retrieval forms. One "dirty hands" and one "clean hands" staff are recommended for this process. Packaging the peepers into storage bags required approximately 5 minutes or less (data not presented), and was conducted while the vessel was moving to the next station. Processing of the peeper (rather than packaging for storage) could be conducted at this stage of the field work, as discussed below.

Eight peeper frames were retrieved and packaged over a 5-hour period on day 2 using the diver. Assuming having access to a second diver and saving 1 to 2 hours of time in the field day to process peepers onshore, it may be possible to retrieve peepers from approximately 10 stations per day. Retrieval rates using the driverless grappling hook method (when a proper length of anchor line is used) are likely to be higher (i.e., 10 to 20 stations per day).

- Key recommendations for retrieval:
 - Retrieval of peepers is most optimal with 2 field staff; additional staff may be needed if processing occurs on the vessel.
 - Time on the water should be limited to allow 1 to 2 hours onshore work at the end of the field day for processing the retrieved peepers.
 - Retrieval of peeper frames can likely achieve rates of 10 stations per day when divers are used, or higher rates (10 to 20 stations per day) when diverless techniques are optimally employed; these rates is highly depending on field staff, site conditions, arrangement of stations, transit times, deployment approaches, and other factors.
 - If an anchor line is used to mark peeper stations, ensure it extends at least 30 feet from the peeper frame insertion point, as this will allow a longer target for snagging with a grappling hook or locating underwater via a diver.

Step 8: Processing and Shipment. In this field event, peepers were processed onshore at the end of the retrieval day. Processing time for the majority of the peepers (16 peeper samples on day 2), from the time at which the vessel arrived onshore to the time the processing equipment and samples were packed for shipment required approximately 2 hours, a rate of approximately 8 minutes per peeper sample. Two field staff are recommended for processing.

Processing of the peeper samples could be conducted on the vessel immediately after obtaining the peepers. This approach would delay the retrieval process unless 1 to 2 additional field staff are available to dedicate their focus to processing steps (while 2 other field staff focused on retrieval of the frames and coordination with the vessel captain and staff). This approach also requires sufficient space to process the samples, and this may interfere with space needed for retrieval activities. Processing also requires fairly sheltered conditions so that samples are not contaminated with precipitation. Precise pipetting and handling of peepers and sample bottles also requires a stable and ergonomic platform. The often unsheltered, uncontrolled, unstable, and cramped conditions on a vessel (wind, precipitation, vessel movement, etc.) may not be ideal for processing peeper samples.

- Key recommendations for processing and shipment:
 - In most cases, peeper samples should be processed at the end of the field day onshore (laboratory research is ongoing to confirm the timing of this recommendation).
 - Peeper processing is possible onboard the vessel immediately after the peepers are retrieved from the sediment or water, although this can be more complicated than onshore processing.
 - If peeper processing is conducted onshore, it is recommended to save at least 1 to 2 hours of time at the end of each field day to process 10 to 20 peeper samples.
 - Preserved peeper samplers should be preserved cold (ice replenished daily) and shipped to the analytical chemistry laboratory, where they should be analyzed before expiration of USEPA method hold times.

6.0 **REFERENCES**

- Buffle, J., Z. Zhang, and K. Startchev. 2007. Metal flux and dynamic speciation at (bio)interfaces. Part i: Critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. 2007. Enviro. Sci. Tech. 41:7609–7620. https://doi.org/10.1021/es070702p
- City of San Diego, 2009. Characterization and Assessment of Storm Drain Sediments from Switzer Creek, Final Report, March 20, 2009. https://www.sandiego.gov/sites/default/files/switzercreeksedimentreport.pdf
- Drygiannaki, I., Rao, B., Dawson, J. A., Rakowska, M., Reible, D. D., Hayman, N. T., ... Ervin, J. 2020. Assessing sediment recontamination from metals in stormwater. Science of The Total Environment, 737, 139726. doi:10.1016/j.scitotenv.2020.139726
- ESTCP, 2016. Evaluation of Resuspension from Propeller Wash in DoD Harbors. ESTCP Project ER-201031. September, 2016. https://apps.dtic.mil/sti/pdfs/AD1028959.pdf
- ESTCP. 2019. FY 2020 Broad Agency Announcement: Topic B3 January 8, 2019, Environmental Security Technology Certification Program (ESTCP), LONG TERM MANAGEMENT OF CONTAMINATED AQUATIC SEDIMENTS. https://www.serdpestcp.org/focusareas/4c4485ec-ad6e-44b5-8b56-acd39f8da190/sediments-remediationmanagement
- Hayman, N. T., Rosen, G., & Strivens, J. E. (2019). Evaluating the efficacy of DGT to quantify copper in stormwater at end-of-pipe. Chemosphere, 235, 1125–1133. doi:10.1016/j.chemosphere.2019.07.009
- Rosen G, Chadwick B, Colvin M, Stransky C, Burton GA Jr, Radford J, Bailey H, Cibor A, Grover M, Greenberg M. 2017. Demonstration and commercialization of the sediment ecosystem assessment protocol. SSC Pacific, San Diego, CA, USA. https://apps.dtic.mil/sti/pdfs/AD1028761.pdf
- SCCWRP (Southern California Coastal Water Research Project). 2007. Monitoring and Modeling of Chollas, Paleta, and Switzer Creeks, Technical Report 513. May, 2007. https://www.waterboards.ca.gov/water_issues/programs/tmdl/records/region_9/2008/ref259 7.pdf
- SCCWRP (Southern California Coastal Water Research Project). 2011. Temporal Assessment of Chemistry, Toxicity and Benthic Communities in Sediments at the Mouths of Chollas Creek and Paleta Creek, San Diego Bay, Technical Report 668. https://www.waterboards.ca.gov/rwqcb9/water_issues/programs/tmdls/docs/sediment_toxic ity/ChollasPaleta Temporal TR668.pdf
- Strivens J, Hayman N, Johnston R, Rosen G, 2019. Effects of dissolved organic carbon on copper toxicity to embryos of *M. galloprovincialis* as measured by diffusive gradient in thin-films. *Environmental Toxicology and Chemistry* 38 (5): 1029-1034. https://doi.org/10.1002/etc.4404

SWRCB, 1999. Consolidated Toxic Hot Spots Cleanup Plan List and Findings Volume I: Policy,

- Toxic Hot Spots List and Findings. I. https://www.waterboards.ca.gov/water_issues/programs/tmdl/records/region_9/2003/ref133 2.pdf
- Thomas, B., Arthur, M.A. 2010. Correcting porewater concentration measurements from peepers:
- Application of a reverse tracer. Limnol. Oceanogr. Methods 8:403–413. https://doi.org/10.4319/lom.2010.8.403
- USEPA. 1996. "Method 1638 : Determination of Trace Elements in Ambient Waters by Inductively Coupled Plasma – Mass Spectrometry". Washington, DC. https://www.epa.gov/sites/default/files/2015-10/documents/method 1638 1996.pdf
- USEPA. 2002. "Method 1631 : Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectroscopy" Revision E. Washington, DC. https://www.epa.gov/sites/default/files/2015-08/documents/method_1631e_2002.pdf
- USEPA. 2007. "Method 9065 (SW-846): Determination of Inorganic Anions by Ion Chromatography," Revision 1. Washington, DC. https://www.epa.gov/sites/default/files/2015-12/documents/9056a.pdf
- USEPA. 2014. "Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry," Revision 2. Washington, DC. https://www.epa.gov/sites/default/files/2015-12/documents/6020b.pdf
- U.S. Army Corps of Engineers. 2020. Modification for Maintenance Dredging and Disposal of Piers 1, 3 & Paleta Creek, Naval Base San Diego (NBSD). https://www.spl.usace.army.mil/Portals/17/docs/publicnotices/SPL-2016-00703-RRS_Pier3Mod_PN.pdf?ver=OEkOrYgEh_cJ8mIIgpEYTQ%3D%3D
- Wang, P.F., Sutton, D., Richte, K., Chadwick, B., 2000. Modeling migration of sediment and Sorbed contaminants resuspended by ship docking in San Diego Bay. Proceedings of the 4th International Conference on Hydroscience & Engineering, pp. 26–29.
- Zhang and W. Davison, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution, Anal. Chem., 67: (1995), 3391-3400. https://doi.org/10.1021/ac00115a00

APPENDIX A PEEPER CALCULATION SHEETS

Table A1. Calculation of Cfree values using the lithium tracer, San Diego peeper samples. Equilibrium Correction of Porewater Concentration using Lithium Tracer

Sample ID	Sample Deployment Date	Sample Collection Date	Chemical Name	Chemical Abreviation	Report Result Text	Measured Concentration in Peeper	MDL in Peeper	Report Result Unit	Lab Qualifiers	Initial Li Concentration (µg/L)	Deployment Time (days)	Assumed Li Concentration External to Peeper (µg/L)	Sample- Specific Elimination Rate for Li (K _{LI}) (day ⁻¹)	Diffusion Coefficient for Analytes (Di) (* 10 ⁻⁵ cm ² /s)	Di ÷ D _{Li}	Sample- specific Elimination Rate for Analytes (K _i) (day-1)	Percent Equilibrium Reached (%)	Equilibrium Corrected Concentration (µg/L)	Equilibrium Corrected MDL (µg/L)	Equilibrium Corrected Result (μg/L) 2-sig figs
1A-PW	_		Lithium	Li	16000	16000		µg/L			11.10			0.90	1.00	0.152	81	-		-
1A-PW 1A-PW	-		Cadmium	Cd	ND ND	0		µg/L			11.10 11.10			0.63	0.70	0.107	69 62	0.00	0.39 3.05	< 0.39
1A-PW 1A-PW	-		Chromium	Cr	ND 3.2	3.2		µg/L			11.10			0.52	0.58	0.088	62	0.00 4.65	2.04	< 3 4.7
1A-PW	-		Copper Iron	Cu Fe	220	220		µg/L			11.10			0.62	0.69	0.105	69	317.23	50.47	4.7
1A-PW	10-3-22 12:30	10-14-22 14:58	Lead	Pb	0.88	0.88		µg/L µg/L	1	86000	11.10	100	0.152	0.83	0.92	0.107	79	1 11	0.27	1.1
1A-PW	-		Manganese	Mn	25	25		µg/L	5		11.10			0.62	0.69	0.105	69	36.35	2.47	36
1A-PW			Mercury	Hg	ND	0	0.13	µg/L			11.10			0.74	0.82	0.125	75	0.00	0.17	< 0.17
1A-PW	1		Nickel	Ni	ND	0	0.65	µg/L			11.10			0.62	0.69	0.105	69	0.00	0.95	< 0.95
1A-PW			Zinc	Zn	13	13		µg/L			11.10			0.61	0.68	0.103	68	19.07	5.28	19
1A-SW			Lithium	Li	150	150	1.4	µg/L			11.10			0.90	1.00	0.671	100	-		-
1A-SW			Cadmium	Cd	ND	0	0.36	µg/L			11.10			0.63	0.70	0.470	99	0.00	0.36	< 0.36
1A-SW			Chromium	Cr	20	20		µg/L			11.10			0.52	0.58	0.388	99	20.27	2.64	20
1A-SW			Copper	Cu	13	13		µg/L			11.10			0.62	0.69	0.463	99	13.08	1.91	13
1A-SW	10-3-22 12:30	10-14-22 14:58	Iron	Fe	110	110	46	µg/L		86000	11.10	100	0.671	0.63	0.70	0.470	99	110.60	46.25	110
1A-SW	10-3-22 12.30	10-14-22 14.30	Lead	Pb	0.36	0.36	0.28	µg/L	J	80000	11.10	100	0.071	0.83	0.92	0.620	100	0.36	0.28	0.36
1A-SW			Manganese	Mn	12	12	2.2	µg/L			11.10			0.62	0.69	0.463	99	12.07	2.21	12
1A-SW			Mercury	Hg	ND	0	0.33	µg/L			11.10			0.74	0.82	0.552	100	0.00	0.33	< 0.33
1A-SW			Nickel	Ni	29	29	0.86	µg/L			11.10			0.62	0.69	0.463	99	29.17	0.87	29
1A-SW			Zinc	Zn	23	23	4.8	µg/L			11.10			0.61	0.68	0.455	99	23.15	4.83	23
1B-PW			Lithium	Li	510	510	0.83	µg/L			11.06			0.90	1.00	0.483	100			
1B-PW	1		Cadmium	Cd	ND	0	0.22	µg/L			11.06			0.63	0.70	0.339	98	0.00	0.23	< 0.23
1B-PW			Chromium	Cr	ND	0	1.5	µg/L			11.06	1		0.52	0.58	0.280	95	0.00	1.57	< 1.6
1B-PW			Copper	Cu	4.8	4.8		µg/L			11.06			0.62	0.69	0.333	97	4.92	1.13	4.9
1B-PW	40.000.000.00		Iron	Fe	4400	4400		µg/L		86000	11.06	100	0.400	0.63	0.70	0.339	98	4506.30	28.68	4500
1B-PW	10-3-22 13:25	10-14-22 14:56	Lead	Pb	0.39	0.39		µg/L	Ŀ	86000	11.06	100	0.483	0.83	0.92	0.446	99	0.39	0.17	0.39
1B-PW			Manganese	Mn	230	230		µg/L	-		11.06			0.62	0.69	0.333	97	235.91	1.33	240
1B-PW	1		Mercury	Hg	ND	0		µg/L			11.06			0.74	0.82	0.398	99	0.00	0.13	< 0.13
1B-PW	-		Nickel	Ni	1	1	0.52				11.06			0.62	0.69	0.333	97	1.03	0.53	1
1B-PW	-		Zinc	Zn	20	20		µg/L			11.06			0.61	0.68	0.328	97	20.55	2.98	21
1B-SW			Lithium	11	180	180	0.83				11.06			0.90	1.00	0.631	100	-		-
1B-SW	-		Cadmium	Cd	ND	0	0.22				11.06			0.63	0.70	0.442	99	0.00	0.22	< 0.22
1B-SW	-		Chromium	Cr	ND	0		μg/L			11.00			0.52	0.58	0.365	98	0.00	1.53	< 1.5
1B-SW	-		Copper	Cu	10	10		µg/L			11.06			0.62	0.69	0.435	99	10.08	1.11	10
1B-SW	-		Iron	Fe	ND	0					11.00			0.63	0.70	0.442	99	0.00	28.21	< 28
1B-SW	10-3-22 13:25	10-14-22 14:56	Lead	Pb	0.45	0.45		µg/L	J	86000	11.00	100	0.631	0.83	0.92	0.583	100	0.45	0.17	0.45
1B-SW	-			Mn	5.2	5.2		µg/L			11.00			0.62	0.69	0.435	99	5.24	1.31	5.2
1B-SW	-		Manganese Mercury		ND	0	0.13	µg/L			11.06			0.74	0.82	0.519	100	0.00	0.13	< 0.13
1B-SW	-		Nickel	Hg	1	1					11.06			0.62	0.69	0.435	99	1.01	0.13	1
1B-SW	-				33	33		µg/L			11.00			0.61	0.68	0.435	99	33.29	2.93	33
16-SW			Zinc Lithium	Zn	19000	19000		µg/L			10.92			0.01	1.00	0.428	99 78			
1C-PW	-			Li	19000 ND	0		µg/L			10.92			0.63	0.70	0.139	65	0.00	0.34	< 0.34
	-		Cadmium	Cd		0		µg/L												
1C-PW	-		Chromium	Cr	ND			µg/L			10.92			0.52	0.58	0.080	58	0.00	2.57	< 2.6 4
1C-PW 1C-PW	-		Copper	Cu	2.6 230	2.6 230		µg/L			10.92			0.62	0.69	0.096	65 65	4.01 351.67	1.70 42.81	4 350
	10-3-22 13:50	10-14-22 11:51	Iron	Fe	230 ND	230		µg/L		86000		100	0.139	0.63	0.70		75	0.00	0.23	
1C-PW 1C-PW	-		Lead	Pb	36			µg/L			10.92			0.62	0.69	0.128	65	55.54	2.01	< 0.23
1C-PW 1C-PW	-		Manganese	Mn	36 ND	36		µg/L			10.92			0.62	0.69	0.096	71	0.00	0.18	< 0.18
1C-PW 1C-PW	4		Mercury	Hg	ND ND	0		µg/L			10.92	1		0.74	0.82	0.114	65	0.00	0.18	< 0.18
1C-PW 1C-PW	-		Nickel Zinc	Ni Zn	ND 5.6	5.6		µg/L			10.92			0.62	0.69	0.096	64	8.72	4.52	< 0.8
					5.6	5.6		µg/L			10.92				0.68	0.094	64 100	8.72	4.52	8.7
1C-SW 1C-SW	-		Lithium	Li	0.36	0.36		µg/L			10.92	-		0.90	0.70	0.639	100	0.36	0.22	0.36
1C-SW 1C-SW	4		Cadmium	Cd	0.36 ND	0.36		µg/L	J		10.92	-		0.63	0.70	0.448	99 98	0.36	0.22	0.36
1C-SW 1C-SW	-		Chromium		ND 7.4	7.4		µg/L			10.92	1		0.52	0.58	0.370	98	0.00	1.53	< 1.5 7.5
	-		Copper	Cu				µg/L				-								
1C-SW	10-3-22 13:50	10-14-22 11:51	Iron	Fe	ND 0.17	0 17		µg/L		86000	10.92	100	0.639	0.63	0.70	0.448	99	0.00	28.21	< 28
1C-SW	-		Lead	Pb	0.17	0.17		µg/L	J		10.92	1		0.83	0.92		100	0.17	0.17	< 0.17
1C-SW	-		Manganese	Mn	6.6	6.6		µg/L			10.92	-		0.62	0.69	0.441	99	6.65	1.31	6.7
1C-SW	-		Mercury	Hg	ND 0.70	0	0.13				10.92	1			0.82	0.526	100	0.00	0.13	< 0.13 0.8
1C-SW	4		Nickel	Ni	0.79	0.79		µg/L	J					0.62	0.69		99		0.52	
1C-SW			Zinc	Zn	15	15		µg/L			10.92			0.61	0.68	0.434	99	15.13	2.93	15
2-PW	4		Lithium	Li	5100	5100		µg/L			9.14	1		0.90	1.00	0.311	94	-		-
2-PW	4		Cadmium	Cd	ND	0		µg/L			9.14	1		0.63	0.70	0.218	86	0.00	0.25	< 0.25
2-PW	4		Chromium	Cr	ND	0		µg/L			9.14	1		0.52	0.58	0.180	81	0.00	1.86	< 1.9
2-PW	4		Copper	Cu	3.6	3.6		µg/L			9.14	1		0.62	0.69	0.215	86	4.19	1.28	4.2
2-PW	10-4-22 8:50	10-13-22 12:07	Iron	Fe	1400	1400	28	µg/L		86000	9.14	100	0.311	0.63	0.70	0.218	86	1620.75	32.42	1600
2-PW	-		Lead	Pb	ND	0	0.17	µg/L			9.14		1	0.83	0.92	0.287	93	0.00	0.18	< 0.18
2-PW	1		Manganese	Mn	77	77		µg/L			9.14	1		0.62	0.69	0.215	86	89.60	1.51	90
2-PW	1		Mercury	Hg	ND	0		µg/L			9.14	1		0.74	0.82	0.256	90	0.00	0.14	< 0.14
2-PW	1		Nickel	Ni	ND	0	0.52	µg/L			9.14	1		0.62	0.69	0.215	86	0.00	0.61	< 0.61
2-PW			Zinc	Zn	3.1	3.1		µg/L	J		9.14			0.61	0.68	0.211	85	3.63	3.39	3.6

Table A1. Calculation of Cfree values using the lithium tracer, San Diego peeper samples. Equilibrium Correction of Porewater Concentration using Lithium Tracer

Set Set <th>Sample ID</th> <th>Sample Deployment Date</th> <th>Sample Collection Date</th> <th>Chemical Name</th> <th>Chemical Abreviation</th> <th>Report Result Text</th> <th>Measured Concentration in Peeper</th> <th>MDL in Peeper</th> <th>Report Result Unit</th> <th>Lab Qualifiers</th> <th>Initial Li Concentration (µg/L)</th> <th>Deployment Time (days)</th> <th>Assumed Li Concentration External to Peeper (µg/L)</th> <th>Sample- Specific Elimination Rate for Li (K_{Li}) (day⁻¹)</th> <th>Diffusion Coefficient for Analytes (Di) (* 10⁻⁵ cm²/s)</th> <th>Di ÷ D_{Li}</th> <th>Sample- specific Elimination Rate for Analytes (K_i) (day-1)</th> <th>Percent Equilibrium Reached (%)</th> <th>Equilibrium Corrected Concentration (µg/L)</th> <th>Equilibrium Corrected MDL (µg/L)</th> <th>Equilibrium Corrected Result (μg/L) 2-sig figs</th>	Sample ID	Sample Deployment Date	Sample Collection Date	Chemical Name	Chemical Abreviation	Report Result Text	Measured Concentration in Peeper	MDL in Peeper	Report Result Unit	Lab Qualifiers	Initial Li Concentration (µg/L)	Deployment Time (days)	Assumed Li Concentration External to Peeper (µg/L)	Sample- Specific Elimination Rate for Li (K _{Li}) (day ⁻¹)	Diffusion Coefficient for Analytes (Di) (* 10 ⁻⁵ cm ² /s)	Di ÷ D _{Li}	Sample- specific Elimination Rate for Analytes (K _i) (day-1)	Percent Equilibrium Reached (%)	Equilibrium Corrected Concentration (µg/L)	Equilibrium Corrected MDL (µg/L)	Equilibrium Corrected Result (μg/L) 2-sig figs
image: state	2-SW			Lithium	Li	180	180		µg/L			9.14			0.90	1.00	0.764	100			-
Image: state in the				Cadmium	Cd			0.22	µg/L												< 0.22
Image: state	2-SW			Chromium	Cr	ND	0					9.14	1		0.52		0.442	98	0.00	1.53	< 1.5
Image: problemProble	2-SW	1		Copper	Cu	6.6	6.6					9.14	1		0.62	0.69	0.527	99	6.65	1.11	6.7
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	2-SW	1			Fe	ND	0					9.14	1		0.63	0.70	0.536	99	0.00	28.21	< 28
Image Image <t< td=""><td>2-SW</td><td>10-4-22 8:50</td><td>10-13-22 12:06</td><td>Lead</td><td></td><td>0.18</td><td>0.18</td><td></td><td></td><td>J</td><td>86000</td><td>9.14</td><td>100</td><td>0.764</td><td>0.83</td><td>0.92</td><td>0.706</td><td>100</td><td>0.18</td><td></td><td>0.18</td></t<>	2-SW	10-4-22 8:50	10-13-22 12:06	Lead		0.18	0.18			J	86000	9.14	100	0.764	0.83	0.92	0.706	100	0.18		0.18
一日の 小田の方 小田の 小田の方 小田のう 小田ののう 小田のの 小田のの 小田のの 小田のの 小田のの 小田のの 小田のの 小田のの 小田のの 小田のの 小田のの	2-SW	1				6.3	6.3					9.14	1		0.62	0.69	0.527	99	6.35	1.31	6.4
Serie Serie <t< td=""><td>2-SW</td><td>1</td><td></td><td></td><td>Ha</td><td>ND</td><td>0</td><td></td><td></td><td></td><td></td><td>9.14</td><td>1</td><td></td><td>0.74</td><td>0.82</td><td>0.629</td><td>100</td><td>0.00</td><td>0.13</td><td>< 0.13</td></t<>	2-SW	1			Ha	ND	0					9.14	1		0.74	0.82	0.629	100	0.00	0.13	< 0.13
280 500 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>0.71</td> <td></td> <td></td> <td>J</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.72</td>		1					0.71			J			1								0.72
1 P30 1 P30 1 P30 1 P30 2 P30 1 P30 2 P30 1 P30 2 P30 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td></th<>										-			1								11
Borne Borne Control Contro Contro Contro Contro						18000	18000												-		
Image: state in the													1						0.00	0.54	< 0.54
Serie Serie <t< td=""><td>3-PW</td><td></td><td></td><td></td><td></td><td>ND</td><td>0</td><td></td><td></td><td></td><td></td><td>10.96</td><td>1</td><td></td><td></td><td></td><td></td><td>60</td><td></td><td></td><td>< 4.4</td></t<>	3-PW					ND	0					10.96	1					60			< 4.4
1 4001 52 1 20 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 2.9</td></th<>													1								< 2.9
SAVE Obdef 100 International matrix Ph NO 0 0 0 0 <t< td=""><td></td><td>1</td><td>1 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>220</td></t<>		1	1 1										1								220
3 Margam Margam Ma Margam Ma Ma Margam		10-3-22 15:00									86000		100	0.143							< 0.37
Serie Serie <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>27</td></t<>							-						1								27
Shy Name Name <th< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 0.46</td></th<>		1											1								< 0.46
BW BC BC<		1											1								1.7
Software Linem L 170 170 180 nd		1								J			1								1.7
Serie <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<>																					-
3 3 With 1 1 3 With 1 3 W		1						0.00	µQ/L				1		0.90						< 0.22
Ser Appendix Cope Cop		-						0.22	µg/L				-								< 1.5
3 Ser 10 - 3 C - 10 (1) 10 - 2 C - 10 (1)<		-											1								6.2
Set Box 4.5 (N) B		-	1 1										1								< 28
38/00 3.300 1 1 0 0 0		10-3-22 15:00									86000		100	0.649							< 0.17
38W Meory Hg N0 0 0.13 pdd 1 pdd pdd 1 pdd pdd 1 pdd pdd pdd 1 pdd pdd pdd 1 pdd		-											-								6.5
image: series with a series of the		-		Manganese									1								< 0.13
S8% Dec Dec <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>µg/L</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.8</td>		-							µg/L				-								0.8
44W 44W 104 170 170 0.0 <td></td> <td>-</td> <td>1 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>J</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td>		-	1 1							J			-								10
4+W Comman Od NO 0 0.2 10 ² 10 ² 10 ² 0.42 0.3 0.0 0.2 0.42 0.3 0.0 0.2 0.42 0.3 0.42 0.3 0.42 0.3 0.42																					-
4+W		-											-								< 0.22
4+W 0 4-W 0 6-N 6-D		-	1 1				-						-								< 1.5
44W 10422103 10-42103 10-421		-	1 1										-								6.2
44W 01-4/2 (124) 01-4/2 (124) 01-4/2 (124) 04-1/2 (124)		-											-								< 28
4 FW Magnagene Mn 5.2 5.2 5.2 1.3 glt 1		10-4-22 10:34	10-14-22 14:20	iron							86000		100	0.700							0.2
Here Head No 0 0 0 0 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>J</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.2</td>		-								J			-								5.2
4-Py Notari N 1.1 1.1 0.12 0.12 0.16 4-Py Notari N 1.1 0.1 0.02 0.1 0.02 0.0 0.01 0.1 0.00 0.03 0.07 0.0 0.03 0.07 0.0 0.00 0.02 0.00 0.03 0.00 0.02 0.0 0.00 0.02 0.0 0.00 0.02 0.0 0.00 0.02 0.0 0.00 0.02 0.0 0.00		-											-								< 0.33
4+9W 0 2 2 0 1 10 10 10 0 0 0.475 99 10.13 2.22 17 4-SW 4-SW 1 10 10 0 0.4 10.16 10.16 10.16 0.016 0.017 0.01 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.01 0.017 <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.1</td></th<>		-											-								1.1
4.5W 4.5W 4.5W 6.5PW 10.4.22 10.31 Imam 1 170 0.9 pd. 9 10.1 9 pd. 9 10.1<		-											1								16
4-5W 4-5W 6-dim C ND 0 0.24 yor. 6 4-5W									1.2										10.15	2.92	
4-8W (4-5W) (4		-						-					-								< 0.24
+ SW (+ 4.50)		-											-								< 0.24
4.5W (4.5W) (-4.52 10.34) 10.4.22 10.34 (-1.4.22 10.34) 10.4.22 10.32 (-1.4.22 10.34) 10.4.22 10.34 (-1.4.22 10.34) 10.4.22 10.34 (-1.4.24 10.34) 10.4.21 10.34 (-1.4.24 10.34) 10.4.2		-											-								5.3
4-SW (10.4.22 ft/s) (10.4.2 ft/s)		-											1								63
4-SW (4-SW) Mangenese Mn 8.9 8.9 1.5 g g L No 4-SW Mecury Hg ND 0 1.3 g L 1 1 0.5 g L 1 10.16 10.16 10.16 10.16 0.62 0.69 0.433 99 1.01 0.56 10.16		10-4-22 10:34	10-14-22 14:20	lood					µg/L		86000		100	0.700							< 0.18
4-SW Mercary Hg ND 0 0.13 pugl 10.16 4-SW Ni 1 1 0.66 µgl J 10.16 10.17 8.9 9.9 10.13 9.9 10.11 0.66 0.475 9.9 8.97 3.13 10.16 10.16 10.16 10.17 8.0 0.0 0.17 10.0 0.17 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.27 10.27 10.27 10.27 10.27 10.27 10.27 10.27 10.27 10.28 0.11 0.00 0.17 10.21 10.27 10.27 10.27 10.27 10.27 10.27 10.27 10.27		-	1 1										1								9
4-SW Neda Ni 1 1 0.66 μ_{L} J 10.66 10.16 4-SW Znc Zn 8.9 8.9 3.1 μ_{R} 10.16 10.16 0.62 0.69 0.433 99 1.01 0.66 0.75 99 8.9 0.10 0.66 0.75 99 8.9 0.10 0.66 0.63 0.75 90 8.9 0.10 0.66 0.75 90 8.9 0.10 0.66 0.75 90 8.9 0.10 0.56 0.75 90 8.9 0.10 0.56 0.75 90 8.9 0.10 0.11 0.10 10.10 10 10 10 0.0 0.11 0.10 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01		1							µg/∟ µg/L				ł								< 0.13
4-SW Cnc Zn 8.9 8.9 3.1 gpl< 10.16 0.61 0.68 0.475 99 8.97 3.1 0.1 5-PW 5-PW Lithium Li 1500 15000 4.2 µgL 10.27 10.27 0.61 0.68 0.475 99 8.97 3.3 0.2 5-PW 5.PW Corronium C.0 N.0 0 0.22 µgL 10.27 10.27 0.63 0.70 0.120 71 0.00 0.31 <0		1						0.10	H3/ L				1								1
S-PW Lithium Li 1500 1500 42 µg/L 10 10.27		1											1								9
S-FW S-PW S-PW S-PW S-PW 10.4-22 9:17 Cadmium (Cammium) Cd (Chormium) ND 0 0.22 (Cammium) (Cammium) Cadmium)																					-
S-PW Chromium Cr ND 0 1.5 µg/L 10.27 S-PW 10.4-22 9:17 10.4-22 9		1											1								< 0.31
S-PW S-PW S-PW S-PW S-PW S-PW S-PW 10-4-22 9:17 (-14-22 9:17) 10-42 29:17 (-14-22 9:17) 10-1 11		1											1								< 2.4
5-PW 5-PW 5-PW 10-4:22 8:17 10-4:22 8:17 10-14:22 152 10-14:22 152 10-10 1500 1500 28 µgL µgL 10 10-27 10.27		1								d.			1								2.6
5-PW 5-PW (5-PW) 10-4-22 8:17 (5-PW) 10-4/22 8:17 (5-PW) 10-1/2 15:2 (10-1/2) 10-1/2 15:2 (10		1								5			1								2100
S-PW S-PW Manganese Mn 110 110 113 µg/L 10.27 S-PW Marganese Mn 110 113 µg/L 10.27 S-PW Nickel Ni ND 0 0.52 µg/L 10.27 S-PW Zinc Zin 3 3 2.9 µg/L 10.27 S-SW Zinc Zin 3 3 2.9 µg/L 10.27 S-SW Lthium Li 170 10.8 µg/L 10.27 S-SW Chromium Cd ND 0 0.22 µg/L 10.27 S-SW Lthium Corport Cd ND 0 0.22 µg/L 10.27 S-SW Lthium Cromium Cr ND 0 0.22 µg/L 10.27 S-SW Inot-122:15:20 Itom Fe ND 0 28 µg/L 10.27 S-SW Inot-122:15:20 Itom		10-4-22 9:17	10-14-22 15:52	Lead							86000		100	0.171							< 0.21
S-PW S-PW Mercury Mercury Hg ND 0 0.13 µg/L 10.27 5-PW Nickel Ni ND 0 0.52 µg/L 10.27 5-PW Zinc Zn 3 3 2.9 µg/L 10.27 5-SW Zinc Zn 3 3 2.9 µg/L 10.27 5-SW Lithum Li 170 170 0.83 µg/L 10.27 5-SW Cadmium Cd ND 0 0.22 µg/L 10.27 5-SW Copper Cd ND 0 0.22 µg/L 0.02 0.00 0.74 4 5-SW Copper Cd ND 0 1.22 µg/L 0.02 0.00 0.682 0.00 0.74 4 5-SW 10.4-22 8:77 Inon Fe ND 0 2.8 µg/L 0.027 0.622 0.68 0.401 98 0.000 1.52 </td <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>160</td>		1											1								160
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1											1								< 0.17
5-PW Znc Zn 3 3 2.9 µg/L J 10.27 5-SW 5-SW Lthum Li 170 170 0.83 µg/L 10.27 0.61 0.68 0.116 70 4.31 4.17 4 5-SW Cadmium Cd ND 0 0.22 µg/L 0.01 0.68 0.116 70 4.31 4.17 4 5-SW Cadmium Cd ND 0 0.22 µg/L 0.01 0.61 0.68 0.116 70 4.31 4.17 4 5-SW Cadmium Cd ND 0 0.22 µg/L 0.01 0.02 0.00 1.00 0.682 100 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01		1											1								< 0.74
S-SW S-SW 5-SW 5-SW 5-SW 5-SW 5-SW 5-SW		1								J			1								4.3
SSW 5-SW 5-SW 5-SW 5-SW 10-422 9:7 Cadmium (Cromuin (S-SW) Cd ND 0 0.22 µg/L 10.27 10-14221552 Copper (In-14221552) Cu 5.6 5.6 1.1 µg/L 10.27 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>									1.2										-		
S-SW 5-SW 5-SW 5-SW In-4-22 9:17 In-4-22 9:17 In-4-22 9:17 Chromium (D-12-2 15:2) Cr ND 0 1.5 µg/L In-1 In-1 S-SW In-1 S-SW In-1 S-SW In-1 S-SW In-1 S-SW In-1 In-1 S-SW		1											1						0.00	0.22	< 0.22
5-SW 5-SW 5-SW 10.4-22 9:17 10.4-22 9:1		1											1								< 1.5
5-SW 5-SW 10-422 9:77 10-1422 152 S-SW 10n Fe ND 0 28 µg/L 5 10.27 <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.6</td></t<>		1											1								5.6
5-SW 10-4-22 9:17 10-14-22 15:27 Lead Pb 0.23 0.23 0.17 µgL J 86000 10.27 100 0.692 0.633 0.92 0.639 100 0.23 0.17 µgL 5-SW Marganese Mn 7.7 7.7 1.3 µgL 10.27 10.27 0.632 0.679 99 7.76 1.13 7 Marguney Hg ND 0 0.13 µgL 10.27 10.27 0.622 0.690 0.478 99 7.76 1.131 7 Marguney Hg ND 0 0.13 µgL 10.27 0.47 0.82 0.570 100 0.00 0.13 <<0		1											1								< 28
5-SW Manganese Mn 7.7 7.7 1.3 µg/L 10.27 5-SW Mercury Hg ND 0 0.13 µg/L 10.27 0.62 0.69 0.478 99 7.76 1.31 7		10-4-22 9:17								J	86000		100	0.692							0.23
5-SW Mercury Hg ND 0 0.13 µgL 10.27		1								J			1								7.8
		1											1								< 0.13
		1								,I			1								0.98
		1								J			1								12

Table A1. Calculation of Cfree values using the lithium tracer, San Diego peeper samples. Equilibrium Correction of Porewater Concentration using Lithium Tracer

Sample ID	Sample Deployment Date	Sample Collection Date	Chemical Name	Chemical Abreviation	Report Result Text	Measured Concentration in Peeper	MDL in Peeper	Report Result Unit	Lab Qualifiers	Initial Li Concentration (µg/L)	Deployment Time (days)	Assumed Li Concentration External to Peeper (µg/L)	Sample- Specific Elimination Rate for Li (K _{Li}) (day ⁻¹)	Diffusion Coefficient for Analytes (Di) (* 10 ⁻⁵ cm ² /s)	Di ÷ D _{Li}	Sample- specific Elimination Rate for Analytes (K _i) (day-1)	Percent Equilibrium Reached (%)	Equilibrium Corrected Concentration (µg/L)	Equilibrium Corrected MDL (µg/L)	Equilibrium Corrected Result (µg/L) 2-sig figs
6-PW			Lithium	Li	17000	17000	42	µg/L			10.08			0.90	1.00	0.161	80	-		-
6-PW			Cadmium	Cd	ND	0	0.22	µg/L			10.08			0.63	0.70	0.113	68	0.00	0.32	< 0.32
6-PW			Chromium	Cr	ND	0	1.5	µg/L			10.08			0.52	0.58	0.093	61	0.00	2.46	< 2.5
6-PW			Copper	Cu	ND	0	1.1	µg/L			10.08			0.62	0.69	0.111	67	0.00	1.63	< 1.6
6-PW	10-4-22 10:54	10-14-22 12:49	Iron	Fe	3100	3100	28	µg/L		86000	10.08	100	0.161	0.63	0.70	0.113	68	4558.01	41.17	4600
6-PW			Lead	Pb	ND	0	0.17	µg/L			10.08			0.83	0.92	0.149	78	0.00	0.22	< 0.22
6-PW			Manganese	Mn	150	150	1.3	µg/L			10.08			0.62	0.69	0.111	67	222.46	1.93	220
6-PW			Mercury	Hg	ND	0	0.13	µg/L			10.08			0.74	0.82	0.133	74	0.00	0.18	< 0.18
6-PW	_		Nickel	Ni	ND	0	0.52	µg/L			10.08	-		0.62	0.69	0.111	67	0.00	0.77	< 0.77
6-PW			Zinc	Zn	ND	0	2.9	µg/L			10.08			0.61	0.68	0.109	67	0.00	4.34	< 4.3
6-SW			Lithium	Li	180	180	0.83	µg/L			10.08			0.90	1.00	0.692	100			
6-SW			Cadmium	Cd	ND	0	0.22	µg/L			10.08			0.63	0.70	0.485	99	0.00	0.22	< 0.22
6-SW			Chromium	Cr	ND	0	1.5	µg/L			10.08			0.52	0.58	0.401	98	0.00	1.53	< 1.5
6-SW	_		Copper	Cu	4.8	4.8	1.1	µg/L			10.08			0.62	0.69	0.478	99	4.84	1.11	4.8
6-SW	10-4-22 10:54	10-14-22 12:49	Iron	Fe	ND	0	28	µg/L		86000	10.08	100	0.692	0.63	0.70	0.485	99	0.00	28.21	< 28
6-SW			Lead	Pb	0.26	0.26	0.17	µg/L	J		10.08			0.83	0.92	0.639	100	0.26	0.17	0.26
6-SW			Manganese	Mn	6.9	6.9	1.3	µg/L			10.08			0.62	0.69	0.478	99	6.96	1.31	7
6-SW			Mercury	Hg	ND	0	0.33	µg/L			10.08	-		0.74	0.82	0.570	100	0.00	0.33	< 0.33
6-SW			Nickel	Ni	0.77	0.77	0.52	µg/L	J		10.08			0.62	0.69	0.478	99	0.78	0.52	0.78
6-SW			Zinc	Zn	10	10	2.9	µg/L			10.08			0.61	0.68	0.470	99	10.09	2.93	10
7-PW			Lithium	Li	9600	9600	21	µg/L			10.23			0.90	1.00	0.215	89			
7-PW			Cadmium	Cd	ND	0	0.22	µg/L			10.23			0.63	0.70	0.151	79	0.00	0.28	< 0.28
7-PW			Chromium	Cr	ND	0	1.5	µg/L			10.23			0.52	0.58	0.125	72	0.00	2.08	< 2.1
7-PW			Copper	Cu	1.1	1.1	1.1	µg/L	J		10.23			0.62	0.69	0.148	78	1.41	1.41	< 1.4
7-PW	10-4-22 9:59	10-14-22 15:33	Iron	Fe	1200	1200	28	µg/L		86000	10.23	100	0.215	0.63	0.70	0.151	79	1525.95	35.61	1500
7-PW			Lead	Pb	ND	0	0.17	µg/L			10.23			0.83	0.92	0.199	87	0.00	0.20	< 0.2
7-PW			Manganese	Mn	98	98	1.3	µg/L			10.23			0.62	0.69	0.148	78	125.46	1.66	130
7-PW	_		Mercury	Hg	ND	0	0.13	µg/L			10.23	-		0.74	0.82	0.177	84	0.00	0.16	< 0.16
7-PW	_		Nickel	Ni	0.77	0.77		µg/L	J		10.23	-		0.62	0.69	0.148	78	0.99	0.67	0.99
7-PW			Zinc	Zn	6.2	6.2	2.9	µg/L			10.23			0.61	0.68	0.146	78	7.99	3.74	8
7-SW	_		Lithium	Li	190	190	0.83	µg/L			10.23	-		0.90	1.00	0.671	100	-		
7-SW			Cadmium	Cd	ND	0	0.22	µg/L			10.23	-		0.63	0.70	0.470	99	0.00	0.22	< 0.22
7-SW	_		Chromium	Cr	ND	0	1.5	µg/L			10.23			0.52	0.58	0.388	98	0.00	1.53	< 1.5
7-SW			Copper	Cu	5.5	5.5	1.1	µg/L			10.23	4		0.62	0.69	0.463	99	5.55	1.11	5.5
7-SW	10-4-22 9:59	10-14-22 15:33	Iron	Fe	29	29	28	µg/L	J	86000	10.23	100	0.671	0.63	0.70	0.470	99	29.24	28.23	29
7-SW	_		Lead	Pb	0.26	0.26	0.17	µg/L	J		10.23	4		0.83	0.92	0.619	100	0.26	0.17	0.26
7-SW	-		Manganese	Mn	7.5	7.5	1.3	µg/L			10.23	4		0.62	0.69	0.463	99	7.57	1.31	7.6
7-SW	_		Mercury	Hg	ND	0	0.13	µg/L			10.23	4		0.74	0.82	0.552	100	0.00	0.13	< 0.13
7-SW			Nickel	Ni	0.96	0.96	0.52	µg/L	J		10.23	4		0.62	0.69	0.463	99	0.97	0.52	0.97
7-SW			Zinc	Zn	13	13	2.9	µg/L			10.23			0.61	0.68	0.455	99	13.12	2.93	13

Table A2. Calculation of Cfree values using the bromide tracer, San Diego peeper samples. Equilibrium Correction of Porewater Concentration using Bromide Tracer

Sample ID	Sample Deployment Date	Sample Collection Date	Chemical Name	Chemical Abreviation	Report Result Text	Measured Concentration in Peeper	MDL in Peeper	Report Result Unit	Lab Qualifiers	Initial Br Concentration (mg/L)	Deployment Time (days)	Assumed Br Concentration External to Peeper (mg/L)	Sample- Specific Elimintation Rate for Br (K _{Br}) (day ⁻¹)	Diffusion Coefficient for Analytes (Di) (* 10 ⁻⁵ cm ² /s)	Di ÷ D _{Br}	Sample- specific Elimination Rate for Analytes (K _i) (day-1)	Percent Equilibrium Reached (%)	Equilibrium Corrected Concentration (µg/L)	Equilibrium Corrected MDL (µg/L)	Equilibrium Corrected Result (µg/L) 2-sig figs
1A-PW	_		Bromide	Br	220	220	2.7	mg/L			11.10			1.82	1.00	0.160	83		-	
1A-PW	_		Cadmium	Cd	ND	0	0.27	µg/L			11.10			0.63	0.35	0.055	46	0.00	0.59	< 0.59
1A-PW 1A-PW	-		Chromium	Cr	ND	0	1.9				11.10 11.10	-		0.52	0.29	0.046	40	0.00	4.78	< 4.8
1A-PW 1A-PW	-		Copper	Cu Fe	3.2 220	3.2 220	1.4				11.10	-		0.62	0.34	0.054	45 46	7.05 479.16	3.08 76.23	7.1 480
1A-PW	10-3-22 12:30	10-14-22 14:58	Iron Lead	Pb	0.88	0.88	35 0.21	µg/L	J	980	11.10	65	0.160	0.83	0.00	0.033	56	1 59	0.38	1.6
1A-PW	-		Manganese	Mn	25	25		µg/L			11.10	1		0.62	0.34	0.054	45	55.09	3.75	55
1A-PW	-		Mercury	Hg	ND	0	0.13				11.10	1		0.74	0.41	0.065	51	0.00	0.25	< 0.25
1A-PW			Nickel	Ni	ND	0		µg/L			11.10]		0.62	0.34	0.054	45	0.00	1.43	< 1.4
1A-PW			Zinc	Zn	13	13	3.6	µg/L			11.10			0.61	0.34	0.054	45	28.99	8.03	29
1A-SW			Bromide	Br	120	120	2.7	mg/L			11.10			1.82	1.00	0.253	94	-		
1A-SW			Cadmium	Cd	ND	0		µg/L			11.10			0.63	0.35	0.088	62	0.00	0.58	< 0.58
1A-SW			Chromium	Cr	20	20		µg/L			11.10			0.52	0.29	0.072	55	36.22	4.71	36
1A-SW			Copper	Cu	13	13		µg/L			11.10			0.62	0.34	0.086	62	21.09	3.08	21
1A-SW	10-3-22 12:30	10-14-22 14:58	Iron	Fe	110	110		µg/L		980	11.10	65	0.253	0.63	0.35	0.088	62	176.81	73.94	180
1A-SW	10-3-22 12.30	10-14-22 14.50	Lead	Pb	0.36	0.36	0.28	µg/L	J	300	11.10	05	0.235	0.83	0.46	0.115	72	0.50	0.39	0.5
1A-SW			Manganese	Mn	12	12	2.2	µg/L			11.10			0.62	0.34	0.086	62	19.47	3.57	19
1A-SW			Mercury	Hg	ND	0	0.33	µg/L			11.10			0.74	0.41	0.103	68	0.00	0.48	< 0.48
1A-SW			Nickel	Ni	29	29	0.86	µg/L			11.10			0.62	0.34	0.086	62	47.06	1.40	47
1A-SW			Zinc	Zn	23	23	4.8	µg/L			11.10			0.61	0.34	0.085	61	37.69	7.87	38
1B-PW			Bromide	Br	120	120	2.7	mg/L			11.06			1.82	1.00	0.254	94			-
1B-PW	1		Cadmium	Cd	ND	0		µg/L			11.06	1		0.63	0.35	0.088	62	0.00	0.35	< 0.35
1B-PW	1		Chromium	Cr	ND	0	1.5				11.06	1		0.52	0.29	0.073	55	0.00	2.72	< 2.7
1B-PW	1		Copper	Cu	4.8	4.8	1.1				11.06	1		0.62	0.34	0.087	62	7.79	1.78	7.8
1B-PW	10-3-22 13:25		Iron	Fe	4400	4400		µg/L		980	11.06	65	0.254	0.63	0.35	0.088	62	7072.31	45.01	7100
1B-PW	10-3-22 13:25		Lead	Pb	0.39	0.39	0.17		J	900	11.06	60	0.254	0.83	0.46	0.116	72	0.54	0.24	0.54
1B-PW	-		Manganese	Mn	230	230	1.3				11.06	1		0.62	0.34	0.087	62	373.22	2.11	370
1B-PW	-		Mercury	Hg	ND	0	0.13				11.06	1		0.74	0.41	0.103	68	0.00	0.19	< 0.19
1B-PW	-		Nickel	Ni	1	1	0.52				11.06	1		0.62	0.34	0.087	62	1.62	0.84	1.6
1B-PW	-		Zinc	Zn	20	20	2.9	µg/L			11.06	1		0.61	0.34	0.085	61	32.77	4.75	33
1B-SW			Bromide	Br	120	120	2.7				11.06			1.82	1.00	0.254	94		-	-
1B-SW	1		Cadmium	Cd	ND	0	0.22	ua/l			11.06	1		0.63	0.35	0.088	62	0.00	0.35	< 0.35
1B-SW	-		Chromium	Cr	ND	0	1.5	ual			11.06	1		0.52	0.29	0.073	55	0.00	2.72	< 2.7
1B-SW	-		Copper	Cu	10	10	1.1	ual			11.06	1		0.62	0.34	0.087	62	16.23	1.78	16
1B-SW	-		Iron	Fe	ND	0	28	ual			11.06	·		0.63	0.35	0.088	62	0.00	45.01	< 45
1B-SW	10-3-22 13:25	10-14-22 14:56	Lead	Pb	0.45	0.45	0.17	ual	. I	980	11.06	65	0.254	0.83	0.46	0.116	72	0.62	0.24	0.62
1B-SW	-		Manganese	Mn	5.2	5.2	1.3	ug/L	5		11.06			0.62	0.34	0.087	62	8.44	2.11	8.4
1B-SW	-		Mercury	Hg	ND	0	0.13				11.06			0.74	0.41	0.103	68	0.00	0.19	< 0.19
1B-SW	-		Nickel	Ni	1	1		µg/L			11.06			0.62	0.34	0.087	62	1.62	0.84	1.6
1B-SW	-		Zinc	Zn	33	33	2.9				11.00			0.61	0.34	0.085	61	54.07	4.75	54
1C-PW			Bromide	Br	230	230	2.7				10.92			1.82	1.00	0.157	82	-		-
1C-PW	-		Cadmium	Cd	ND	0		µg/L			10.92			0.63	0.35	0.054	45	0.00	0.49	< 0.49
1C-PW	-		Chromium	Cr	ND	0		µg/L			10.92			0.52	0.29	0.045	39	0.00	3.88	< 3.9
1C-PW	-		Copper	Cu	2.6	2.6	1.1	ug/L			10.92			0.62	0.34	0.053	44	5.88	2.49	5.9
1C-PW	-		Iron	Fe	230	230		µg/L			10.92			0.63	0.35	0.054	45	514.19	62.60	510
1C-PW	10-3-22 13:50	10-14-22 11:51	Lead	Pb	ND	0	0.17	µg/L		980	10.92	65	0.157	0.83	0.46	0.072	54	0.00	0.31	< 0.31
1C-PW	-		Manganese	Mn	36	36	1.3	ug/L			10.92	1		0.62	0.34	0.053	44	81.43	2.94	81
1C-PW	-		Manganese	Hg	ND	0	0.13	ug/L			10.92	1		0.74	0.41	0.064	50	0.00	0.26	< 0.26
1C-PW	-		Nickel	Ni	ND	0	0.52				10.92	1		0.62	0.34	0.053	44	0.00	1.18	< 1.2
1C-PW	-		Zinc	Zn	5.6	5.6		µg/L			10.92	1		0.61	0.34	0.053	44	12.82	6.64	13
1C-SW	1		Bromide	Br	120	120		mg/L	^2		10.92			1.82	1.00	0.258	94	12.02	0.04	
1C-SW	-		Cadmium	Cd	0.36	0.36		µg/L	J		10.92	1		0.63	0.35	0.089	62	0.58	0.35	0.58
1C-SW	-			Cr	ND	0.50			3		10.92	1		0.52	0.29	0.074	55	0.00	2.72	< 2.7
1C-SW	-		Chromium	Cu	7.4	7.4		µg/L			10.92	1		0.62	0.34	0.088	62	12.01	1.78	12
1C-SW	-		Copper		ND	0	1.1				10.92	-		0.63	0.34	0.089	62	0.00	45.01	< 45
1C-SW	- 10-3-22 13:50	10-14-22 11:51	Iron	Fe	0.17	0.17		µg/L		980	10.92	65	0.258	0.83	0.35	0.003	72	0.00	0.24	< 0.24
1C-SW	-		Lead	Pb Mn	6.6	6.6	0.17		J		10.92	1		0.62	0.40	0.088	62	10.71	2.11	11
1C-SW	-		Manganese		0.0 ND	0.0	1.3				10.92	1		0.62	0.34	0.105	68	0.00	0.19	< 0.19
1C-SW	-		Mercury	Hg	0.79	0.79	0.13				10.92	1		0.74	0.41	0.105	62	1.28	0.19	1.3
1C-SW	-		Nickel Zinc	Ni Zn	15	15	0.52	µg/L	J		10.92	1		0.62	0.34	0.086	61	24.58	4.75	25
2-PW					15	15	2.9		40		9.14			0.61	1.00	0.086	61 94			
2-PW 2-PW	-		Bromide	Br	120 ND	120	2.7	mg/L	^2		9.14	4		1.82	0.35	0.308	94 62	0.00	0.35	< 0.35
	-		Cadmium	Cd		-	0.22					4								
2-PW	-1		Chromium	Cr	ND	0	1.5	µg/L			9.14	4		0.52	0.29	0.088	55	0.00	2.72	< 2.7
2-PW			Copper	Cu	3.6	3.6	1.1	µg/L			9.14	4		0.62	0.34	0.105	62	5.84	1.78	5.8
2-PW	10-4-22 8:50	10-13-22 12:07	Iron	Fe	1400	1400	28	µg/L		980	9.14	65	0.308	0.63	0.35	0.107	62	2250.28	45.01	2300
2-PW	-		Lead	Pb	ND 77	0	0.17	µg/L			9.14	4		0.83	0.46	0.140	72	0.00	0.24	< 0.24
2-PW			Manganese	Mn	77	77	1.3				9.14	-		0.62	0.34	0.105	62	124.95	2.11	120
2-PW	-		Mercury	Hg	ND	0		µg/L			9.14	-		0.74	0.41	0.125	68	0.00	0.19	< 0.19
2-PW 2-PW	4		Nickel	Ni	ND	0		µg/L			9.14	4		0.62	0.34	0.105	62	0.00	0.84	< 0.84
		1	Zinc	Zn	31	3.1	2.9	µg/L			9.14	1		0.61	0.34	0.103	61	5.08	4.75	5.1

Table A2. Calculation of Cfree values using the bromide tracer, San Diego peeper samples. Equilibrium Correction of Porewater Concentration using Bromide Tracer

Sample ID	Sample Deployment Date	Sample Collection Date	Chemical Name	Chemical Abreviation	Report Result Text	Measured Concentration in Peeper	MDL in Peeper	Report Result Unit	Lab Qualifiers	Initial Br Concentration (mg/L)	Deployment Time (days)	Assumed Br Concentration External to Peeper (mg/L)	Sample- Specific Elimintation Rate for Br (K _{Br}) (day ⁻¹)	Diffusion Coefficient for Analytes (Di) (* 10 ⁻⁵ cm ² /s)	Di ÷ D _{Br}	Sample- specific Elimination Rate for Analytes (K _i) (day-1)	Percent Equilibrium Reached (%)	Equilibrium Corrected Concentration (µg/L)	Equilibrium Corrected MDL (µg/L)	Equilibrium Corrected Result (µg/L) 2-sig figs
2-SW			Bromide	Br	110	110		mg/L	^2		9.14			1.82	1.00	0.330	95			
2-SW	_		Cadmium	Cd	ND	0	0.22	µg/L			9.14			0.63	0.35	0.114	65	0.00	0.34	< 0.34
2-SW 2-SW	_		Chromium	Cr	ND 6.6	0 6.6	1.5	µg/L			9.14			0.52	0.29	0.094	58 64	0.00 10.29	2.60	< 2.6 10
2-SW 2-SW	_		Copper	Cu Fe	6.6 ND	0.0	1.1 J	µg/L µg/L			9.14 9.14			0.62	0.34	0.112	65	0.00	43.24	10
2-SW	10-4-22 8:50	10-13-22 12:06	Lead	Pb	0.18	0.18		µg/L	J	980	9.14	65	0.330	0.83	0.46	0.150	75	0.24	0.23	0.24
2-SW	_		Manganese	Mn	6.3	6.3		µg/L			9.14			0.62	0.34	0.112	64	9.82	2.03	9.8
2-SW			Mercury	Hg	ND	0		µg/L			9.14			0.74	0.41	0.134	71	0.00	0.18	< 0.18
2-SW			Nickel	Ni	0.71	0.71	0.52	µg/L	J		9.14			0.62	0.34	0.112	64	1.11	0.81	1.1
2-SW			Zinc	Zn	11	11		µg/L			9.14			0.61	0.34	0.111	64	17.31	4.56	17
3-PW 3-PW	_		Bromide	Br	230	230		mg/L	^2		10.96			1.82	1.00	0.156	82 45			
3-PW	-		Cadmium	Cd	ND ND	0		µg/L			10.96			0.63	0.35	0.054	45	0.00	0.80	< 0.8
3-PW	-		Chromium Copper	Cu	ND	0		µg/L µg/L			10.96			0.62	0.23	0.053	44	0.00	4.30	< 4.3
3-PW	10-3-22 15:00		Iron	Fe	150	150		µg/L		980	10.96	65	0.156	0.63	0.35	0.054	45	335.34	102.84	340
3-PW	10-3-22 15:00	10-14-22 14:02	Lead	Pb	ND	0	0.28			980	10.96	65	0.156	0.83	0.46	0.071	54	0.00	0.52	< 0.52
3-PW			Manganese	Mn	18	18	2.2	µg/L			10.96			0.62	0.34	0.053	44	40.72	4.98	41
3-PW	_		Mercury	Hg	ND	0	0.33	µg/L			10.96			0.74	0.41	0.064	50	0.00	0.66	< 0.66
3-PW	_		Nickel	Ni	1.1	1.1	0.86	µg/L	J		10.96			0.62	0.34	0.053	44	2.49	1.95	2.5
3-PW 3-SW			Zinc	Zn	11 140	11 140	4.8	µg/L	^2		10.96 10.96			0.61	0.34	0.052	44 92	25.18	10.99	25
3-SW 3-SW	_		Bromide	Br Cd	140 ND	0	2.7 r 0.22 r	mg/L	~Z		10.96			0.63	0.35	0.228	92 58	0.00	0.38	< 0.38
3-SW	-		Chromium	Cr	ND	0	1.5	ug/L			10.96			0.52	0.33	0.065	51	0.00	2.94	< 2.9
3-SW	-		Copper	Cu	6.2	6.2		µg/L			10.96			0.62	0.34	0.078	57	10.81	1.92	11
3-SW	10-3-22 15:00		Iron	Fe	ND	0	28	µg/L		980	10.96	65	0.228	0.63	0.35	0.079	58	0.00	48.33	< 48
3-SW	10-3-22 13.00	10-14-22 14.02	Lead	Pb	ND	0	0.17	µg/L		900	10.96	05	0.220	0.83	0.46	0.104	68	0.00	0.25	< 0.25
3-SW	_		Manganese	Mn	6.5	6.5	1.3	µg/L			10.96			0.62	0.34	0.078	57	11.33	2.27	11
3-SW 3-SW	_		Mercury	Hg	ND 0.79	0	0.13	µg/L			10.96			0.74 0.62	0.41	0.093	64 57	0.00	0.20	< 0.2
3-SW 3-SW	_		Nickel Zinc	Ni Zn	10	10	0.52	ug/L	J		10.96			0.62	0.34	0.078	57	1.38	5.11	1.4
4-PW			Bromide	Br	130	130	2.9 2.7 r		^2		10.90			1.82	1.00	0.260	93	17.02	5.11	
4-PW	-		Cadmium	Cd	ND	0	0.22	ua/L	-		10.16			0.63	0.35	0.090	60	0.00	0.37	< 0.37
4-PW			Chromium	Cr	ND	0	1.5				10.16			0.52	0.29	0.074	53	0.00	2.83	< 2.8
4-PW			Copper	Cu	6.2	6.2	1.1	µg/L			10.16			0.62	0.34	0.089	59	10.44	1.85	10
4-PW	10-4-22 10:34	10-14-22 14:20	Iron	Fe	ND	0	28	µg/L		980	10.16	65	0.260	0.63	0.35	0.090	60	0.00	46.69	< 47
4-PW 4-PW			Lead	Pb	0.2	0.2	0.17	µg/L	J		10.16			0.83	0.46	0.119	70 59	0.29	0.24	0.29
4-PW	-		Manganese	Mn Hg	5.2 ND	5.2 0	1.3 J	µg/L			10.16			0.62	0.34	0.089	66	8.76 0.00	2.19 0.50	8.8 < 0.5
4-PW	-		Mercury Nickel	Ni	1.1	1.1	0.53	ug/L			10.10			0.62	0.34	0.089	59	1.85	0.88	1.9
4-PW	-		Zinc	Zn	16	16	2.9				10.16			0.61	0.34	0.087	59	27.22	4.93	27
4-SW			Bromide	Br	130	130	2.7	µg/L	^2		10.16			1.82	1.00	0.260	93			
4-SW			Cadmium	Cd	ND	0		µg/L			10.16			0.63	0.35	0.090	60	0.00	0.40	< 0.4
4-SW			Chromium	Cr	ND	0		µg/L			10.16			0.52	0.29	0.074	53	0.00	3.21	< 3.2
4-SW	_		Copper	Cu	5.3	5.3		µg/L			10.16			0.62	0.34	0.089	59	8.93	2.02	8.9
4-SW 4-SW	10-4-22 10:34	10-14-22 14:20	Iron	Fe Pb	63 ND	63 0		µg/L		980	10.16	65	0.260	0.63	0.35	0.090	60 70	105.06	50.03 0.26	110 < 0.26
4-SW 4-SW	_		Lead	Mn	8.9	8.9		µg/L µg/L			10.16			0.63	0.46	0.089	59	14.99	2.53	15
4-SW	-		Manganese Mercury	Hg	ND	0.0	0.13				10.16			0.74	0.41	0.106	66	0.00	0.20	< 0.2
4-SW			Nickel	Ni	1	1	0.56	µg/L	J		10.16			0.62	0.34	0.089	59	1.68	0.94	1.7
4-SW			Zinc	Zn	8.9	8.9	3.1	µg/L			10.16			0.61	0.34	0.087	59	15.14	5.27	15
5-PW	_		Bromide	Br	170	170	2.7 r		^2		10.27			1.82	1.00	0.211	89			
5-PW	-		Cadmium	Cd	ND	0	0.22				10.27			0.63	0.35	0.073	53	0.00	0.42	< 0.42
5-PW 5-PW	-		Chromium	Cr	ND 1.8	0	1.5	µg/L			10.27			0.52	0.29	0.060	46 52	0.00 3.45	3.25	< 3.3 3.5
5-PW	-		Copper Iron	Fe	1.0	1.0	1.1	ug/L	J		10.27			0.62	0.34	0.072	52	2844.38	53.10	2800
5-PW	10-4-22 9:17		Lead	Pb	ND	0	28 J	ua/L		980	10.27	65	0.211	0.83	0.35	0.096	63	0.00	0.27	< 0.27
5-PW	1		Manganese	Mn	110	110	1.3				10.27	1		0.62	0.34	0.072	52	210.85	2.49	210
5-PW			Mercury	Hg	ND	0	0.13	µg/L			10.27			0.74	0.41	0.086	59	0.00	0.22	< 0.22
5-PW	4		Nickel	Ni	ND	0	0.52	µg/L			10.27			0.62	0.34	0.072	52	0.00	1.00	< 1
5-PW	1		Zinc	Zn	3	3	2.9	µg/L	J		10.27			0.61	0.34	0.071	52	5.81	5.62	5.8
5-SW	-		Bromide	Br	130 ND	130	2.7 r	mg/L	^2		10.27			1.82	1.00	0.257	93			
5-SW 5-SW	-		Cadmium	Cd	ND ND	0	0.22	µg/L			10.27			0.63	0.35	0.089	60 53	0.00	0.37	< 0.37 < 2.8
5-SW 5-SW	-		Chromium	Cr	ND 5.6	5.6	1.5 µ 1.1 µ	ug/L			10.27			0.52	0.29	0.074	53	9.43	2.83	< 2.8 9.4
5-SW	1		Copper	Fe	ND S.0	0		µg/L µg/L			10.27			0.63	0.34	0.088	60	0.00	46.69	< 47
5-SW	10-4-22 9:17	10-14-22 15:52	Lead	Pb	0.23	0.23	0.17	µg/L	J	980	10.27	65	0.257	0.83	0.46	0.117	70	0.33	0.24	0.33
5-SW	1		Manganese	Mn	7.7	7.7	1.3				10.27	1		0.62	0.34	0.088	59	12.97	2.19	13
5-SW			Mercury	Hg	ND	0	0.13	µg/L			10.27			0.74	0.41	0.105	66	0.00	0.20	< 0.2
5-SW	-		Nickel	Ni	0.97	0.97	0.52	µg/L	J		10.27			0.62	0.34	0.088	59	1.63	0.88	1.6
5-SW			Zinc	Zn	12	12	2.9	µg/L			10.27			0.61	0.34	0.086	59	20.41	4.93	20

Table A2. Calculation of Cfree values using the bromide tracer, San Diego peeper samples. Equilibrium Correction of Porewater Concentration using Bromide Tracer

Sample ID	Sample Deployment Date	Sample Collection Date	Chemical Name	Chemical Abreviation	Report Result Text	Measured Concentration in Peeper	MDL in Peeper	Report Result Unit	Lab Qualifiers	Initial Br Concentration (mg/L)	Deployment Time (days)	Assumed Br Concentration External to Peeper (mg/L)	Sample- Specific Elimintation Rate for Br (K _{Br}) (day ⁻¹)	Diffusion Coefficient for Analytes (Di) (* 10 ⁻⁵ cm ² /s)	Di ÷ D _{Br}	Sample- specific Elimination Rate for Analytes (K _i) (day-1)	Percent Equilibrium Reached (%)	Equilibrium Corrected Concentration (µg/L)	Equilibrium Corrected MDL (µg/L)	Equilibrium Corrected Result (µg/L) 2-sig figs
6-PW			Bromide	Br	220	220	2.7	mg/L	^2		10.08			1.82	1.00	0.176	83			
6-PW			Cadmium	Cd	ND	0	0.22	µg/L			10.08			0.63	0.35	0.061	46	0.00	0.48	< 0.48
6-PW			Chromium	Cr	ND	0	1.5	µg/L			10.08			0.52	0.29	0.050	40	0.00	3.77	< 3.8
6-PW			Copper	Cu	ND	0		µg/L			10.08			0.62	0.34	0.060	45	0.00	2.42	< 2.4
6-PW	10-4-22 10:54	10-14-22 12:49	Iron	Fe	3100	3100		µg/L		980	10.08	65	0.176	0.63	0.35	0.061	46	6751.75	60.98	6800
6-PW			Lead	Pb	ND	0		µg/L			10.08			0.83	0.46	0.080	56	0.00	0.31	< 0.31
6-PW			Manganese	Mn	150	150		µg/L			10.08			0.62	0.34	0.060	45	330.51	2.86	330
6-PW			Mercury	Hg	ND	0		µg/L			10.08			0.74	0.41	0.072	51	0.00	0.25	< 0.25
6-PW			Nickel	Ni	ND	0		µg/L			10.08			0.62	0.34	0.060	45	0.00	1.15	< 1.1
6-PW			Zinc	Zn	ND	0		µg/L			10.08			0.61	0.34	0.059	45	0.00	6.47	< 6.5
6-SW			Bromide	Br	130	130	2.7	mg/L	^2		10.08			1.82	1.00	0.262	93	-		
6-SW	_		Cadmium	Cd	ND	0		µg/L			10.08			0.63	0.35	0.091	60	0.00	0.37	< 0.37
6-SW	_		Chromium	Cr	ND	0		µg/L			10.08			0.52	0.29	0.075	53	0.00	2.83	< 2.8
6-SW	_		Copper	Cu	4.8	4.8		µg/L			10.08			0.62	0.34	0.089	59	8.08	1.85	8.1
6-SW	10-4-22 10:54	10-14-22 12:49	Iron	Fe	ND	0	28	µg/L		980	10.08	65	0.262	0.63	0.35	0.091	60	0.00	46.69	< 47
6-SW	_		Lead	Pb	0.26	0.26		µg/L	J		10.08	-		0.83	0.46	0.120	70	0.37	0.24	0.37
6-SW	_		Manganese	Mn	6.9	6.9		µg/L			10.08	-		0.62	0.34	0.089	59	11.62	2.19	12
6-SW	_		Mercury	Hg	ND 0.777	0	0.33	µg/L			10.08	-		0.74	0.41	0.107	66 59	0.00	0.50	< 0.5
6-SW 6-SW	_		Nickel	Ni	0.77	0.77		µg/L	J		10.08	-		0.62	0.34	0.089	59	1.30	0.88	1.3
6-SW 7-PW			Zinc	Zn				µg/L	40											
7-PW 7-PW	_		Bromide	Br	140 ND	140		mg/L	^2		10.23 10.23	-		1.82	1.00	0.244	92 58		0.38	< 0.38
7-PW	_		Cadmium	Cd	ND ND	0		µg/L			10.23	-		0.63	0.35	0.085	58	0.00	0.38	< 0.38
7-PW	_		Chromium	Cu	1.1	1.1		µg/L			10.23	-		0.62	0.29	0.070	57	1.92	2.94	< 1.9
7-PW	_		Copper	Ee	1.1	1200		µg/L	J		10.23	-		0.62	0.34	0.085	57	2071.40	48.33	2100
7-PW	10-4-22 9:59	10-14-22 15:33	Iron Lead	Pb	ND	0		µg/L µg/L		980	10.23	65	0.244	0.83	0.35	0.085	68	0.00	0.25	< 0.25
7-PW	-		Manganese	Mn	98	98		ua/L			10.23	-		0.62	0.40	0.083	57	170.88	2.27	170
7-PW	-		Mercury	Ha	ND	0	0.13	µg/L			10.23	1		0.74	0.41	0.099	64	0.00	0.20	< 0.2
7-PW	1		Nickel	Ni	0.77	0.77		µg/L	J		10.23	1		0.62	0.41	0.083	57	1.34	0.91	1.3
7-PW			Zinc	Zn	6.2	6.2		ua/L	Ű		10.23	1		0.61	0.34	0.082	57	10.92	5.11	11
7-SW	1		Bromide	Br	130	130		mg/L	^2		10.23			1.82	1.00	0.258	93		-	-
7-SW	1		Cadmium	Cd	ND	0	0.22	µg/L	-		10.23	1		0.63	0.35	0.089	60	0.00	0.37	< 0.37
7-SW			Chromium	Cr	ND	0	1.5	µg/L			10.23	1		0.52	0.29	0.074	53	0.00	2.83	< 2.8
7-SW	-		Copper	Cu	5.5	5.5		ua/L			10.23	1		0.62	0.34	0.088	59	9.26	1.85	9.3
7-SW			Iron	Fe	29	29		ua/L	J		10.23	1		0.63	0.35	0.089	60	48.36	46.69	48
7-SW	10-4-22 9:59	10-14-22 15:33	Lead	Pb	0.26	0.26		µg/L	J	980	10.23	65	0.258	0.83	0.46	0.118	70	0.37	0.24	0.37
7-SW	1		Manganese	Mn	7.5	7.5	1.3	µg/L			10.23	1		0.62	0.34	0.088	59	12.63	2.19	13
7-SW	1		Mercury	Ha	ND	0	0.13	µg/L			10.23	1		0.74	0.41	0.105	66	0.00	0.20	< 0.2
7-SW			Nickel	Ni	0.96	0.96	0.52	µg/L	J		10.23	1		0.62	0.34	0.088	59	1.62	0.88	1.6
7-SW			Zinc	Zn	13	13		µg/L	-		10.23	1		0.61	0.34	0.087	59	22.11	4.93	22

Table A3. Cfree of metals in sediment porewater and surface water from the San Diego field deployment, as determined with the lithium tracer
(top) and bromide tracer (bottom).

					Lithiun	n corrected	porewater co	oncentration	n (μg/L)		
Sample ID	Station	Description	Cd	Cr	Cu	Fe	Pb	Mn	Hg	Ni	Zn
1A-PW	1A	Sed porewater	< 0.39	< 3	4.7	320	1.1	36	< 0.17	< 0.95	19
1B-PW	1B	Sed porewater	< 0.23	< 1.6	4.9	4500	0.39	240	< 0.13	1	21
1C-PW	1C	Sed porewater	< 0.34	< 2.6	4	350	< 0.23	56	< 0.18	< 0.8	8.7
2-PW	2	Sed porewater	< 0.25	< 1.9	4.2	1600	< 0.18	90	< 0.14	< 0.61	3.6
3-PW	3	Sed porewater	< 0.54	< 4.4	< 2.9	220	< 0.37	27	< 0.46	1.7	17
4-PW	4	Sed porewater	< 0.22	< 1.5	6.2	< 28	0.2	5.2	< 0.33	1.1	16
5-PW	5	Sed porewater	< 0.31	< 2.4	2.6	2100	< 0.21	160	< 0.17	< 0.74	4.3
6-PW	6	Sed porewater	< 0.32	< 2.5	< 1.6	4600	< 0.22	220	< 0.18	< 0.77	< 4.3
7-PW	7	Sed porewater	< 0.28	< 2.1	< 1.4	1500	< 0.2	130	< 0.16	0.99	8
											
					Lithium o	corrected su	reface water	concentrati	on (µg/L)		
Sample ID	Station	Description	Cd	Cr	Cu	Fe	Pb	Mn	Hg	Ni	Zn
1A-SW	1A	Surface water	< 0.36	20	13	110	0.36	12	< 0.33	29	23
1B-SW	1B	Surface water	< 0.22	< 1.5	10	< 28	0.45	5.2	< 0.13	1	33
1C-SW	1C	Surface water	0.36	< 1.5	7.5	< 28	< 0.17	6.7	< 0.13	0.8	15
2-SW	2	Surface water	< 0.22	< 1.5	6.7	< 28	0.18	6.4	< 0.13	0.72	11
3-SW	3	Surface water	< 0.22	< 1.5	6.2	< 28	< 0.17	6.5	< 0.13	0.8	10
4-SW	4	Surface water	< 0.24	< 1.7	5.3	63	< 0.18	9	< 0.13	1	9
5-SW	5	Surface water	< 0.22	< 1.5	5.6	< 28	0.23	7.8	< 0.13	0.98	12
6-SW	6	Surface water	< 0.22	< 1.5	4.8	< 28	0.26	7	< 0.33	0.78	10
7-SW	7	Surface water	< 0.22	< 1.5	5.5	29	0.26	7.6	< 0.13	0.97	13
Sample ID	Station	Description	Cd	Cr	Bromid Cu	le corrected Fe	porewater c Pb	oncentration Mn	n (µg/L) Hg	Ni	Zn
1A-PW	1A	1	< 0.59	< 4.8	7.1	480			< 0.25	< 1.4	29
1A-PW 1B-PW	1A 1B	Sed porewater		< 4.8	7.1		1.6	55 370	< 0.23		33
1B-PW 1C-PW		Sed porewater	< 0.35 < 0.49	< 3.9	5.9	7100	0.54 < 0.31	370	< 0.19	1.6 < 1.2	
2-PW	1C 2	Sed porewater	< 0.49	< 3.9	5.9	510	< 0.31	81	< 0.28	< 0.84	13 5.1
2-PW 3-PW	3	Sed porewater	< 0.33	< 6.7	3.8 < 4.3	2300	< 0.24	120	< 0.19		
	4	Sed porewater		< 0.7		340		41		2.5	25
4-PW 5-PW	5	Sed porewater	< 0.37 < 0.42	< 3.3	10 3.5	< 47 2800	0.29 < 0.27	8.8 210	< 0.5	1.9	27 5.8
6-PW		Sed porewater			< 2.4						
	<u>6</u> 7	Sed porewater	< 0.48	< 3.8 < 2.9	< 1.9	6800	< 0.31	330	< 0.25	< 1.1	< 6.5
7-PW	/	Sed porewater	< 0.38	< 2.9	< 1.9	2100	< 0.25	170	< 0.2	1.3	11
					D '1	· 1			(/T)		
a 1 m	a :	D		~			urface water				~
Sample ID	Station	Description	Cd	Cr	Cu	Fe	Pb	Mn	Hg	Ni	Zn
1A-SW	1A	Surface water	< 0.58	36	21	180	0.5	19	< 0.48	47	38
1B-SW	1B	Surface water	< 0.35	< 2.7	16	< 45	0.62	8.4	< 0.19	1.6	54
1C-SW	1C	Surface water	0.58	< 2.7	12	< 45	< 0.24	11	< 0.19	1.3	25
2-SW	2	Surface water	< 0.34	< 2.6	10	< 43	0.24	9.8	< 0.18	1.1	17
3-SW	3	Surface water	< 0.38	< 2.9	11	< 48	< 0.25	11	< 0.2	1.4	18
4-SW	4	Surface water	< 0.4	< 3.2	8.9	110	< 0.26	15	< 0.2	1.7	15
5-SW	5	Surface water	< 0.37	< 2.8	9.4	< 47	0.33	13	< 0.2	1.6	20
6-SW	6	Surface water	< 0.37	< 2.8	8.1	< 47	0.37	12	< 0.5	1.3	17
7-SW	7	Surface water	< 0.37	< 2.8	9.3	48	0.37	13	< 0.2	1.6	22

APPENDIX B DGT CALCULATION SHEETS

Sample ID	1. Deployment Date/Time	1. Collection Date/Time	Exposure Duration (Days)	Exposure Duration (s)			3. M - Mas	s of metal i	n the resir	gel (from L	aboratory)		
					Hg (ng)	Cd (µg)	Cr (µg)	Cu (µg)	Fe (µg)	Mn (μg)	Ni (µg)	Pb (µg)	Zn (μg)
2-ME	10-4-22 8:50	10-13-22 12:05	9.14	789300	-	0.0029	0.0053	0.13	0.21	0.23	0.042	0.014	0.59
3-ME	10-3-22 15:00	10-14-22 14:01	10.96	946860	-	0.0044	0.0053	0.11	0.075	0.33	0.052	0.013	0.73
4-ME	10-4-22 10:34	10-14-22 14:18	10.16	877440	-	0.0043	0.0053	0.12	0.14	0.28	0.049	0.014	0.78
5-ME	10-4-22 9:17	10-14-22 15:50	10.27	887580	-	0.004	0.0053	0.12	0.34	0.27	0.038	0.014	0.6
6-ME1	10-4-22 10:54	10-14-22 12:49	10.08	870900	-	0.0041	0.0053	0.11	0.075	0.32	0.045	0.012	0.68
6-ME2	10-4-22 10:54	10-14-22 12:49	10.08	870900	-	0.0038	0.0053	0.11	0.075	0.24	0.043	0.012	0.64
7-ME	10-4-22 9:59	10-14-22 15:32	10.23	883980	-	0.004	0.0053	0.14	0.075	0.19	0.044	0.016	0.75
1A-HG1	10-3-22 12:30	10-14-22 14:58	11.10	959280	0.1	-	-	-	-	-	-	-	-
1A-HG2	10-3-22 12:30	10-14-22 14:58	11.10	959280	0.1	-	-	-	-	-	-	-	-
1B-HG1	10-3-22 13:25	10-14-22 14:57	11.06	955920	0.27	-	-	-	-	-	-	-	-
1B-HG2	10-3-22 13:25	10-14-22 14:57	11.06	955920	0.1	-	-	-	-	-	-	-	-
1C-HG1	10-3-22 13:50	10-14-22 11:51	10.92	943260	0.1	-	-	-	-	-	-	-	-
1C-HG2	10-3-22 13:50	10-14-22 11:51	10.92	943260	0.1	-	-	-	-	-	-	-	-
2-HG	10-4-22 8:50	10-13-22 12:06	9.14	789360	0.1	-	-	-	-	-	-	-	-
3-HG	10-3-22 15:00	10-14-22 14:02	10.96	946920	0.1	-	-	-	-	-	-	-	-
4-HG	10-4-22 10:34	10-14-22 14:20	10.16	877560	0.1	-	-	-	-	-	-	-	-
5-HG	10-4-22 9:17	10-14-22 15:52	10.27	887700	0.1	-	-	-	-	-	-	-	-
7-HG	10-4-22 9:59	10-14-22 15:33	10.23	884040	0.1	-	-	-	-	-	-	-	-

Table B1. Cfree calculation of metals in surface water from the San Diego field deployment, as determined in DGT.

Red values are method detection limits.

able B1. Cfree calcula	ation of metals in surface v	water from the Sa	n Diego field deployment, as dete	rmined in DO	бт.			2. Average (°C)	e Temperatu	ure of Depl	oyment	15
				D - Diffusion coefficient of metal in the resin gel (temperature and metal specific)								
4. Thickness of the	4. Thickness of the	Δg	(Hg	Cd	Cr	Cu	Fe	Mn	Ni	Pb	Zn
diffusive gel (mm)	Membrane (mm)	(cm):	A - exposure area (cm2):	6	4.57	3.79	4.68	4.59	4.39	4.33	6.03	4.56
				Final Pore	water Conc	entration						
				[Hg] ng/L	[Cd] µg/L	[Cr] µg/L	[Cu] µg/L	[Fe] μg/L	[Mn] µg/L	[Ni] μg/L	[Pb] µg/L	[Zn] µg/I
0.8	0.14	0.094	3.14	-	0.024	0.053	1.054	1.74	1.99	0.37	0.088	4.91
0.8	0.14	0.094	3.14	-	0.030	0.044	0.743	0.52	2.38	0.38	0.068	5.06
0.8	0.14	0.094	3.14	-	0.032	0.048	0.875	1.04	2.18	0.39	0.079	5.84
0.8	0.14	0.094	3.14	-	0.030	0.047	0.865	2.50	2.07	0.30	0.078	4.44
0.8	0.14	0.094	3.14	-	0.031	0.048	0.808	0.56	2.51	0.36	0.068	5.13
0.8	0.14	0.094	3.14	-	0.029	0.048	0.808	0.56	1.88	0.34	0.068	4.82
0.8	0.14	0.094	3.14	-	0.030	0.047	1.013	0.55	1.47	0.34	0.090	5.57
0.8	0.14	0.094	3.14	0.520	-	-	-	-	-	-	-	-
0.8	0.14	0.094	3.14	0.520	-	-	-	-	-	-	-	-
0.8	0.14	0.094	3.14	1.409	-	-	-	-	-	-	-	-
0.8	0.14	0.094	3.14	0.522	-	-	-	-	-	-	-	-
0.8	0.14	0.094	3.14	0.529	-	-	-	-	-	-	-	-
0.8	0.14	0.094	3.14	0.529	-	-	-	-	-	-	-	-
0.8	0.14	0.094	3.14	0.632	-	-	-	-	-	-	-	-
0.8	0.14	0.094	3.14	0.527	-	-	-	-	-	-	-	-
0.8	0.14	0.094	3.14	0.569	-	-	-	-	-	-	-	-
0.8	0.14	0.094	3.14	0.562	-	-	-	-	-	-	-	-
0.8	0.14	0.094	3.14	0.564	-	-	-	-	-	-	-	-

Red values are concentrations associated with the method detection limits.

APPENDIX C FIELD NOTES AND FORMS

Geosyntec[▷]

Deployment Field Form

Project Number: PNG7584 - ER20-5261

Project Name: ESTCP Peeper

Site: Paleta Creek – San Diego

consultants

			Pole Depl	oyment	Water		*	•2	
Date	Station ID	Sample ID	Times	Duration (min)	depth (ft)	Anchor Direction	Lat	Lon	Notes
10-3-22	1	SPW-1A	12:52- 13:18	26	24.0	5W	32.40 25.039	11 7.06 58.693	
10-3-22	1	5PW-18	13:28 -	5	24.4	SW	32.40 25.060	117.06 58.079	2 agarose DGTS. Station 1B 5ft Sof 1A
10-3-22	/	SPW-1C	13:55 - 13:58	3	25.2	NE	32.40 25.174	117.06 58.623	2 agarose DGTS.
10-3-22	3	SPW-3	14:58 - 15:06	8	28.0	SW	32.40 23.915	117.06 . 58.833	1 agurose, 1 Chelex DGT. 5 poles
10-4-22	2	SPW-2	08:50- 08:55	5	25.0	5W	32.40 23.907	117.06 58.064	5 pores
10-4-22	5	sew-5	09:13 -	Ч	28.0	SW	32.40 23.427	117.06 59.051	1 agasose, 1 Chelex DGT 5 poles
10-4-22	8	58W-8	09:32- 09:40	8	27.9	S	32-40 23.058	117-06 59.640	lagorosa, I Chelex DGT A Spolas
10-4.22	7	58W-7	09:59- 10:05	6	26,3	NW	32.40 23.874	117.06 59.816	1 agarose, 1 chelex DGT 5 poles
10-4-22	Ч	SPW-4	10:28- 10:34	6	25.1	N	32.40 24.489	117,06 59.77/	1 agarose, 1 Chelex 5 poles
10-4-22	6	SPW-G	10:51 - 10:54	3	25.8	N	32.40 24.044	117.06 59.293	2 Chelex DGTs

Notes & Observations A station & - Toch GPS reading after leaving station, so GPS coordinates are uncertain at this station. Peeper Deployment Notes Jason Conder

10-3-22 ESTCP Peeper Project Navy Base San Diego, San Diego, CA Deployment Day 1

0745: Met at Pepper Park boat ramp; unload vehicle and load boat (Pi Environmental). Onboard health and safety meeting. Organize gear, peeper materials, equipment. Personnel present: Jason Conder, Flo Risacher, and Michaela Lawrence (Geosyntec); Brent Mardian and Mason (Pi Environmental); Gunther Rosen (US Navy NIWC). Weather – calm wind, cloudy, low 70°F. Unpack, prepare, and organize field gear and plan for the day with team.

1025: Left Pepper Park for Site - mouth of Paleta Creek in Navy Base San Diego.

1100: At Site in Paleta Creek. Had a little trouble getting through security barrier into the Base (clearing up and communicating access agreement and etc.). When on Site, had to wait for maintenance vessel (Port) to move some things around (booms) near Site. We used this time to prep the sandwich bag sand anchors and anchor lines.

1132: Position/anchor on Station 1.

1148: On Station 1; break for lunch.

1230: Station 1 - 10 up peeper frame with peepers and DGTs (2 Agarose DGTs for Hg), and then deployed frame into sediment for sample frame 1A. Had a few minor challenges with the pole and peeper frame disconnecting – the top of the frame kept getting hung on the bottom of the pole. This was because the frame was pushed too deeply into the sediment. Took 4 tries to insert the frame. Used 4 pole sections.

1325: Station 1 – sample frame 1B setup and load with peepers and DGTs (2 Agarose DGTs for Hg). Only took 1 try for insertion of frame into sediment (only took 5 minutes). The 1B location was approximately 5 feet to the southeast of where 1A was inserted. The Go Pro camera was having a bad connection and could not be used, so we used Pi Environmental's "Fishsens" (SondeCAM HD) underwater camera, which was superior and rugged and was able to connect to everyone's cell phone after installing the App.

1350: Station 1 – sample frame 1C setup and load with peepers and DGTs (2 Agarose DGTs for Hg). Only took 3 minutes to insert peeper. The 1C location was on the opposite side of the boat from 1A and 1B, approximately 12 feet northeast of 1A insertion point.

1405: Moved off of Station 1 to Station 3; applied 3-point anchor to secure in place.

1442: On Station 3. Anchoring was difficult due to light afternoon west wind an very soft sediment in the area. Important to plan sequence of stations and anchoring to avoid entangling anchor lines from the vessel and anchor lines from the peeper frames that had already been deployed.

1444: Assembling peepers and DGTs into frame for Station 3. Note – on 1A, 1B, and 1C, only the agarose DGTs (for Hg) were used in these frames. So we will get 6 Hg DGT samples from these 3 sample locations, but no regular metals (i.e., Chelex DGTs). Note that the Agarose and Chelex DGTs look identical, so all Chelex DGTs were notched on the edge with snips to we can differentiate them from the Agarose DGTs.

Peeper Deployment Notes Jason Conder

1458: Started on Station 3. Had to use 5 poles since the water depth was 28 feet (tide was rising, and tides during the day were all positive). 30 feet deep is about the maximum depth for working with push poles since deeper water would require 6 poles, which would not be feasible for 1-2 people to operate safely. Got peeper frame for 3 deployed in 1 try.

1510: Moving to Station 2. Could not get Navy Base on radio to inform them of our plans to work more in the day, so we decided to stop work.

1515: Left Site for Pepper Park. After arriving at Pepper Park, left gear in the boat.

1535: Left Pepper Park; end of day.

.....

10-4-22 ESTCP Peeper Project Navy Base San Diego, San Diego, CA Deployment Day 2

0731: At Pepper Park to ready boat. Onboard health and safety meeting. Organize gear, peeper materials, equipment. Personnel present: Jason Conder, Flo Risacher, and Michaela Lawrence (Geosyntec); Brent Mardian and Mason (Pi Environmental); Gunther Rosen (US Navy NIWC). Weather – calm wind, cloudy, low 70°F.

0745: Left Pepper Park for Site.

0758: Arrived at Base barrier gate to wait on tug to open gate to base.

0820: Gate finally open; accessing Navy Base San Diego.

0826: At Site. Navigate to Station 2. Floating dock was partly in the way, so we got as close as possible.

0840: At Station 2; build peeper frame- load up peeper frame with peepers and DGTs (1 Agarose DGT for Hg and 1 Chelex DGT for metals).

0850: Frame and pole ready; begin pole assembly and insertion. Had to use 5 poles.

0855: Complete insertion. Got good video.

0859: Navigate and anchor at Station 5. Marked the station location with a marker buoy.

0908: Anchored at Station 5; build peeper frame- load up peeper frame with peepers and DGTs (1 Agarose DGT for Hg and 1 Chelex DGT for metals).

0917: Station 5 complete. Navigated to Station 8. Dropped buoy marker.

0930: On Station 8; build peeper frame- load up peeper frame with peepers and DGTs (1 Agarose DGT for Hg and 1 Chelex DGT for metals).

0932: Started insertion at Station 8. Took 8 minutes. When pulling up pole, anchor line got hung on pole, so we re-threw sand bag anchor. We do not think the frame was dislodged from the sediment.

0942: Moving to Station 7, but then went back to Station 8 to record GPS location. Reported GPS coordinates may be a little off from where frame was inserted.

0949: Dropped marker buoy at Station 7; build peeper frame-load up peeper frame with peepers and DGTs (1 Agarose DGT for Hg and 1 Chelex DGT for metals).

0956: On Station 7. Three-point anchoring (as at all stations today). Wind was calm, so that helped a lot in anchoring.

0959: Inserted peeper frame at Station 7. Boat swung off station a bit, so we might be 15-20 feet from the actual planned station.

1009: Moved from Station 7. Took a break to drill out the holes (for the cotter pin) on the push poles a little more so they would accommodate the pin more easily. Headed to Station 4.

1018: On Station 4; build peeper frame- load up peeper frame with peepers and DGTs (1 Agarose DGT for Hg and 1 Chelex DGT for metals).

1028: Started deployment of frame at Station 4.

1034: Finished Station 4 frame insertion. Moving to Station 6. Start build peeper frame-load up peeper frame with peepers and DGTs (2 Chelex DGT for metals – NO AGAROSE DGT here). Saved 4 Chelex DGTs for use in blank analysis, as needed. No more agarose DGTs are available (they were all deployed).

1039: On Station 6. Saved 8 peepers for blanks and 4 Chelex DGTs for blanks.

1048: Re-positioning boat and re-anchor for Station 6.

1051: On Station 6. Start deployment. Always check to make sure anchor line not caught on pole before/as pulling pole away from inserted peeper frame.

1054: Finished Station 6. Deployed ROV, but not well configured today to view peeper frames or bottom.

1116: Started breaking down poles and equipment and pulling anchors.

1128: Left Site.

1140: Exited gate at Base. Visited areas nearby Coronado Bridge.

- 1154: Headed back to Pepper Park.
- 1205: At Pepper Park to unload and de-mobe from the boat.

1216: Finished de-mobe. End of day.

.....

Geosyntec^D consultants

DGT Retrieval Field Form

Project	Number: P	NG7584 - I	R20-5261	Project Name: ESTCP Peeper	
	leta Creek –				
Recorde	ed by: 🖸	ason C.	nde	2	_
Station	Sample	Retr	ieval	Notes	
ID	ID	Date	Time		
1A	1A-HG1	10-14-RZ	14:55		
1A	1A-HG2	10-14-22	14:55		
1B	1B-HG1	10-14-22	14:57		2
1B	1B-HG2	10-14-22	14:57		
1C	1C-HG1	10-14-22	11:50		
1C	1C-HG2	10-14-22	11:50		
2	2-HG	10-13-22	12:05	Snagged with houte.	
2	2-ME	10.13-22	12:05	Snagged with hork.	-
3	3-HG	10-13-22	14:01	70	
3	3-ME	10 -13-22	14:0)		
4	4-HG	10-14-22			
4	4-ME	10-14-22	14:18	x ²	
5	5-HG	10-14-22	15:50		
5	5-ME	10-14-22			
6	6-ME1	10 12 22	12:49		
6	6-ME2	10-13-22	12:49		
7	7-HG	10-14-22	15:32		
7	7-ME	10-14.22	15:32		
8	8-HG	-		Did not locate Station 8 asray	
8	8-ME		~	Did not locate Station 8 asray	
SI	d Obcorvat				

1

Notes and Observations:

Geosyntec[▷]

~		1 1 1	·
consultants	Peeper Retrieva	and Proce	ssing Field Form

Project Number: PNG7584 - ER20-5261

Project Name: ESTCP Peeper

Site: Paleta Creek – San Diego

Record	led by:	J4500	Conde	-				
Station	Sample	Retr	ieval 🖈	Proce	ssing **	s (-	Notes
ID	ID	Date	Time	Date	Time	Mtls (mL)	Br (mL)	
1A	1A-PW	10-14-22	14:58	10-14.22	17:39	40	20	1 paper had sediment particles
1A	1A-SW	10-14-22	14:58	10-14-22	17:43	20	20	1 people was punctured 1 people had a 0.5 cm diameter erange/brim bleb
18	18-PW	10-14-22	14:56	10-14-22	17:18	60	20	
1B	18-SW			10-14.22			20	
1C	1C-PW	10-12 22	1:5	10-14-22	18:16	60	20	
1C	1C-SW	14 10-43-22)):51	10-14-22	18:1D	60	20	
2	2-PW	10 13 22	12:07	10-13-22	16-18	60	20	Snagged width grappie
2	2-SW							Snogged with grapple hock
3	3-PW	10-14-22	14:02	14 19 22	17:32	20	20	Only got 3, 1 was punctured, 1 had particles in the peeper
3	3-SW	10-14-22	14:02	10-14-22	17:48	60	20	

A fine noted is when peepers placed in storage bass with oxy munchers. At time note is when sample buttles closed.

Geosyntec Consultants Peeper Retrieval and Processing Field Form

Station ID	Sample ID	Retri	ieval	Proce	ssing	ls L)	1	Notes
U		Date	Time	Date	Time	Mt (ml	Br (mL)	
4	4-PW	10-14-22	14:20	10-14:2z	j7:52	40	20	1 may have sed in it.
4	4-SW	10-14.72	14:20	10-14-22	17:56	40	20	I had particles
5	5-PW	10-14-22	15:52	10-14-22	17:07	60	20	
5	5-5W 5-5W	10-14-22	15:52	10-14-22	17:02	60	20	
6	6-SW	10-14-22	12:49	10-14-22	18-07	40 600	20 20	Only got 3 peepers, I was punctured
6	6-PW	10-14-22	12:49	10-14-22	18:04	60	20	
7	7-PW	10-14-22	15:33	10-14-22	18:00	60	20	I had 0.5 cm orange blob in it, but was included in the Br sample (20 ml)
7	7-SW	10-14-22	15:33	10-14-22	17:27	Go	ZO	
8	8-PW		-		(Ô	0	Did not locate station & array
8	8-SW	_	~	_		υ	σ	Did not locate Station 8 array
Votes 8	Observa	ations				C . 3	20	
X	FB	NACF	ield Blanh)	10-13-22	16:02	60	20	

2

Peeper Retrieval Notes Jason Conder

10-13-22 ESTCP Peeper Project Navy Base San Diego, San Diego, CA Retrieval Day 1

0744: Arrived at Pepper Park boat ramp; unload vehicle and load boat (Pi Environmental). Onboard health and safety meeting. Organize gear, peeper materials, equipment. Personnel present: Jason Conder, Flo Risacher, and Michaela Lawrence (Geosyntec); Brent Mardian and Mason (Pi Environmental); Gunther Rosen (US Navy NIWC). Weather – calm wind, cloudy, high 60s°F.

0817: Left Pepper Park for Site - mouth of Paleta Creek in Navy Base San Diego, San Diego, CA.

0824: At security barrier gate to Navy Base San Diego to request access.

0838: Accessed Base.

0848: At Site, cruised to Station 1A/1B/1C area; looked at sonar.

0858: At Station 1 area. Booms were in the way, partly.

0902: First throw of grappling hook to snag station 1 peeper arrays. Various techniques tried, but overall, no success. Even tried 2 grappling hooks at the same time. Added weight (2 pound or so) to top of hook to make sure it sinks well and scrapes bottom, but that did not seem to help much. The issue was that the anchor lines were too short – the lines were only about 5 to 10 feet out from the peeper arrays, which does not make a large target to snag with the hooks given the uncertainty around GPS locations and vessel positioning. Need to have at least 30 to 40 feet of rope for the anchor line, so if the water depth is 30 feet, plan on an anchor line of 60-70 feet so that the anchor weight (sand bag) can be thrown 30 feet or so from the vessel.

1204: After tying up to floating bumpers/infrastructure at Station 2, was able to snag the Station 2 peeper array. Packaged up peepers and DGTs for Station 2. No fouling on peepers or DGTs at Station 2 (and this was consistent for the remainder of the peeper and DGTs recovered).

1212: Break for lunch. Spent some time working with the underwater drop camera and ROV, but was not able to see anything at any of the stations.

1235: Moved back to Station 1 area and tried to retrieve. Also tried a few more Stations (1, 3, 5, etc.). Could not snag any arrays with the grappling hooks.

1415: Gave up grappling and left the Site. Will return tomorrow with scuba diver.

1422: Exited Base; headed to Pepper Park boat launch.

1434: Back at Pepper Park to unload.

1503: Went to San Diego Geosyntec office (2355 Northside Dr Suite 250, San Diego, CA) to obtain bottles.

1537: Set up processing station in parking lot at Geosyntec San Diego so we could process Station 2 samples and Field Blank samples.

Peeper Retrieval Notes Jason Conder

1620: Finished processing. All samples (2-PW for sediment porewater, 2-SW for surface water, and FB field blank) were obtained; each sample had 1 sample for bromide and 1 sample for target metals (including lithium). Samples placed in cooler. Packed up processing materials and table.

1628: End of day.

10-14-22 ESTCP Peeper Project Navy Base San Diego, San Diego, CA Retrieval Day 2

0740: Arrived at Pepper Park boat ramp. Pi Environmental put boat in water. Unload vehicle and load boat (Pi Environmental). Organize gear, peeper materials, equipment. Personnel present: Jason Conder, Flo Risacher, and Michaela Lawrence (Geosyntec); Brent Mardian and Mason (Pi Environmental); Gunther Rosen (US Navy NIWC).

0835: Left Pepper Park to get 3 scuba tanks from a local dive shop. Rest of crew went to the Site to try to locate and retrieve peeper arrays using grappling hook and the side scan sonar to help better visualize. Was not successful.

1103: Back at Pepper Park with scuba tanks. Boat returned shortly thereafter and we loaded tanks on boat. Took a brief break for lunch at Pepper Park.

1120: Left Pepper Park for Site.

1142: On Site. Navigated to Station 1 to mark it with a marker buoy.

1147: Diver entered the water from the boat, swam to the marker buoy, and descended along the marker buoy line.

1149: Diver returned to the surface with the peeper array for Station 1C. Pulled anchor and moved to Station B location.

- 1154: Dropped buoy at Station 1B.
- 1156: Diver down at Station 1B.

1158: Diver up at 1B. Did not find array. Station 1B coordinates (from deployment) are suspect. 1B should be 5 to 10 feet away from 1A and 1C, but GPS coordinates indicate it is 50 feet away. Most likely this was an error in GPS or recording the coordinates.

1206: Dropped marker buoy at Station 7, but re-pulled buoy since it did not appear to be on target.

1212: Dropped marker buoy at Station 7, 2nd attempt.

1213: Diver down at Station 7. Spent 6 minutes looking for array.

1222: Moved buoy to Station 6.

1225: Diver down at Station 6.

1241: Re-dropped anchor at Station 6. Diver down Station 6.

1250: Diver up with Station 6 array. Packaged peepers and DGTs from Station 6 and headed to 5. The key to retrieval is having accurate GPS with good refresh rates and dropping the marker buoy accurately.

1255: Dropped buoy at Station 5. Took a short (~25 minute) break. During this break, we rigged up a 60-foot line with a sand bag anchor weight at each end. One bag was dropped adjacent to the boat (about 25-30 feet water depth). Once that bag was on the bottom, the other bag was thrown from the boat, and it landed in the water approximately 30 feet away – much farther than we had been able to throw the sand bag during last week's deployment. After this, a grappling hook was thrown in the water about 20 feet from the boat in the approximate area of the line. The hook snagged the anchor line on the first try and the 60-ft line was easily retrieved. The key to this method is to have a very long line that can be thrown as far as possible from the boat (at least 30 feet), such that there is a very long linear (horizontal) length of line extending from the array insertion point to the sand bag. Recording the direction of the throw is also critical. Ideally one can record basic cardinal direction for the throw (like NW, SE, etc.), but having a handheld GPS or compass to record the direction in degrees might be even more helpful.

1309: Diver in the water for surface swim to Station 5.

- 1311: Diver down at Station 5.
- 1320: Diver back at surface; array not located.
- 1322: Diver back on board. Took a break for about 10 minutes.
- 1330: Diver back in water to try Station 5 again.
- 1332: Diver down at Station 5.
- 1342: Diver back at surface; array not located.
- 1344: Diver back on board; head to Station 3.
- 1348: Dropped marker buoy at Station 3.
- 1351: Diver down at Station 3.
- 1400: Diver back with peeper array from Station 3.
- 1405: Moved to Station 4 to drop buoy.
- 1411: Marked buoy at Station 4.
- 1413: Diver in the water at Station 4. Diver down at Station 4.
- 1417: Diver back with peeper array from Station 4.
- 1420: Pulled anchor buoy. Moved boat back to Station 1A. Dropped anchor buoy.

1425: Diver down at Station 1A.

1435: Diver back at surface; array not located. Re-positioned buoy, as we believed it may be off target.

1442: Dropped buoy for 2nd time at Station 1A. Diver down at Station 1A.

1453: Diver back with peeper arrays from Station 1A and 1B. Peeper arrays were entangled in/blocked by underwater debris (a sunken oil boom/barrier). Packed up peepers and DGTs, pulled buoy marker, and moved to Station 8.

1507: Dropped marker buoy at Station 8. Diver in the water.

1509: Diver down at Station 8.

1519: Diver back at surface; array not located. Pulled buoy and moved to Station 7.

1523: Dropped buoy at Station 7.

1524: Diver down at Station 7.

1530: Diver back with peeper array from Station 7.

1540: Dropped buoy at Station 5 again. Diver down at Station 5.

1548: Diver back with peeper array from Station 5. Packed DGTs and peepers for Station 5. GPS coordinates for Station 8 (which was tried) are believed to be suspect because we did not get coordinates on the push pole at time of deployment (went back to location after moving boat and took a reading, as this was best we could do).

1555: Left Site.

1617: Back at Pepper Park to unload boat.

1632: Set up processing station at Pepper Park parking lot. Prepared bottle labels and organized processing materials, then filled out chain or custody forms.

1700: Start processing of peeper samples. Have 8 sediment porewater (PW) and 8 surface water (SW) samples to do.

1814: Finished processing of last sample. Begin packing up field table and materials.

1829: Finished packing and de-mobe. Left Pepper Park. End of day.

APPENDIX D CHAIN OF CUSTODY

CRA RCRA

Regulatory Program: DW DNPDES

Eurofins Seattle

5755 8th Street East

Tacoma, WA 98424-1317 phone 253.922.2310 fax 253.922.5047

phone 253.922.2310 fax 253.922.5047		natory riv			- HI DES	1	-	
	and the other division in the other division	lanager: F			_			
Client Contact		acher@geo)	_	-		Contac
Geosyntec Consultants	and the second sec	137-347-34	-		_	La	ЬС	Contac
2355 Northside Drive, Suite 250		Analysis T			_	1		
San Diego, CA 92108	CALEN	DAR DAYS	WOR	KING DAYS	5	4		
437.347.3455 Phone		T if different fi	rom Below _				Z	
(xxx) xxx-xxxx FAX		2	weeks			z	7	
Project Name: PNG7584		1	week			E	0	ercury
Site: Paleta Creek		2	days			ple	MSD	Ler.
P O # 100034641		1	day			E.	1SI	A
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Filtered S	Perform N	EPA 7470
1A-HG1	10/14/22	1455	с	DGT	1	Y	N	Y
1A-HG2	10/14/22	1455	С	DGT	1	Y	N	x
1B-HG1	10/14/22	1457	С	DGT	1	Y	N	×
1B-HG2	10/14/22		С	DGT	1	Y		×
1C-HG1	11/14/22		С	DGT	1	Y	N	X
1C-HG2	10/14/27	1150	С	DGT	1	Y	N	x
2-HG	10/12/2	and the second second	С	DGT	1	Y	N	x
3-HG	10/14/22	1401	с	DGT	1	Y	N	x
4-HG	10/14/22		С	DGT	1	Y	N	~
5-HG	10/14/22		с	DGT	1	Y	N	X
7-HG	10/14/22	1532	с	DGT	1	Y	N	×
8-HG	11		-e	DGT	1	Ţ	N	m
eservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNC	3; 5=NaOH; 6	= Other					-	
ssible Hazard Identification: any samples from a listed EPA Hazardous Waste? Pl mments Section if the lab is to dispose of the sample.	ease List any E	PA Waste	Codes for	the samp	ole in th	10	Sa	mple
	Polson B		Unknow	vn		-		Retur
any samples from a listed EPA Hazardous Waste? Pl	and the second		-	1000	ole in th	18		
Custody Seals Intact: Yes No No No	Custody Se							-
	Company: 0	Geosyntec		Date/Tir			Re	ceived
aso Conter	Company:	ter		Date/Time: 14: 10-17.22 34				Ja
nquished by:	Company:	use .	1200	Date/Tir		1	Re	ceived

eurofins Environment Testing

Chain of Custody Record

		America
		Eurofins Environment Testing America COC No: COC No: COC S
Other:		of
-		TALS Project #:
	ate: 10/14/22	
Patrick Garcia-Strick Ca	irrier: Feder	Sampler: P C: For Lab Use Only:
		Walk-in Client:
		Lab Sampling:
		Lab Samper S
		and No.
		Job / SDG No.:
		a selfe Notes:
		Sample Specific Notes:
11/1/22		
posal (A fee may be a	ssessed if samples are	e retained longer than 1 month)
		and than 1 month)
Class		
o Client 🔃 Dispo	sal by Lab	chive forMonths
		106
and the second s		
Cooler Temp. (°C): Obs'	d:Corr'd:	The
unip. (C). Obs	Company:	Therm ID No.:
17+	C.C.M	IA ime:
11	Course a	
110	Company	10-15.27
"Conder	Company	Date/Time: /0-15.22 09:30
y: Condor Y: Condor Laboratory by:	Company: Per Ex Company:	10,100 - 30
"Conder	Company: Per Ex	10,100 - 30
"Conder	Company: Per Ex	Date/Time: 10-17-22 09:30 Date/Time: Date/Time:

Chain of Custody Record

Eurofins Pittsburgh

301 Alpha Drive RIDC Park					æ		RC	RA		Other:											
Pittsburgh, PA 15238-2907				- OW	NPDES	1												Euro	ofins Environme	nt Testing Am	erica
phone 412.963.7058 fax 412.963.2468		latory Pro			-		6.0	ntac	+ EL									COO	No:		1
	Project M	anager: F	Iorent Ri	sacher		Site	Co	ntac	t: Fic	orent Risacher		Date:	(D)	4/1	,	-	-		2 of 2	COCs	
Client Contact		acher@geo		m		Lat		ntac	L Ca	rrie Gamber		Carrie	r: /c	040	ĸ	-		TAL	S Project #:		
Geosyntec Consultants	Tel/Fax: 4	37-347-34	55	Time		11	-								<u> </u>		-	_	pler. F. LISA	Cher	
2355 Northside Drive, Suite 250		Analysis T	urnarour	RKING DAYS	5	11												The state of the s	Lab Use Only:	the second se	
San Diego, CA 92108	CALENI	DAR DAYS	1 WO	RIKING	_		Z	Ϋ́.										10000	k-in Client:		
437.347.3455 Phone	TA	T if different f	from Below .			Î	7 8	É L											Sampling:		-
(xxx) xxx-xxxx FAX		2	weeks			7			6										ounipinig.		-
Project Name: PNG7584	0	1	week			ē	NSI S		(bromide)									1	1000 No.		-
Site: Paleta Creek		2	days			đ	SS		Lo Lo									JOD	/ SDG No.:		-
P O # 100034641	0	1	day	-	_	Sa	ž S														-
		I	Sample			Pe	LIO	74	300												
	Sample	Sample	Туре		# of	lte	Perf	EPA	EPA												-
Sample Identification	Date	Time	(C=Comp. G=Grab)	Matrix	Cont	ш	d	шш			-		-						Sample Sp	ecific Notes:	-
Sample Identification					2		NX	$\langle \times$	X												
5-PW	10/14/22	1552	C	Water						++++	-		-	+	-			+	-		-
		and the second second	С	Water	2	Y	N)	XX	44												
5-SW			c	Water	2	Y	NS	XX	X												
6-PW	10/11/22		c		2				XX			H					H				
6-SW	10/14/22			Water	2						+	+	+	+		+	+	+	Section of		
7-PW	10/14/22	1533	С	Water	2	Y	N	×17	XX		+	+	+	+	+	+	++	+	-		-
7-SW	10/14/22	1533	C	Water	2			_	1 7		-	+	-	+	$\left \right $	+	\square	+			-
-0-PW	11		C	Water	2	Y	N	RC	2	u								-	1.6.1		-
_8 SW			c	Water	2	¥.	N	10	1												
						Π															
	-	-				H	H	+	+						Ħ						1.40
			-		-		H	+	+			-	H	+	H						
	-					F		+	+			910	M	22	+	+					
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3	5=NaOH:	6= Other												_		-			Contraction in the		ALC: NO.
			_	-												-	ratal	nod l	onger than 1 m	onth)	-
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea Comments Section if the lab is to dispose of the sample.	ase List any	EPA Waste	Codes for	the sam	ple in t	he	San	nple	Disp	posal (A fee	may	be as	ses5	ed if s	ample	es are	retai	neu r	onger than 1 m		1
Non-Hazard Flammable Skin Irritant	D Poison	_																	Months		
Special Instructions/QC Requirements & Comments:			Unkno	wn		-		Dat	urn to	Client	57	Dispos	al by L	de	-	Art	thive fo		Monors		-
								Reu		Calenc	(2)	Vision									
Custody Seals Intact: Yes No	Custody S	Beal No.												-9	2				herm ID No.:		
Relinquished by: Florent Risacher	Company	Geosual	_		-				Ic	cooler Temp.	(°C)-	Obs'd	1.		Corr	'd:		_	Dete Time:		-
		Constitlec		Date/Ti	mer		In	-	_		(0).	0050	-	ICon	pany:	1	10		Date/Time: 10-15-22	09:3	0
Relinguished by: Jasen Conder	Company			Date/Ti	7209	7: 2.	Reg	10	ed by	6	_			G	pany:	ne	e		Date/Time:		LA
Jasen Conder	Gus	synter.		Date/Ti	marin	-0	-	Un	200	Conde	-		-	Con	pany	-			Date/Time: 10-17-22	14:3	7
Relinquished by:	Company:	man		Date/Ti	72	34	Rec	Ceive	a py	Fr				I	pany	EX	-		Date/Time:		
	-			Date/Ti	CC mar	-	1000		-		-	_	_		npany:				Data Filter		and the second
and the second se	The second s		the second		me;		Re	COIVE	a in	Laboratory b	y:			100	A STA						No. of Concession, Name

🔅 eurofins

Environment Testing America

> Fundamental 5 0

man

lågt i

Chain of Custody Record

NPDES

RCRA

Eurofins Pittsburgh

301 Alpha Drive RIDC Park Pittsburgh, PA 15238-2907 phone 412 963 7058 fax 412 963 2468

Pittsburgh, PA 15238-2907 phone 412.963.7058 fax 412.963.2468	Regu	latory Pro	gram:	DW	NPOES	1				
	Project M	anager: F	lorent Ris	acher	/	Sit		Cont	act	
Client Contact		acher@geo		1	-	La	ьс	Cont	act	
Geosyntec Consultants	Tel/Fax: 4	37-347-34	55	_	-	h		5		Γ
2355 Northside Drive, Suite 250		Analysis T	urnaroun	d Time	-			Mn,		l
San Diego, CA 92108	the second se	AR DAYS	WO	RKING DAY	5	1	(x	1, Fe		ľ
437.347.3455 Phone	TA	T if different fi	om Bekw			-	-	17.9		l
(xxx) xxx-xxxx FAX	D	2	weeks			N	2	N,P	2	l
Project Name: PNG7584	0	1	week			2	MSD	Cr,Cu,NI,Pb.	rcu	l
Site: Paleta Creek	0	2	days			ple	-	5	l me	ľ
P O # 100034641	0	1	day		-	-La	WS	(Cd,	NO	ľ
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp. G=Grab)	Matrix	# of Cont.	Filtered S	Perform	EPA 6020	EPA 7470A (mercury	
1A-PW	10/14/20	1458	С	Water	2	Y	N	×	×	ŀ
1A-SW	10/14/22	1458	С	Water	2	Y	N	+	+	
1B-PW	10/14/22	1456	с	Water	2	Y	N	×	+	ļ
1B-SW	10/14/22	1456	С	Water	2	Y	N	×	+	
1C-PW	10/14/22		С	Water	2	Y	N	×	+	
1C-SW	10/14/22	1121	с	Water	2	Y	N	×	+	I
2-PW		1207	С	Water	2	Y	N	+	×	I
2-SW	10/13/22	1206	С	Water	2	Y	N	×	+	I
3-PW	10/14/22	1402	С	Water	2	Y	N	1	+	ļ
3-SW	10/14/22	1402	С	Water	2	Y		×	×	İ
4-PW	10/17/22	1420	С	Water	2	1.	N	V	×	İ
4-SW	10/14/22	1420	С	Water	2	t	N	×	×	I
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4						1	1		10	
Possible Hazard Identification:			and an	-	_					
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste Comments Section if the lab is to dispose of the same	Please List any t	PA Waste	Codes for	the sam	Die in ti	ha	58	amp	le D	l
Non-Hazard Plammable Skin Im					Con al la	10				
Special Instructions/QC Requirements & Commer	tant Poison I		Unknov	win .		-		-		
						-	-	K	teturr	1
Custody Sank Intent	-									
Custody Seals Intact: Ves No Relinquished by: Florent Risacher	Custody Se	Bal No.:								
the spins and by. Ficient Hisacher	Company:	Geosyntec	-	Date]
Relinquished by:	Company:	N.I.		Date/Ti	me:		R	ecei	vød	I
Jason Conder	Geos	ester		Date/Ti	C 07	1	L		25	
Relinguished by:	Company	ance		1 and I	me: IL		R	acei	ved	F

Relinquished by:

Company/ Date/Time: 14 Date/Time:

🔅 eurofins

Environment Testing America

Eurofins Environment Testing America

Other:

. (ont	act:	Flo	rent	Ris	ache	hr	T	_	_							C	OC No) ;				1
, 0	ont	act:	Car	Tie	Gam	ber	-	10	ate:	10	11	1/2	2				F	_1_	_ of		2	COC	5
1	5					T	T	C	arrie	:10	F	40	2					ALS Pr					
	Mr.													T			S	ampler	F.	Ris	achi	er	
T	n,F																F	or Lab	Use (Only:			
-	Zq																N	Valk-in	Client	-			-
0	NI,P	N.	-														L	ab San	npling	-			
30	Cu,	orce	ide														L						1
1 M	EPA 6020 (Cd,Cr,Cu,NI,Pb,Zn,Fi	EPA 7470A (mercury	EPA 300 (bromide)														J	ob / SD	G No	ċ			
MS	0 C	10A	(p)										1										for and the
Eo	602	74	30(
P-1	Ad	PA	PA																				
F	-		-	-		-	-	-	-	-								5	Sampl	e Sp	ecific	Notes	5:
N	×	×	*														T						
N	+	*	×																				
N	×	+	+																				
N	×	+	×																				
N	×	*	×																				
Z	×	+	×																				
N	+	×	+																				
N	×	*	+																			201	
N	×	+	+								T	T											
N	×	×	×					T	T	T	T	T	T	T									
N	×	×	×					1	T	T	T	T	T	T	T								
N	×	×	×				-	-	t	t	t	t	T	T	T								-
	1000	-	~	1000	-		-																
S	mp	e D	isp	Isal	(4	ten	ma	w be		505	sed	ifs	amp	oles	are	retai	ned	longe	r than	1 m	onth))	6 10
			- the	- add																			
																				-			
		etum	to C	lient			1		SOUS	al bi	Lab		_	C	Arc	nive for	5		Month	-			
																		-	10 M	-		-	
			Co	olar	Ter	np.	(°C)	:01	ash	2			Co	b'nd	_		-	Therm	And in case of the local division of the loc				
R	cep	bgs	by				-		-	-	TO	om	pany	YE I	P			Dates	15 2	2	09	: 30	
	0	250	n	C	m	le	-				1	6	05	T	-	-	-	Date 10- Date 10-	Time	-	14	1:3	4
R	F	Dey	PYE	1							R	Com	pan	E	x			10.	17.0	L	-		-
R	aceh	ed	inL	abo	rato	ry by	117	-		-	-		pan					Date	Tune			1 Call	-
			1.00		MILS	2.03	10				N	- ANI	Acres (10						_	-		

Chain of Custody Record

Eurofins Seattle

5755 Rth Street East

phone 253.922 Z310 fax 253.922.5047	Project M	anager F	lorent Ris	ncher				_	_
Client Contact	the second s		syntec com			Sł	to (Conta	ct: F
Client Contact		37-347-34				La	b (Contac	ot: P
Geosyntec Consultants			urnaround	Time				3	Т
2355 Northside Drive, Suite 250		AR DAYS	And in case of the local division of the loc	KING DAYS	5	1		-Wu	
San Diego, CA 92108						1	-	1	
437.347.3455 Phone			rom Below			-	I N	17	
(xxx) xxx-xxxx FAX			weeks			N	2	NI,P	
Project Name: PNG7584			week			5	SD	Cr.	
Site: Paleta Creek	- 9 /		days			ple	W	5	
P O # 100034641	0	1	day			E	MS	Cd	
			Sample			P	E	9020	
	Sample	Sample	Type (C=Comp.		# of	tere	P	AG	
Sample Identification	Date	Time	G=Grab)	Matrix	ConL	t.	Pe	đ	
	10 lala		с		1				Т
2-ME	10/3/24	1205	~	DGT		Y	N	X	+
3-ME	10/14/22	1401	С	DGT	1	Y	N	r	
			с		1				+
4-ME	10/14/22	1418		DGT		Y	N	×	+
5-ME	10/14/22	1550	С	DGT	1	Y	N	×	+
6-ME1	10/14/27	1249	С	DGT	1	Y	N	X	
6-ME2	10/14/2		с	DGT	1	Y	N	×	Т
7-ME	10/14/22		с		1		2.8		$^{+}$
	1-1-4/22	1332	с	DGT		Ť	N	2 M	9/0
-8-ME				DGT		¥	N	7	10
									t
					-	-	-	+	+
eservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HN	NO3: 5=NaOH 6	Other			_				
ossible Hazard Identification:			_	-					
e any samples from a listed EPA Hazardous Waste? I	Please List any El	PA Waste	Codes for	the come	de la te		Sa	mple	Dis
omments Section if the lab is to dispose of the sample.			00005 101	uie samt	pie in th	9			
	Poison B	1	Unknow	-	_	_			
Non-Hazard Fiammable Skin Irritant			- Oraunov	VT1	_		1	Retu	m to
Non-Hazard Flammable Skin Irritant Decial Instructions/QC Requirements & Comments:		F			the second second				
	100010	1	1000						
			200	1.2					
ecial Instructions/QC Requirements & Comments:									
Custody Seals Intact:	Custody Se	al No.:							Ic
Custody Seals Intact: Yes No linquished by: Florent Risacher		al No.: Beosyntec		Date/Tir	ne:	_	Re	Celus	C
Custody Seals Intact: Yes No linquished by: Florent Risacher	Custody Se Company: 0	Seosyntec		Date/Tir	2209	201			i by
Custody Seals Intact: Yes No linquished by: Florent Risacher	Custody Se Company: 0	Seosyntec		10-15. Date/Tir	2209	201		JCD	i by
Custody Seals Intact:	Custody Se	Seosyntec		Date/Tin 10-15- Date/Tin 10-17- Date/Tin	2209: ne: 14 22	200	Re	JCD	i by

🤣 eurofins

Environment Testing America

nman Enger

F UL

	۶.,	

Eurofins Environment Testing America COC No.

	the second second second second second second second second second second second second second second second s	1
Florent Risacher Date: // Patrick Garcia-Strick Carrier:	0/14/22	of2 COCs
Patrick Garcia-Strick Carrier:	EQUOR	TALS Project #:
	TITT	Sampler: FRISachtr
		For Lab Use Only:
		Walk-in Client:
		Lab Sampling:
		Job / SDG No.:
		300730310
		Sample Specific Notes:
+++++++++++++++++++++++++++++++++++++++		
		a state of the second se
+++++++++++++++++++++++++++++++++++++++		
0 /4/20		
0/14/22		and the second second second second second second second second second second second second second second second
		and the second sec
		the second of the second second second second second second second second second second second second second se
		A REAL PROPERTY OF THE REAL PR
Que 11/14/18 4		
sposal (A fee may be assess	ed if samples are retained	IOD COST AL
the second second		interest from the second secon
o Client 🔄 Disposal by L	ab Archive for	Manua
L'ANDRE MAN		Months
		the state of the second s
and the second state	and the second second	
Cooler Temp. (°C): Obs'd:	Corr'd:	Therm ID No.:
Condo	Company: Jec	Date/Time: 10-15-22 09:30 Date/Time: 10-17.22 14:34
	Geospore	Data 22 -15-22 00:20
×.	Feder	Date/Time: 10-17.22 19:39 Date/Time:
Laboratory by:	react	Date/Time 14:34
caboratory by:	Company:	servine:
the second second second second second second second second second second second second second second second se		

APPENDIX E ANALYTICAL LABORATORY REPORTS

🛟 eurofins

Environment Testing

ANALYTICAL REPORT

Eurofins Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-118944-1

Client Project/Site: Trace Metals and Mercury Analysis

For:

Geosyntec Consultants, Inc. 1173 Cyrville Road Suite 210 Ottawa, Ontario K1J 7S6

Attn: Florent Risacher

Authorized for release by: 11/14/2022 3:36:39 PM

Lilly-Anna LaCount, Project Manager (253)922-2310 Lilly-Anna.Lacount@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the {0} Project Manager.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	23
Chronicle	25
Certification Summary	28
Sample Summary	33
Chain of Custody	34
Receipt Checklists	36

Job ID: 580-118944-1

Laboratory: Eurofins Seattle

Narrative

Job Narrative 580-118944-1

Comments

No additional comments.

Receipt

The samples were received on 10/18/2022 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was -0.1° C.

Metals

Method HNO3 Prep: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) for preparation batch 580-408820. A laboratory control sample/laboratory control sample duplicate was used in lieu of this to assess precision and accuracy.

Method HNO3 Prep: The following samples were placed in the same sampling bag with no way to identify which samples were which: 1C-HG1 (580-118944-5) and 1C-HG2 (580-118944-6). Per client request, the laboratory assigned the samples at random and documented said assignment.

Method HNO3 Prep: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 580-409072. A laboratory control sample/laboratory control sample duplicate was used in lieu of this to assess precision and accuracy.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 580-118944-1

Definitions/Glossary

These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis

Percent Recovery

Contains Free Liquid

Colony Forming Unit

Dilution Factor

Contains No Free Liquid

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Limit of Quantitation (DoD/DOE)

Duplicate Error Ratio (normalized absolute difference)

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Glossary Abbreviation

¤ %R

CFL

CFU

CNF

DER

DL

DLC

EDL

LOD

LOQ

MCL

MDA

MDC

MDL

MPN

MQL

NC

ND NEG

POS

PQL

QC RER

RL

RPD

TEF

TEQ

TNTC

PRES

MI

Dil Fac

DL, RA, RE, IN

Job ID: 580-118944-1

4	
5	
8	
9	

Eurofins Seattle

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

5

Lab Sample ID: 580-118944-1

Client Sample ID: 1A-HG1 Date Collected: 10/14/22 14:55 Date Received: 10/18/22 09:30

Method: EPA 1631B - Mercury	, Low Level	(CVAFS) -	· Total Reco	overable					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.25		ng/Sample		11/03/22 16:21	11/04/22 18:57	20

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

5

Lab Sample ID: 580-118944-2

Client Sample ID: 1A-HG2 Date Collected: 10/14/22 14:55 Date Received: 10/18/22 09:30

Date Received: 10/18/22 09:30 Method: EPA 1631B - Mercury, Low Level (CVAFS) - Total Recoverable Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Mercury ND 0.25 0.25 ng/Sample 11/03/22 16:21 11/04/22 19:01 20

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

Lab Sample ID: 580-118944-3

Client Sample ID: 1B-HG1 Date Collected: 10/14/22 14:57 Date Received: 10/18/22 09:30

Method: EPA 1631B - Mercury, Low Level (CVAFS) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0.27		0.25		ng/Sample		11/03/22 16:21	11/04/22 19:05	20

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

5

Client Sample ID: 1B-HG2 Date Collected: 10/14/22 14:57 Date Received: 10/18/22 09:30

Lab Sample ID: 580-118944-4 Matrix: Filter

Method: EPA 1631B - Mercury	, Low Level	(CVAFS) -	Total Recov	erable					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.25		ng/Sample		11/03/22 16:21	11/04/22 19:09	20

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

Lab Sample ID: 580-118944-5

Client Sample ID: 1C-HG1 Date Collected: 10/14/22 11:50 Date Received: 10/18/22 09:30

Method: EPA 1631B - Mercury	, Low Level	(CVAFS)	Total Reco	verable					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.25		ng/Sample		11/03/22 16:21	11/04/22 19:13	20

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Client Sample ID: 1C-HG2 Date Collected: 10/14/22 11:50 Date Received: 10/18/22 09:30

Lab Sample ID: 580-118944-6 Matrix: Filter

Method: EPA 1631B - Mercury,		(CVAES) -	Total Recove	arable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Mercury	ND		0.25		ng/Sample		11/03/22 16:21	11/04/22 19:17	20	

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

5

Lab Sample ID: 580-118944-7

Client Sample ID: 2-HG Date Collected: 10/13/22 12:05 Date Received: 10/18/22 09:30

Method: EPA 1631B - Mercury	, Low Level	(CVAFS)	- Total Reco	overable					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.25		ng/Sample		11/03/22 16:21	11/04/22 19:30	20

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

5

Lab Sample ID: 580-118944-8

Client Sample ID: 3-HG Date Collected: 10/14/22 14:01 Date Received: 10/18/22 09:30

Method: EPA 1631B - Mercury	, Low Level	(CVAFS) -	Total Reco	verable					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.25		ng/Sample		11/03/22 16:21	11/04/22 19:34	20

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

Lab Sample ID: 580-118944-9

Client Sample ID: 4-HG Date Collected: 10/14/22 14:18 Date Received: 10/18/22 09:30

					overable	- Total Reco	(CVAFS) -	, Low Level	Method: EPA 1631B - Mercury
ed Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
9:38 20	11/04/22 19:38	11/03/22 16:21		ng/Sample		0.25		ND	Mercury
_									•

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

5

Lab Sample ID: 580-118944-10

Client Sample ID: 5-HG Date Collected: 10/14/22 15:50 Date Received: 10/18/22 09:30

Date Received. 10/16/22 09.30									
Method: EPA 1631B - Mercury,	Low Level	(CVAFS) -	Total Reco	verable					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.25		ng/Sample		11/03/22 16:21	11/04/22 19:42	20

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Lab Sample ID: 580-118944-11

Client Sample ID: 7-HG Date Collected: 10/14/22 15:32 Date

Date Collected: 10/14/22 15:32								Matrix	: Filter
Date Received: 10/18/22 09:30									
Method: EPA 1631B - Mercury	, Low Level	(CVAFS) -	Total Recove	erable					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.25		ng/Sample		11/03/22 16:21	11/04/22 19:47	20

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

Lab Sample ID: 580-118944-12

Client Sample ID: 2-ME Date Collected: 10/14/22 12:05 Date Received: 10/18/22 09:30

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.0029	0.00075		ug/Sample		11/07/22 12:40	11/08/22 21:55	1
Chromium	ND	0.013		ug/Sample		11/07/22 12:40	11/08/22 21:55	1
Copper	0.13	0.013		ug/Sample		11/07/22 12:40	11/08/22 21:55	1
Iron	0.21	0.13		ug/Sample		11/07/22 12:40	11/08/22 21:55	1
Manganese	0.23	0.0050		ug/Sample		11/07/22 12:40	11/08/22 21:55	1
Nickel	0.042	0.013		ug/Sample		11/07/22 12:40	11/08/22 21:55	1
Lead	0.014	0.0015		ug/Sample		11/07/22 12:40	11/08/22 21:55	1
Zinc	0.59	0.025		ug/Sample		11/07/22 12:40	11/08/22 21:55	1

Eurofins Seattle

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

Lab Sample ID: 580-118944-13

Client Sample ID: 3-ME Date Collected: 10/13/22 14:01 Date Received: 10/18/22 09:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.0044	0.00075		ug/Sample		11/07/22 12:40	11/08/22 22:00	1
Chromium	ND	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:00	1
Copper	0.11	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:00	1
Iron	ND	0.13		ug/Sample		11/07/22 12:40	11/08/22 22:00	1
Manganese	0.33	0.0050		ug/Sample		11/07/22 12:40	11/08/22 22:00	1
Nickel	0.052	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:00	1
Lead	0.013	0.0015		ug/Sample		11/07/22 12:40	11/08/22 22:00	1
Zinc	0.73	0.025		ug/Sample		11/07/22 12:40	11/08/22 22:00	1

Eurofins Seattle

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

Lab Sample ID: 580-118944-14

Client Sample ID: 4-ME Date Collected: 10/14/22 14:18 Date Received: 10/18/22 09:30

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.0043	0.00075		ug/Sample		11/07/22 12:40	11/08/22 22:04	1
Chromium	ND	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:04	1
Copper	0.12	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:04	1
Iron	0.14	0.13		ug/Sample		11/07/22 12:40	11/08/22 22:04	1
Manganese	0.28	0.0050		ug/Sample		11/07/22 12:40	11/08/22 22:04	1
Nickel	0.049	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:04	1
Lead	0.014	0.0015		ug/Sample		11/07/22 12:40	11/08/22 22:04	1
Zinc	0.78	0.025		ug/Sample		11/07/22 12:40	11/08/22 22:04	1

Eurofins Seattle

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Client Sample ID: 5-ME Date Collected: 10/14/22 15:50 Date Received: 10/18/22 09:30

Lab Sample ID: 58	0-118944-15
	Matrix: Filter

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.0040	0.00075		ug/Sample		11/07/22 12:40	11/08/22 22:09	1
Chromium	ND	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:09	1
Copper	0.12	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:09	1
Iron	0.34	0.13		ug/Sample		11/07/22 12:40	11/08/22 22:09	1
Manganese	0.27	0.0050		ug/Sample		11/07/22 12:40	11/08/22 22:09	1
Nickel	0.038	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:09	1
Lead	0.014	0.0015		ug/Sample		11/07/22 12:40	11/08/22 22:09	1
Zinc	0.60	0.025		ug/Sample		11/07/22 12:40	11/08/22 22:09	1

Eurofins Seattle

0.0050

0.013

0.0015

0.025

0.32

0.045

0.012

0.68

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Lab Sample ID: 580-118944-16

11/07/22 12:40 11/08/22 22:13

11/07/22 12:40 11/08/22 22:13

11/07/22 12:40 11/08/22 22:13

11/07/22 12:40 11/08/22 22:13

Client Sample ID: 6-ME1 Date Collected: 10/14/22 12:49 **Date Received:**

Manganese

Nickel

Lead

Zinc

Date Collected: 10/14/22 12	:49						_	Matrix	: Filter	
Date Received: 10/18/22 09	:30									
Method: EPA 1638 - Metals	s (ICP/MS) - Tota	al Recovera	able							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Cadmium	0.0041		0.00075		ug/Sample		11/07/22 12:40	11/08/22 22:13	1	
Chromium	ND		0.013		ug/Sample		11/07/22 12:40	11/08/22 22:13	1	
Copper	0.11		0.013		ug/Sample		11/07/22 12:40	11/08/22 22:13	1	
Iron	ND		0.13		ug/Sample		11/07/22 12:40	11/08/22 22:13	1	

ug/Sample

ug/Sample

ug/Sample

ug/Sample

Eurofins Seattle

5

1

1

1

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

5

Lab Sample ID: 580-118944-17

Client Sample ID: 6-ME2 Date Collected: 10/14/22 12:49 Date Received: 10/18/22 09:30

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.0038	0.00075		ug/Sample		11/07/22 12:40	11/08/22 22:18	1
Chromium	ND	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:18	1
Copper	0.11	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:18	1
Iron	ND	0.13		ug/Sample		11/07/22 12:40	11/08/22 22:18	1
Manganese	0.24	0.0050		ug/Sample		11/07/22 12:40	11/08/22 22:18	1
Nickel	0.043	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:18	1
Lead	0.012	0.0015		ug/Sample		11/07/22 12:40	11/08/22 22:18	1
Zinc	0.64	0.025		ug/Sample		11/07/22 12:40	11/08/22 22:18	1

Eurofins Seattle

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

Matrix: Filter

5

Lab Sample ID: 580-118944-18

Client Sample ID: 7-ME Date Collected: 10/14/22 15:32 Date Received: 10/18/22 09:30

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.0040	0.00075		ug/Sample		11/07/22 12:40	11/08/22 22:22	1
Chromium	ND	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:22	1
Copper	0.14	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:22	1
Iron	ND	0.13		ug/Sample		11/07/22 12:40	11/08/22 22:22	1
Manganese	0.19	0.0050		ug/Sample		11/07/22 12:40	11/08/22 22:22	1
Nickel	0.044	0.013		ug/Sample		11/07/22 12:40	11/08/22 22:22	1
Lead	0.016	0.0015		ug/Sample		11/07/22 12:40	11/08/22 22:22	1
Zinc	0.75	0.025		ug/Sample		11/07/22 12:40	11/08/22 22:22	1

Eurofins Seattle

QC Sample Results

Job ID: 580-118944-1

Method: 1631B - Mercury, Low Level (CVAFS)

Lab Sample ID: MB 580-40882	0/1-A									ent Samp			
Matrix: Filter									F	Prep Type			
Analysis Batch: 409033											Prep Ba	atch: 4	08820
		MB											
Analyte		Qualifier		RL		MDL	Unit	D		repared	Analyz		Dil Fac
Mercury	ND		0.	.25			ng/Sa	mple	11/0	3/22 16:21	11/04/22	18:27	20
Lab Sample ID: MB 580-40882	0/2-A								Clie	ent Samp	le ID: M	ethod	Blank
Matrix: Filter									F	Prep Type	e: Total I	Recov	erable
Analysis Batch: 409033											Prep Ba	atch: 4	08820
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit	D	Р	repared	Analyz	zed	Dil Fac
Mercury	ND		0.	25			ng/Sa	mple	11/0	3/22 16:21	11/04/22	18:40	20
 Lab Sample ID: MB 580-40882	0/3-A								Clie	ent Samp	le ID: M	ethod	Blank
Matrix: Filter									F	rep Type	e: Total I	Recov	erable
Analysis Batch: 409033											Prep Ba	atch: 4	08820
-	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit	D	Р	repared	Analyz	zed	Dil Fac
Mercury	ND		0.	.25			ng/Sa	mple	11/0	3/22 16:21	11/04/22	18:44	20
Lab Sample ID: LCS 580-4088	20/4-A							Clien	t Sa	mple ID:	Lab Cor	ntrol Sa	ample
Matrix: Filter									F	Prep Type	e: Total I	Recov	erable
Analysis Batch: 409033											Prep Ba	atch: 4	08820
			Spike		LCS	LCS	;				%Rec		
Analyte			Added	F	Result	Qua	lifier	Unit	D	%Rec	Limits		
Mercury			100		84.9			ng/Sample		85	75 - 125		
Lab Sample ID: LCSD 580-408	820/5-A						С	lient San	nple	ID: Lab	Control	Sampl	e Dup
Matrix: Filter										Prep Type			
Analysis Batch: 409033											Prep Ba		
-			Spike		LCSD	LCS	D				%Rec		RPD
Analyte			Added	F	Result	Qua	lifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury			100		85.5			ng/Sample		85	75 - 125	1	24

Method: 1638 - Metals (ICP/MS)

Lab Sample ID: MB 580-4090 Matrix: Filter Analysis Batch: 409433	72/1-A MB MB				Prep Type	le ID: Method : Total Recov Prep Batch:	verable
Analyte	Result Qual	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND	0.00075	ug/Sample		11/07/22 12:40	11/08/22 21:19	1
Chromium	ND	0.013	ug/Sample		11/07/22 12:40	11/08/22 21:19	1
Copper	ND	0.013	ug/Sample		11/07/22 12:40	11/08/22 21:19	1
Iron	ND	0.13	ug/Sample		11/07/22 12:40	11/08/22 21:19	1
Manganese	ND	0.0050	ug/Sample		11/07/22 12:40	11/08/22 21:19	1
Nickel	ND	0.013	ug/Sample		11/07/22 12:40	11/08/22 21:19	1
Lead	ND	0.0015	ug/Sample		11/07/22 12:40	11/08/22 21:19	1
Zinc	ND	0.025	ug/Sample		11/07/22 12:40	11/08/22 21:19	1

Eurofins Seattle

Method: 1638 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 580-409072/3-A Matrix: Filter Analysis Batch: 409433

Analysis Batch: 409433								atch: 409072
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	1.00	0.940		ug/Sample	_	94	85 - 115	
Chromium	1.25	1.17		ug/Sample		94	85 - 115	
Copper	1.25	1.20		ug/Sample		96	85 - 115	
Iron	31.3	29.4		ug/Sample		94	85 - 115	
Manganese	1.25	1.18		ug/Sample		95	85 - 115	
Nickel	1.25	1.21		ug/Sample		97	85 - 115	
Lead	1.25	1.12		ug/Sample		90	85 - 115	
Zinc	1.25	1.21		ug/Sample		97	85 - 115	

Lab Sample ID: LCSD 580-409072/4-A Matrix: Filter Analysis Batch: 409433

Client Sample ID: Lab Control Sample Dup Prep Type: Total Recoverable Prep Batch: 409072

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Spike	LCSD	LCSD				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1.00	0.941		ug/Sample	_	94	85 - 115	0	20
1.25	1.17		ug/Sample		93	85 - 115	0	20
1.25	1.19		ug/Sample		96	85 - 115	0	20
31.3	27.2		ug/Sample		87	85 - 115	8	20
1.25	1.17		ug/Sample		94	85 - 115	1	20
1.25	1.21		ug/Sample		97	85 - 115	0	20
1.25	1.16		ug/Sample		92	85 - 115	3	20
1.25	1.19		ug/Sample		95	85 - 115	1	20
	Added 1.00 1.25 1.25 31.3 1.25 1.25 1.25 1.25 1.25	Added Result 1.00 0.941 1.25 1.17 1.25 1.19 31.3 27.2 1.25 1.17 1.25 1.19 31.3 27.2 1.25 1.17 1.25 1.17 1.25 1.17 1.25 1.17 1.25 1.21 1.25 1.21	Added Result Qualifier 1.00 0.941 - 1.25 1.17 - 1.25 1.19 - 31.3 27.2 - 1.25 1.17 - 1.25 1.17 - 1.25 1.17 - 1.25 1.17 - 1.25 1.17 - 1.25 1.17 - 1.25 1.21 - 1.25 1.16 -	Added Result Qualifier Unit 1.00 0.941 ug/Sample 1.25 1.17 ug/Sample 1.25 1.19 ug/Sample 31.3 27.2 ug/Sample 1.25 1.17 ug/Sample 1.25 1.17 ug/Sample 1.25 1.17 ug/Sample 1.25 1.17 ug/Sample 1.25 1.21 ug/Sample 1.25 1.21 ug/Sample	AddedResultQualifierUnitD1.000.941ug/Sample1.251.17ug/Sample1.251.19ug/Sample31.327.2ug/Sample1.251.17ug/Sample1.251.17ug/Sample1.251.17ug/Sample1.251.17ug/Sample1.251.21ug/Sample1.251.16ug/Sample	Added Result Qualifier Unit D %Rec 1.00 0.941 ug/Sample 94 1.25 1.17 ug/Sample 93 1.25 1.19 ug/Sample 96 31.3 27.2 ug/Sample 87 1.25 1.17 ug/Sample 94 1.25 1.17 ug/Sample 97 1.25 1.21 ug/Sample 97 1.25 1.16 ug/Sample 92	Added Result Qualifier Unit D %Rec Limits 1.00 0.941 ug/Sample 94 85 - 115 1.25 1.17 ug/Sample 93 85 - 115 1.25 1.19 ug/Sample 96 85 - 115 31.3 27.2 ug/Sample 94 85 - 115 1.25 1.17 ug/Sample 94 85 - 115 1.25 1.21 ug/Sample 94 85 - 115 1.25 1.21 ug/Sample 97 85 - 115 1.25 1.16 ug/Sample 92 85 - 115	Added Result Qualifier Unit D %Rec Limits RPD 1.00 0.941 ug/Sample 94 85 - 115 0 1.25 1.17 ug/Sample 93 85 - 115 0 1.25 1.19 ug/Sample 96 85 - 115 0 31.3 27.2 ug/Sample 97 85 - 115 8 1.25 1.17 ug/Sample 94 85 - 115 1 1.25 1.17 ug/Sample 97 85 - 115 1 1.25 1.17 ug/Sample 94 85 - 115 1 1.25 1.21 ug/Sample 94 85 - 115 1 1.25 1.21 ug/Sample 97 85 - 115 0 1.25 1.16 ug/Sample 92 85 - 115 3

Matrix: Filter

Matrix: Filter

Matrix: Filter

Matrix: Filter

Matrix: Filter

Matrix: Filter

Lab Sample ID: 580-118944-1

Lab Sample ID: 580-118944-2

Lab Sample ID: 580-118944-3

Lab Sample ID: 580-118944-4

Lab Sample ID: 580-118944-5

Lab Sample ID: 580-118944-6

Client Sample ID: 1A-HG1 Date Collected: 10/14/22 14:55 Date Received: 10/18/22 09:30

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			408820	AJR	EET SEA	11/03/22 16:21
Total Recoverable	Analysis	1631B		20	409033	COW	EET SEA	11/04/22 18:57

Client Sample ID: 1A-HG2 Date Collected: 10/14/22 14:55 Date Received: 10/18/22 09:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			408820	AJR	EET SEA	11/03/22 16:21
Total Recoverable	Analysis	1631B		20	409033	COW	EET SEA	11/04/22 19:01

Client Sample ID: 1B-HG1 Date Collected: 10/14/22 14:57 Date Received: 10/18/22 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			408820	AJR	EET SEA	11/03/22 16:21
Total Recoverable	Analysis	1631B		20	409033	COW	EET SEA	11/04/22 19:05

Client Sample ID: 1B-HG2 Date Collected: 10/14/22 14:57 Date Received: 10/18/22 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			408820	AJR	EET SEA	11/03/22 16:21
Total Recoverable	Analysis	1631B		20	409033	COW	EET SEA	11/04/22 19:09

Client Sample ID: 1C-HG1 Date Collected: 10/14/22 11:50

Date Received: 10/18/22 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			408820	AJR	EET SEA	11/03/22 16:21
Total Recoverable	Analysis	1631B		20	409033	COW	EET SEA	11/04/22 19:13

Client Sample ID: 1C-HG2 Date Collected: 10/14/22 11:50 Date Received: 10/18/22 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			408820	AJR	EET SEA	11/03/22 16:21
Total Recoverable	Analysis	1631B		20	409033	COW	EET SEA	11/04/22 19:17

Eurofins Seattle

Matrix: Filter

Matrix: Filter

Matrix: Filter

Matrix: Filter

Matrix: Filter

Matrix: Filter

Lab Sample ID: 580-118944-7

Lab Sample ID: 580-118944-8

Lab Sample ID: 580-118944-9

Lab Sample ID: 580-118944-10

Lab Sample ID: 580-118944-11

Lab Sample ID: 580-118944-12

Client Sample ID: 2-HG Date Collected: 10/13/22 12:05 Date Received: 10/18/22 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			408820	AJR	EET SEA	11/03/22 16:21
Total Recoverable	Analysis	1631B		20	409033	COW	EET SEA	11/04/22 19:30

Client Sample ID: 3-HG Date Collected: 10/14/22 14:01 Date Received: 10/18/22 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			408820	AJR	EET SEA	11/03/22 16:21
Total Recoverable	Analysis	1631B		20	409033	COW	EET SEA	11/04/22 19:34

Client Sample ID: 4-HG Date Collected: 10/14/22 14:18 Date Received: 10/18/22 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			408820	AJR	EET SEA	11/03/22 16:21
Total Recoverable	Analysis	1631B		20	409033	COW	EET SEA	11/04/22 19:38

Client Sample ID: 5-HG Date Collected: 10/14/22 15:50 Date Received: 10/18/22 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			408820	AJR	EET SEA	11/03/22 16:21
Total Recoverable	Analysis	1631B		20	409033	COW	EET SEA	11/04/22 19:42

Client Sample ID: 7-HG Date Collected: 10/14/22 15:32 Date Received: 10/18/22 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			408820	AJR	EET SEA	11/03/22 16:21
Total Recoverable	Analysis	1631B		20	409033	COW	EET SEA	11/04/22 19:47

Client Sample ID: 2-ME Date Collected: 10/14/22 12:05 Date Received: 10/18/22 09:30

—	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			409072	AJR	EET SEA	11/07/22 12:40
Total Recoverable	Analysis	1638		1	409433	AJR	EET SEA	11/08/22 21:55

Matrix: Filter

Matrix: Filter

Matrix: Filter

Matrix: Filter

Matrix: Filter

Matrix: Filter

Lab Sample ID: 580-118944-13

Lab Sample ID: 580-118944-14

Lab Sample ID: 580-118944-15

Lab Sample ID: 580-118944-16

Lab Sample ID: 580-118944-17

Lab Sample ID: 580-118944-18

Client Sample ID: 3-ME Date Collected: 10/13/22 14:01 Date Received: 10/18/22 09:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			409072	AJR	EET SEA	11/07/22 12:40
Total Recoverable	Analysis	1638		1	409433	AJR	EET SEA	11/08/22 22:00

Client Sample ID: 4-ME Date Collected: 10/14/22 14:18 Date Received: 10/18/22 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			409072	AJR	EET SEA	11/07/22 12:40
Total Recoverable	Analysis	1638		1	409433	AJR	EET SEA	11/08/22 22:04

Client Sample ID: 5-ME Date Collected: 10/14/22 15:50 Date Received: 10/18/22 09:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			409072	AJR	EET SEA	11/07/22 12:40
Total Recoverable	Analysis	1638		1	409433	AJR	EET SEA	11/08/22 22:09

Client Sample ID: 6-ME1 Date Collected: 10/14/22 12:49 Date Received: 10/18/22 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			409072	AJR	EET SEA	11/07/22 12:40
Total Recoverable	Analysis	1638		1	409433	AJR	EET SEA	11/08/22 22:13

Client Sample ID: 6-ME2 Date Collected: 10/14/22 12:49 Date Received: 10/18/22 09:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			409072	AJR	EET SEA	11/07/22 12:40
Total Recoverable	Analysis	1638		1	409433	AJR	EET SEA	11/08/22 22:18

Client Sample ID: 7-ME Date Collected: 10/14/22 15:32 Date Received: 10/18/22 09:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	HNO3 Prep			409072	AJR	EET SEA	11/07/22 12:40
Total Recoverable	Analysis	1638		1	409433	AJR	EET SEA	11/08/22 22:22

Laboratory References:

EET SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis Job ID: 580-118944-1

3 4 5

8 9 10

Laboratory: Eurofins Seattle

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pre	ogram	Identification Number	Expiration Date
laska (UST)	Sta	ate	20-004	02-19-25
The following analytes the agency does not o	•	rt, but the laboratory is not	certified by the governing authority.	This list may include analytes for whic
Analysis Method	Prep Method	Matrix	Analyte	
1631B	HNO3 Prep	Filter	Mercury	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	
1638	HNO3 Prep	Filter	Lead	
1638	HNO3 Prep	Filter	Manganese	
1638	HNO3 Prep	Filter	Nickel	
1638	HNO3 Prep	Filter	Zinc	
NAB	De	pt. of Defense ELAP	L2236	01-19-25
The following analytes the agency does not c		rt, but the laboratory is not	certified by the governing authority.	This list may include analytes for whi
Analysis Method	Prep Method	Matrix	Analyte	
1631B	HNO3 Prep	Filter	Mercury	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	
1638	HNO3 Prep	Filter	Lead	
1638	HNO3 Prep	Filter	Manganese	
1638	HNO3 Prep	Filter	Nickel	
1638	HNO3 Prep	Filter	Zinc	
NAB		pt. of Energy	L2236	01-19-25
the agency does not o	offer certification.			This list may include analytes for whi
Analysis Method 1631B	Prep Method HNO3 Prep	Matrix Filter	Analyte Mercury	
	•		•	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	
1638	HNO3 Prep	Filter	Lead	
1638	HNO3 Prep	Filter	Manganese	
1638	HNO3 Prep	Filter	Nickel	
1638	HNO3 Prep	Filter	Zinc	A4 40 05
NAB	ISO	D/IEC 17025	L2236	01-19-25
The following analytes the agency does not c		rt, but the laboratory is not	certified by the governing authority.	This list may include analytes for whic
Analysis Method	Prep Method	Matrix	Analyte	
1631B	HNO3 Prep	Filter	Mercury	

Analysis Method	Prep Method	Matrix	Analyte	
1631B	HNO3 Prep	Filter	Mercury	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis

Laboratory: Eurofins Seattle (Continued)

Job ID: 580-118944-1

5 8

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Program Identification Number **Expiration Date** The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 1638 HNO3 Prep Filter Lead 1638 HNO3 Prep Filter Manganese 1638 HNO3 Prep Filter Nickel 1638 HNO3 Prep Filter Zinc Arkansas DEQ State 8801526 05-23-23 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 1631B HNO3 Prep Filter Mercury 1638 HNO3 Prep Filter Cadmium 1638 HNO3 Prep Filter Chromium 1638 HNO3 Prep Filter Copper Filter 1638 HNO3 Prep Iron

1638 HNO3 Prep Filter Lead 1638 HNO3 Prep Filter Manganese

1638	HNO3 Prep	Filter	Nickel	
1638	HNO3 Prep	Filter	Zinc	
California	Sta	ate	2954	07-07-22 *
Florida	NE	LAP	E87575	06-30-23

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte	
1631B	HNO3 Prep	Filter	Mercury	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	
1638	HNO3 Prep	Filter	Lead	
1638	HNO3 Prep	Filter	Manganese	
1638	HNO3 Prep	Filter	Nickel	
1638	HNO3 Prep	Filter	Zinc	
uisiana	NE	LAP	03073	06-30-23

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte	
1631B	HNO3 Prep	Filter	Mercury	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	
1638	HNO3 Prep	Filter	Lead	
1638	HNO3 Prep	Filter	Manganese	
1638	HNO3 Prep	Filter	Nickel	
1638	HNO3 Prep	Filter	Zinc	
laine	Sta	ate	WA01273	05-02-24

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis

Job ID: 580-118944-1

Laboratory: Eurofins Seattle (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pr	ogram	Identification Number	Expiration Date
The following analyte the agency does not o	•	rt, but the laboratory is r	not certified by the governing authority.	This list may include analytes for whic
Analysis Method	Prep Method	Matrix	Analyte	
1631B	HNO3 Prep	Filter	Mercury	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	
1638	HNO3 Prep	Filter	Lead	
1638	HNO3 Prep	Filter	Manganese	
1638	HNO3 Prep	Filter	Nickel	
1638	HNO3 Prep	Filter	Zinc	
ontana (UST)	Sta	ate	NA	04-14-27
Analysis Method	Prep Method	Matrix	Analyte	
the agency does not o		Mandania	A a lu da	
1631B	HNO3 Prep	Filter	Mercury	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	
1638	HNO3 Prep	Filter	Lead	
1638	HNO3 Prep	Filter	Manganese	
1638	HNO3 Prep	Filter	Nickel	
1638	HNO3 Prep	Filter	Zinc	
ew Jersey	NE	LAP	WA014	06-30-23
The following analyte the agency does not o Analysis Method		rt, but the laboratory is r Matrix	not certified by the governing authority. Analyte	This list may include analytes for whic
1631B	HNO3 Prep	Filter	Mercury	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	
1638	HNO3 Prep	Filter	Lead	
1638	HNO3 Prep	Filter	Manganese	
1638	HNO3 Prep	Filter	Nickel	
1638	HNO3 Prep	Filter	Zinc	
ew York	•	ELAP	11662	04-01-23
The following analyte the agency does not o		rt, but the laboratory is r	not certified by the governing authority.	This list may include analytes for whic
Analysis Method	Prep Method	Matrix	Analyte	

Analysis Method	Prep Method	Matrix	Analyte	
1631B	HNO3 Prep	Filter	Mercury	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	
1638	HNO3 Prep	Filter	Lead	

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis

Laboratory: Eurofins Seattle (Continued)

Job ID: 580-118944-1

. 2 3 4 5 6 7 8 9

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Program **Identification Number Expiration Date** The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 1638 HNO3 Prep Filter Manganese 1638 HNO3 Prep Filter Nickel 1638 Zinc HNO3 Prep Filter Oregon NELAP 4167 07-08-23 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 1631B HNO3 Prep Filter Mercury 1638 Cadmium HNO3 Prep Filter 1638 HNO3 Prep Filter Chromium 1638 HNO3 Prep Filter Copper 1638 HNO3 Prep Filter Iron 1638 HNO3 Prep Filter Lead 1638 HNO3 Prep Manganese Filter 1638 Filter Nickel HNO3 Prep 1638 HNO3 Prep Filter Zinc US Fish & Wildlife **US Federal Programs** A20571 06-30-23 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysia Mathad Dron Mothod Motrix

Analysis Method	Prep Method	Matrix	Analyte	
1631B	HNO3 Prep	Filter	Mercury	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	
1638	HNO3 Prep	Filter	Lead	
1638	HNO3 Prep	Filter	Manganese	
1638	HNO3 Prep	Filter	Nickel	
1638	HNO3 Prep	Filter	Zinc	
USDA		US Federal Programs	P330-20-00031	12-31-22

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte	
1631B	HNO3 Prep	Filter	Mercury	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	
1638	HNO3 Prep	Filter	Lead	
1638	HNO3 Prep	Filter	Manganese	
1638	HNO3 Prep	Filter	Nickel	
1638	HNO3 Prep	Filter	Zinc	
Washington	Sta	ate	C788	07-13-23

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis

Job ID: 580-118944-1

Laboratory: Eurofins Seattle (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Program Identification Number **Expiration Date** The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 1631B HNO3 Prep Filter Mercury 1638 HNO3 Prep Filter Cadmium 1638 HNO3 Prep Filter Chromium 1638 HNO3 Prep Filter Copper 1638 HNO3 Prep Filter Iron 1638 HNO3 Prep Filter Lead 1638 HNO3 Prep Filter Manganese 1638 HNO3 Prep Filter Nickel 1638 HNO3 Prep Filter Zinc Wisconsin State 399133460 08-31-23 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Pron Mothod Matrix Analyte

Analysis Method	Prep Method	Matrix	Analyte	
1631B	HNO3 Prep	Filter	Mercury	
1638	HNO3 Prep	Filter	Cadmium	
1638	HNO3 Prep	Filter	Chromium	
1638	HNO3 Prep	Filter	Copper	
1638	HNO3 Prep	Filter	Iron	
1638	HNO3 Prep	Filter	Lead	
1638	HNO3 Prep	Filter	Manganese	
1638	HNO3 Prep	Filter	Nickel	
1638	HNO3 Prep	Filter	Zinc	

Eurofins Seattle

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Trace Metals and Mercury Analysis

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-118944-1	1A-HG1	Filter	10/14/22 14:55	10/18/22 09:30
580-118944-2	1A-HG2	Filter	10/14/22 14:55	10/18/22 09:30
580-118944-3	1B-HG1	Filter	10/14/22 14:57	10/18/22 09:30
580-118944-4	1B-HG2	Filter	10/14/22 14:57	10/18/22 09:30
580-118944-5	1C-HG1	Filter	10/14/22 11:50	10/18/22 09:30
580-118944-6	1C-HG2	Filter	10/14/22 11:50	10/18/22 09:30
580-118944-7	2-HG	Filter	10/13/22 12:05	10/18/22 09:30
580-118944-8	3-HG	Filter	10/14/22 14:01	10/18/22 09:30
580-118944-9	4-HG	Filter	10/14/22 14:18	10/18/22 09:30
580-118944-10	5-HG	Filter	10/14/22 15:50	10/18/22 09:30
580-118944-11	7-HG	Filter	10/14/22 15:32	10/18/22 09:30
580-118944-12	2-ME	Filter	10/14/22 12:05	10/18/22 09:30
580-118944-13	3-ME	Filter	10/13/22 14:01	10/18/22 09:30
580-118944-14	4-ME	Filter	10/14/22 14:18	10/18/22 09:30
580-118944-15	5-ME	Filter	10/14/22 15:50	10/18/22 09:30
580-118944-16	6-ME1	Filter	10/14/22 12:49	10/18/22 09:30
580-118944-17	6-ME2	Filter	10/14/22 12:49	10/18/22 09:30
580-118944-18	7-ME	Filter	10/14/22 15:32	10/18/22 09:30

5755 8th Street East

Chain of Custody Record

🔆 eurofins

Environment Testing America

COCs

2

09:30

11/14/2022

Company

Tacoma, WA 98424-1317 Regulatory Program: DW DNPDES phone 253.922.2310 fax 253.922.5047 C RCRA C Other: **Eurofins Environment Testing America** Project Manager: Florent Risacher COC No: **Client Contact** Email: frisacher@geosyntec.com Site Contact: Florent Risacher Date: 10/14/22 1 of Geosyntec Consultants Tel/Fax: 437-347-3455 Lab Contact: Patrick Garcia-Strick Carrier: Felt TALS Project #: 2355 Northside Drive, Suite 250 **Analysis Turnaround Time** Sampler: F Risacher San Diego, CA 92108 CALENDAR DAYS 2 WORKING DAYS For Lab Use Only: 437.347.3455 Phone TAT if different from Below Walk-in Client: z FAX (xxx) xxx-xxxx \square Lab Sampling: 2 weeks Project Name: PNG7584 Э 1 week Perform MS / MSD (EPA 7470A (mercury Site: Paleta Creek \square 2 days Job / SDG No.: P O # 100034641 m 1 day Sample Type Sample Sample # of (C=Comp, Date Time Sample Identification G∞Grab) Matrix Cont. Sample Specific Notes: 1455 С 1 10/14 Y 1A-HG1 DGT YN 1455 С 1 iDÌ 1A-HG2 DGT YNX С 1 457 1B-HG1 i Đi DGT YN × 1457 С 1 1B-HG2 ١öl $Y N \times$ DGT С 1 14/14/22 γNX 1C-HG1 1150 DGT 580-118944 Chain of С 1 $|_{N}| \times$ 1C-HG2 0/14/25 1150 DGT 10/12/2 1205 С 1 NX 2-HG DGT 10/14/22/1401 С 1 X 3-HG DGT N С 1 10/14/22 1413 4-HG DGT × N С 1 10 14/22 1550 5-HG DGT 10/14/22 С 1532 1 7-HG DGT AN (MD) 10/11/20 8-HG-DGT Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Non-Hazard Skin Irritant Poison B 🗍 Flammable 🗇 Unknown Return to Client Disposal by Lab Archive for Special Instructions/QC Requirements & Comments: -0.1% EFGSSC Pig3 0 F= **Custody Seals Intact:** 🔅 Yes C No Custody Seal No .: Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No. Relinguished by: Florent Risacher Company: Geosyntec Date/Time: Received by: Company: Date/Time: 10-15-22 Jason Corden 10-15-22 09:30 Relinquished by: Date/Time: 14: Received by: Date/Time: 10-17- ZZ Company: Company: Fed Ex Jason Conter Jousnater 10.17.22 34 Felex Date/Time: Page Relinguished by: Company: Received in Laboratory by: Date/Time:

Eurofins	Seattle
----------	---------

5755 8th Street East

Chain of Custody Record

🔅 eurofins

Environment Testing America

Tacoma, WA 98424-1317 phone 253.922.2310 fax 253.922.5047	Regulatory I	Program:	DW 🗌 NPDES	;-	RCRA	0	Other:										Eurofins Enviror	ment Testina /	America
	Project Manager:			1													COC No:		2
Client Contact	Email: frisacher@g			Site	Contac	:t: Fl	orent F	Risad	cher	T	Date:	IDI	4/2	7_			2 of	2 COCs	
Geosyntec Consultants	Tel/Fax: 437-347-		- Colored		Contac												TALS Project #:		
2355 Northside Drive, Suite 250		s Turnaround	Time	T		T	TT			1010		<u> </u>		^	1-1	- T	Sampler: F R	1Sachtr	
San Diego, CA 92108	CALENDAR DAYS	WORK		11	с́ У	Ì											For Lab Use On		######################################
437.347.3455 Phone		nt from Below		1 2	- Ľ												Walk-in Client:	'y.	
(xxx) xxx-xxxx FAX		2 weeks			1Z												Lab Sampling:		
Project Name: PNG7584		1 week		N/X/													cas semping.		
Site: Paleta Creek		2 days			ກິ											1	Job / SDG No.:		
P O # 100034641	0	1 day		Sample (Y MSD	5 S												3007 3DG NO		a
		Sample			ğ					1									
Sample Identification	Sample Sampl Date Time	10001104	# of Matrix Cont.	Filtered : Perform	EPA 6020 (Cd,Cr,Cu,Ni,Pb,Zn,Fe,Mn,Ll)												Sample S	pecific Notes;	
2-ME	10/3/201205	с	DGT 1	ΥN										T					
3-ME	10/14/22 1405		DGT ¹	YN		+	┝╌┞╼	1		+			+	+	╆╍╋			<u></u>	
4-ME	10/14/22 1415			Y N	1 1					\neg		┼╌┨		+	╉╌╉				
						+		+		\rightarrow		╉╌┨	+		╋	+			
5-ME	10/14/2 1550			ΥN		+			$\left \right $	_		+		+	┼╌┼	+			
6-ME1	10/14/2 1249			ΥN		+			┝─┤			$\left \right $		┥	┝╌┼				
6-ME2	10/14/221240	·]	DGT ¹	ΥN	X					+		┟─┤	-	-	\square			****	
7-ME	10/14/22 1832	C C	DGT 1	ΥN	X	, — ,								<u> </u>					
_ 8.ME)07 1	× ₩	Ľ	0/	4/22												
											Τ					Ι			
				F		-0	un l	•/"	4/8	2									
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3	; 5=NaOH; 6= Other		_																
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea Comments Section if the lab is to dispose of the sample.	ase List any EPA Was	te Codes for th	e sample in th	e Sa	mple D	ispo	sal (A	fee i	may	be a	55059	ed if	samp	les a	re ret	ainec	d longer than 1 mc	nth)	
🖘 Non-Hazard 🔅 Flammable 🗔 Skin Irritant	🗆 Poison B 😕	🗌 Unknown		-	Return	to Cli	ent		2	Disno	sal by I	ab			Irchive	for	Months		
Special Instructions/QC Requirements & Comments:					. incluin		<u> </u>			DISDO	Sal DY I	ap			u canve		Poters		
Custody Seals Intact: Q Yes No	Custody Seal No.:						ler Ten		°C): ()bs'd	l:		Con				Therm ID No.:		
Relinquished by: Florent Risacher	Company: Geosynte	ec D	ate/Time: 0-15-22093	Re	ceived I	by: h C	ondo	<u> </u>				Com	pany: کرک	-H	e.		Date/Time: 10-15-22	09:30	<u>,</u>
Relinquished by: JAVen Conder	Company: Geospher	Ď,	Date/Time: 14.3	Re	ceived I	by:						Com	pany dE	\sim			Date/Time: 10-17-22	14:34	
Relinquished by:	Company:	D	ate/TimePage	e 85	ceivs6	n Lal	oorator	y by:		<u></u>		Com	pany:	<u> </u>			Date/Time:		14/2

Client: Geosyntec Consultants, Inc.

Login Number: 118944 List Number: 1 Creator: Miller, Darren R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	N/A	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Job Number: 580-118944-1

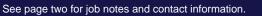
List Source: Eurofins Seattle

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Dr. Brent Pautler Sirem, div of Geosyntec Consultants 130 Stone Rd West Guelph, Ontario N1G 3Z2 Generated 12/1/2022 6:09:31 PM


JOB DESCRIPTION

Paleta Creek

JOB NUMBER

180-146342-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

Eurofins Pittsburgh

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Pittsburgh and its client. All guestions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Pittsburgh Project Manager or designee who has signed this report.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Brw J. Camber Generated 12/1/2022 6:09:31 PM

Authorized for release by Carrie Gamber, Senior Project Manager Carrie.Gamber@et.eurofinsus.com (412)963-2428

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	6
Certification Summary	7
Sample Summary	8
Method Summary	9
Lab Chronicle	10
Client Sample Results	17
QC Sample Results	26
QC Association Summary	28
Chain of Custody	31
Receipt Checklists	34

Job ID: 180-146342-1

Laboratory: Eurofins Pittsburgh

Narrative

CASE NARRATIVE

Client: Sirem, div of Geosyntec Consultants

Project: Paleta Creek

Report Number: 180-146342-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 10/18/2022; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 5.8 C.

The following sample was submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): FB (180-146342-19)

Limited sample volume was received for several samples.

IC

All samples were diluted due to the nature of the sample matrix. Elevated reporting limits (RLs) are provided.

Due to the high concentration of Bromide, the matrix spike / matrix spike duplicate (MS/MSD) for analytical batch 180-415689 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

The continuing calibration blank (CCB) for analytical batch 180-415689 contained Bromide above the reporting limit (RL). All reported samples associated with this CCB were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCB; therefore, re-analysis of samples was not performed.

METALS

Elevated reporting limits are provided for the following samples due to the limited sample volume provided for preparation/analysis: 1A-PW (180-146342-1), 1A-SW (180-146342-2), 3-PW (180-146342-9) and 4-SW (180-146342-12).

Sample Field blank FB (180-146342-19) recovered above the reporting limit for Zinc and Lithium. There is insufficient sample for a re-scan or re-digestion; therefore the data has been reported with a narrative note.

The following samples were diluted to bring the concentration of target analytes within the calibration range: 1A-PW (180-146342-1), 1C-PW (180-146342-5), 2-PW (180-146342-7), 3-PW (180-146342-9), 5-PW (180-146342-13), 6-PW (180-146342-15), 7-PW (180-146342-17), FB (180-146342-19) and (180-146342-B-19-B SD ^1000). Elevated reporting limits (RLs) are provided.

Elevated reporting limits are provided for the following samples due to limited sample volume provided for Mercury prep: 1A-SW (180-146342-2), 3-PW (180-146342-9), 4-PW (180-146342-11) and 6-SW (180-146342-16).

Client: Sirem, div of Geosyntec Consultants Project/Site: Paleta Creek Job ID: 180-146342-1

Job ID: 180-146342-1 (Continued)

Laboratory: Eurofins Pittsburgh (Continued)

Qualifiers

Quaimers		3
HPLC/IC		
Qualifier	Qualifier Description	4
^2	Calibration Blank (ICB and/or CCB) is outside acceptance limits.	
Metals		5
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	6
Glossary		7
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	8
%R	Percent Recovery	
CFL	Contains Free Liquid	9
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Client: Sirem, div of Geosyntec Consultants Project/Site: Paleta Creek Job ID: 180-146342-1

Laboratory: Eurofins Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-22 *
California	State	2891	04-30-23
Connecticut	State	PH-0688	09-30-22 *
Florida	NELAP	E871008	11-30-22
Georgia	State	PA 02-00416	11-30-22
llinois	NELAP	004375	11-30-22
Kansas	NELAP	E-10350	11-30-22
Kentucky (UST)	State	162013	04-30-23
Kentucky (WW)	State	KY98043	12-31-22
₋ouisiana	NELAP	04041	06-30-22 *
₋ouisiana (All)	NELAP	04041	11-30-22
<i>l</i> aine	State	PA00164	03-06-24
<i>d</i> innesota	NELAP	042-999-482	11-30-22
New Hampshire	NELAP	2030	11-30-22
New Jersey	NELAP	PA005	11-30-22
New York	NELAP	11182	11-30-22
North Carolina (WW/SW)	State	434	12-31-22
North Dakota	State	R-227	11-30-22
Dregon	NELAP	PA-2151	11-30-22
Pennsylvania	NELAP	02-00416	11-30-22
Rhode Island	State	LAO00362	12-31-22
South Carolina	State	89014	04-20-23
Texas	NELAP	T104704528	11-30-22
JSDA	US Federal Programs	P330-16-00211	06-21-24
Jtah	NELAP	PA001462019-8	05-31-23
/irginia	NELAP	10043	11-30-22
Vest Virginia DEP	State	142	11-30-22
Wisconsin	State	998027800	08-31-23

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Sample Summary

Collected

Received

10/14/22 14:58 10/18/22 10:35

10/14/22 14:58 10/18/22 10:35

10/14/22 14:56 10/18/22 10:35

10/14/22 14:56 10/18/22 10:35

10/14/22 11:51 10/18/22 10:35

10/14/22 11:51 10/18/22 10:35

10/13/22 12:07 10/18/22 10:35

10/13/22 12:06 10/18/22 10:35

10/14/22 14:02 10/18/22 10:35

10/14/22 14:02 10/18/22 10:35 10/14/22 14:20 10/18/22 10:35

10/14/22 14:20 10/18/22 10:35

10/14/22 15:52 10/18/22 10:35

10/14/22 15:52 10/18/22 10:35

10/14/22 12:49 10/18/22 10:35

10/14/22 12:49 10/18/22 10:35

10/14/22 15:33 10/18/22 10:35

10/14/22 15:33 10/18/22 10:35

10/14/22 00:00 10/18/22 10:35

Matrix

Water

Client: Sirem, div of Geosyntec Consultants Project/Site: Paleta Creek

Client Sample ID

1A-PW

1A-SW

1B-PW

1B-SW

1C-PW

1C-SW

2-PW

2-SW

3-PW

3-SW

4-PW

4-SW

5-PW

5-SW

6-PW

6-SW

7-PW

7-SW

FB

Lab Sample ID

180-146342-1

180-146342-2

180-146342-3

180-146342-4

180-146342-5

180-146342-6 180-146342-7

180-146342-8

180-146342-9

180-146342-10

180-146342-11

180-146342-12

180-146342-13

180-146342-14

180-146342-15

180-146342-16

180-146342-17

180-146342-18

180-146342-19

5
6
8
9

Page	8	of	34
------	---	----	----

Method Summary

Client: Sirem, div of Geosyntec Consultants Project/Site: Paleta Creek

Method	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	EET PIT
EPA 6020B	Metals (ICP/MS)	SW846	EET PIT
EPA 7470A	Mercury (CVAA)	SW846	EET PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET PIT
7470A	Preparation, Mercury	SW846	EET PIT

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Eurofins Pittsburgh

Batch

Туре

Analysis

Lab Sample ID: 180-146342-1

Client Sample ID: 1A-PW Date Collected: 10/14/22 14:58 Date Received: 10/18/22 10:35

Prep Type

Dissolved

4:58							Mat	trix: Water	
):35									
Batch		Dil	Initial	Final	Batch	Prepared			-
Method EPA 9056A	Run	Factor	Amount	Amount	Number 415689	or Analyzed 10/20/22 18:13	Analyst SNL	Lab EET PIT	

	Instrumer	nt ID: CHIC2100A							
Dissolved	Prep	3005A		20 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumer	EPA 6020B nt ID: A	25			418005	11/10/22 13:08	RSK	EET PIT
Dissolved	Prep	3005A		20 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumer	EPA 6020B nt ID: DORY	1			417507	11/05/22 15:07	RSK	EET PIT
Dissolved	Prep	7470A		25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis Instrumer	EPA 7470A nt ID: HGY	1			417201	11/03/22 13:24	RJR	EET PIT

Client Sample ID: 1A-SW Date Collected: 10/14/22 14:58 Date Received: 10/18/22 10:35

Lab Sample ID: 180-146342-2 Matrix: Water

water

3 4 5

8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		50			415689	10/20/22 18:27	SNL	EET PIT
	Instrumen	t ID: CHIC2100A								
Dissolved	Prep	3005A			15 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		1			417507	11/05/22 15:21	RSK	EET PIT
	Instrumen	t ID: DORY								
Dissolved	Prep	7470A			10 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis	EPA 7470A		1			417201	11/03/22 13:25	RJR	EET PIT
	Instrumen	t ID: HGY								

Client Sample ID: 1B-PW Date Collected: 10/14/22 14:56 Date Received: 10/18/22 10:35

Lab Sample ID: 180-146342-3 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		50			415689	10/20/22 18:42	SNL	EET PIT
	Instrumer	t ID: CHIC2100A								
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		1			417507	11/05/22 15:35	RSK	EET PIT
	Instrumer	t ID: DORY								
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis	EPA 7470A		1			417201	11/03/22 13:26	RJR	EET PIT
	Instrumer	t ID: HGY								

Client Sample ID: 1B-SW Date Collected: 10/14/22 14:56 Date Received: 10/18/22 10:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumen	EPA 9056A at ID: CHIC2100A		50			415689	10/20/22 18:57	SNL	EET PIT
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumen	EPA 6020B at ID: DORY		1			417507	11/05/22 15:49	RSK	EET PIT
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis Instrumen	EPA 7470A It ID: HGY		1			417201	11/03/22 13:27	RJR	EET PIT

Client Sample ID: 1C-PW Date Collected: 10/14/22 11:51

Date Received: 10/18/22 10:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		50			415689	10/20/22 19:12	SNL	EET PIT
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumen	EPA 6020B It ID: A		50			418005	11/10/22 13:12	RSK	EET PIT
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumen	EPA 6020B It ID: DORY		1			417507	11/05/22 16:03	RSK	EET PIT
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis Instrumen	EPA 7470A t ID: HGY		1			417201	11/03/22 13:28	RJR	EET PIT

Client Sample ID: 1C-SW Date Collected: 10/14/22 11:51 Date Received: 10/18/22 10:35

Lab Sample ID: 180-146342-6 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		50			415689	10/20/22 19:56	SNL	EET PIT
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumen	EPA 6020B t ID: DORY		1			417507	11/05/22 16:24	RSK	EET PIT
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis Instrumen	EPA 7470A t ID: HGY		1			417201	11/03/22 13:29	RJR	EET PIT

Lab Sample ID: 180-146342-4 Matrix: Water 5 8

Lab Sample ID: 180-146342-5 Matrix: Water

Eurofins Pittsburgh

Client Sample ID: 2-PW Date Collected: 10/13/22 12:07 Date Received: 10/18/22 10:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		50			415689	10/20/22 20:11	SNL	EET PIT
	Instrumen	t ID: CHIC2100A								
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		10			418005	11/10/22 13:16	RSK	EET PIT
	Instrumen	it ID: A								
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		1			417507	11/05/22 16:38	RSK	EET PIT
	Instrumen	it ID: DORY								
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis	EPA 7470A		1			417201	11/03/22 13:30	RJR	EET PIT
	Instrumen	t ID: HGY								

Client Sample ID: 2-SW Date Collected: 10/13/22 12:06 Date Received: 10/18/22 10:35

Lab Sample ID: 180-146342-8 Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A t ID: CHIC2100A		50	Amount	Anount	415689	10/20/22 20:26		EET PIT
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumer	EPA 6020B at ID: DORY		1			417507	11/05/22 16:52	RSK	EET PIT
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis Instrumer	EPA 7470A It ID: HGY		1			417201	11/03/22 13:32	RJR	EET PIT

Client Sample ID: 3-PW Date Collected: 10/14/22 14:02 Date Received: 10/18/22 10:35

Lab Sample ID: 180-146342-9 Matrix: Water

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumen	EPA 9056A at ID: CHIC2100A		50			415689	10/20/22 20:41	SNL	EET PIT
Dissolved	Prep	3005A			15 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumen	EPA 6020B at ID: A		20			418005	11/10/22 13:23	RSK	EET PIT
Dissolved	Prep	3005A			15 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumen	EPA 6020B at ID: DORY		1			417507	11/05/22 17:06	RSK	EET PIT
Dissolved	Prep	7470A			10 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis Instrumen	EPA 7470A ht ID: HGY		1			417201	11/03/22 13:33	RJR	EET PIT

Eurofins Pittsburgh

5

Client Sample ID: 3-SW

Date Collected: 10/14/22 14:02

Date Received: 10/18/22 10:35

Lab Sample ID: 180-146342-10 **Matrix: Water**

Lab Sample ID: 180-146342-11

Lab Sample ID: 180-146342-12

Lab Sample ID: 180-146342-13

Matrix: Water

Matrix: Water

8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		50			415689	10/20/22 21:40	SNL	EET PIT
	Instrumen	t ID: CHIC2100A								
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		1			417507	11/05/22 17:19	RSK	EET PIT
	Instrumen	t ID: DORY								
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis	EPA 7470A		1			417201	11/03/22 13:37	RJR	EET PIT
	Instrumen	t ID: HGY								

Client Sample ID: 4-PW Date Collected: 10/14/22 14:20

Date Received: 10/18/22 10:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		50			415689	10/20/22 21:54	SNL	EET PIT
	Instrumer	nt ID: CHIC2100A								
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumer	EPA 6020B nt ID: DORY		1			417507	11/05/22 17:33	RSK	EET PIT
Dissolved	Prep	7470A			10 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis	EPA 7470A		1			417201	11/03/22 13:38	RJR	EET PIT
	Instrumer	nt ID: HGY								

Client Sample ID: 4-SW Date Collected: 10/14/22 14:20 Date Received: 10/18/22 10:35

Dece Trees	Batch	Batch Mathad	Dun	Dil	Initial	Final	Batch	Prepared	Amahaat	Lah
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		50			415689	10/20/22 22:09	SNL	EET PIT
	Instrumer	nt ID: CHIC2100A								
Dissolved	Prep	3005A			23 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		1			417507	11/05/22 17:47	RSK	EET PIT
	Instrumer	nt ID: DORY								
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis	EPA 7470A		1			417201	11/03/22 13:39	RJR	EET PIT
	Instrumer	nt ID: HGY								

Client Sample ID: 5-PW Date Collected: 10/14/22 15:52 Date Received: 10/18/22 10:35

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		50			415689	10/20/22 22:54	SNL	EET PIT
	Instrumer	t ID: CHIC2100A								

Eurofins Pittsburgh

Matrix: Water

Batch

Batch

8

Client Sample ID: 5-PW Date Collected: 10/14/22 15:52 Date Received: 10/18/22 10:35

				Lab	Sample ID		46342-13 trix: Water	
Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab	5
		25 ml	25 ml	/17288	11/04/22 14:30		FET DIT	

Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		50			418005	11/10/22 13:26	RSK	EET PIT
	Instrumer	nt ID: A								
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		1			417507	11/05/22 18:01	RSK	EET PIT
	Instrumer	nt ID: DORY								
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis	EPA 7470A		1			417201	11/03/22 13:40	RJR	EET PIT
	Instrumer	nt ID: HGY								

Client Sample ID: 5-SW Date Collected: 10/14/22 15:52

Date Received: 10/18/22 10:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		50			415689	10/20/22 23:08	SNL	EET PIT
	Instrumer	t ID: CHIC2100A								
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		1			417507	11/05/22 18:15	RSK	EET PIT
	Instrumer	t ID: DORY								
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis	EPA 7470A		1			417201	11/03/22 13:41	RJR	EET PIT
	Instrumer	t ID: HGY								

Client Sample ID: 6-PW Date Collected: 10/14/22 12:49 Date Received: 10/18/22 10:35

Lab Sample ID: 180-146342-15 Matrix: Water

Lab Sample ID: 180-146342-14

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		50		-	415689	10/20/22 23:23	SNL	EET PIT
	Instrumer	t ID: CHIC2100A								
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		50			418005	11/10/22 13:30	RSK	EET PIT
	Instrumer	it ID: A								
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		1			417507	11/05/22 18:36	RSK	EET PIT
	Instrumer	it ID: DORY								
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis	EPA 7470A		1			417201	11/03/22 13:42	RJR	EET PIT
	Instrumer	t ID: HGY								

Client Sample ID: 6-SW Date Collected: 10/14/22 12:49 Date Received: 10/18/22 10:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		50			415689	10/20/22 23:38	SNL	EET PIT
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumen	EPA 6020B t ID: DORY		1			417507	11/05/22 18:50	RSK	EET PIT
Dissolved	Prep	7470A			10 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis Instrumen	EPA 7470A t ID: HGY		1			417201	11/03/22 13:43	RJR	EET PIT

Client Sample ID: 7-PW Date Collected: 10/14/22 15:33 Date Received: 10/18/22 10:35

Lab Sample	ID: 180-146342-17
	Matrix: Water

5

8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumer	EPA 9056A nt ID: CHIC2100A		50			415689	10/20/22 23:53	SNL	EET PIT
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumer	EPA 6020B nt ID: A		25			419389	11/29/22 12:25	RSK	EET PIT
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumer	EPA 6020B nt ID: DORY		1			417507	11/05/22 19:04	RSK	EET PIT
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis Instrumer	EPA 7470A ht ID: HGY		1			417201	11/03/22 13:44	RJR	EET PIT

Client Sample ID: 7-SW Date Collected: 10/14/22 15:33 Date Received: 10/18/22 10:35

Lab Sample ID: 180-146342-18 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumer	EPA 9056A t ID: CHIC2100A		50			415689	10/21/22 00:08	SNL	EET PIT
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis Instrumer	EPA 6020B It ID: DORY		1			417507	11/05/22 19:18	RSK	EET PIT
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis Instrumer	EPA 7470A tt ID: HGY		1			417201	11/03/22 13:45	RJR	EET PIT

Eurofins Pittsburgh

Client Sample ID: FB Date Collected: 10/14/22 00:00 Date Received: 10/18/22 10:35

Lab Sample ID: 180-146342-19 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		10			415804	10/21/22 19:50	SNL	EET PIT
	Instrumen	t ID: CHICS2100B								
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		200			418173	11/12/22 14:54	RSK	EET PIT
	Instrumen	it ID: A								
Dissolved	Prep	3005A			25 mL	25 mL	417288	11/04/22 14:30	HCY	EET PIT
Dissolved	Analysis	EPA 6020B		1			417507	11/05/22 19:32	RSK	EET PIT
	Instrumen	t ID: DORY								
Dissolved	Prep	7470A			25 mL	25 mL	416905	11/01/22 14:11	RJR	EET PIT
Dissolved	Analysis	EPA 7470A		1			417201	11/03/22 13:46	RJR	EET PIT
	Instrumen	t ID: HGY								

Laboratory References:

EET PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: EET PIT

Batch Type: Prep

HCY = Harrison Yaeger

RJR = Ron Rosenbaum

Batch Type: Analysis

RJR = Ron Rosenbaum

RSK = Robert Kurtz

SNL = Sean Lordo

Eurofins Pittsburgh

Client Sample ID: 1A-PW

Date Collected: 10/14/22 14:58

Lab Sample ID: 180-146342-1

Matrix: Water

		Chromatogr				_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Bromide	220		5.0	2.7	mg/L			10/20/22 18:13	5
Method: SW846 EPA 6020B -	Metals (ICP/	MS) - Dissol	ved						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	ND		1.3	0.27	ug/L		11/04/22 14:30	11/05/22 15:07	
Chromium	ND		2.5	1.9	ug/L		11/04/22 14:30	11/05/22 15:07	
Copper	3.2		2.5	1.4	ug/L		11/04/22 14:30	11/05/22 15:07	
Manganese	25		6.3	1.7	ug/L		11/04/22 14:30	11/05/22 15:07	
Iron	220		63	35	ug/L		11/04/22 14:30	11/05/22 15:07	
Lead	0.88	J	1.3	0.21	ug/L		11/04/22 14:30	11/05/22 15:07	
Nickel	ND		1.3	0.65	ug/L		11/04/22 14:30	11/05/22 15:07	
Zinc	13		6.3	3.6	ug/L		11/04/22 14:30	11/05/22 15:07	
Lithium	16000		160	26	ug/L		11/04/22 14:30	11/10/22 13:08	2
Method: SW846 EPA 7470A -	Moroury (C)		lund						
Analyte		Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.20		ug/L	<u></u>		11/03/22 13:24	DIFa
Mercury	ND		0.20	0.13	ug/L		11/01/22 14.11	11/03/22 13.24	
lient Sample ID: 1A-SW						La	b Sample	ID: 180-146	342- 2
ate Collected: 10/14/22 14:58								Matrix	
ate Received: 10/18/22 10:35									
		.							
					11.24	_	Deserved	•	D'I E -
Analyte	Result	Chromatogr Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 EPA 9056A - Analyte Bromide				MDL	Unit mg/L	D	Prepared	Analyzed 10/20/22 18:27	Dil Fa
Analyte Bromide	Result 120	Qualifier	RL 5.0	MDL		<u>D</u>	Prepared		
Analyte Bromide Method: SW846 EPA 6020B -	Result 120 Metals (ICP/	Qualifier	RL 5.0	MDL 2.7	mg/L	D		10/20/22 18:27	5
Analyte Bromide Method: SW846 EPA 6020B - Analyte	Result 120 Metals (ICP/ Result	Qualifier	RL 5.0 Ved RL	MDL 2.7 MDL	mg/L Unit		Prepared	10/20/22 18:27 Analyzed	5 Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium	Result 120 Metals (ICP/ Result ND	Qualifier	RL 5.0 Ived RL 1.7	MDL 2.7 MDL 0.36	mg/L Unit ug/L		Prepared 11/04/22 14:30	10/20/22 18:27 Analyzed 11/05/22 15:21	5 Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium	Result 120 Metals (ICP/ Result ND 20	Qualifier	RL	MDL 2.7 MDL 0.36 2.6	mg/L Unit ug/L ug/L		Prepared 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 15:21	5 Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper	Result 120 Metals (ICP/ Result ND 20 13	Qualifier	RL 5.0 Ived RL 1.7 3.3 3.3	MDL 2.7 MDL 0.36 2.6 1.9	mg/L Unit ug/L ug/L ug/L		Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21	5 Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese	Result 120 Metals (ICP/ Result ND 20 13 12	Qualifier	RL 5.0 Ved RL 1.7 3.3 3.3 8.3	MDL 2.7 MDL 0.36 2.6 1.9 2.2	mg/L Unit ug/L ug/L ug/L ug/L		Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 18:27 Analyzed 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21	5 Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron	Result 120 Metals (ICP/ Result ND 20 13 12 110	Qualifier MS) - Dissol Qualifier	RL 5.0 Ved RL 1.7 3.3 3.3 8.3 83	MDL 2.7 MDL 0.36 2.6 1.9 2.2 46	mg/L ug/L ug/L ug/L ug/L ug/L		Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 18:27 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21	5 Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36	Qualifier MS) - Dissol Qualifier	RL 5.0 Need RL 1.7 3.3 3.3 8.3 83 1.7	MDL 2.7 MDL 0.36 2.6 1.9 2.2 46 0.28	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 18:27 Analyzed 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29	Qualifier MS) - Dissol Qualifier	RL 5.0 Nved 1.7 3.3 3.3 8.3 83 1.7 1.7	MDL 2.7 MDL 0.36 2.6 1.9 2.2 46 0.28 0.86	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 18:27 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel Zinc	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29 23	Qualifier MS) - Dissol Qualifier	RL 5.0 Nved 1.7 3.3 3.3 8.3 8.3 1.7 1.7 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	MDL 2.7 0.36 2.6 1.9 2.2 46 0.28 0.86 4.8	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u		Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29	Qualifier MS) - Dissol Qualifier	RL 5.0 Need RL 1.7 3.3 3.3 8.3 83 1.7 1.7	MDL 2.7 0.36 2.6 1.9 2.2 46 0.28 0.86 4.8	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 18:27 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel Zinc Lithium	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29 23 150	Qualifier MS) - Dissol Qualifier	RL 5.0 Ved 1.7 3.3 3.3 8.3 8.3 1.7 1.7 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	MDL 2.7 0.36 2.6 1.9 2.2 46 0.28 0.86 4.8	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u		Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel Zinc Lithium Method: SW846 EPA 7470A -	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29 23 150 Mercury (CV	Qualifier MS) - Dissol Qualifier J	RL 5.0 Ved RL 1.7 3.3 3.3 8.3 8.3 83 1.7 1.7 8.3 8.3 8.3 8.3 8.3 8.3 1.7 8.3 8.3 8.3	MDL 2.7 0.36 2.6 1.9 2.2 46 0.28 0.86 4.8 1.4	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	D	Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel Zinc Lithium Method: SW846 EPA 7470A - Analyte	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29 23 150 Mercury (CV	Qualifier MS) - Dissol Qualifier	RL 5.0 Ved 1.7 3.3 3.3 8.3 8.3 1.7 1.7 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	MDL 2.7 0.36 2.6 1.9 2.2 46 0.28 0.86 4.8 1.4 MDL	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u		Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel Zinc Lithium Method: SW846 EPA 7470A - Analyte Mercury	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29 23 150 Mercury (CV Result	Qualifier MS) - Dissol Qualifier J	RL 5.0 Ved 1.7 3.3 3.3 8.3 83 1.7 1.7 8.3 83 1.7 8.3 8.3 8.3 1.7 1.7 8.3 8.3 1.7 8.3 8.3 8.3 8.3 8.3	MDL 2.7 0.36 2.6 1.9 2.2 46 0.28 0.86 4.8 1.4 MDL	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	D	Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 Prepared 11/01/22 14:11	Analyzed 11/05/22 15:21	5 Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel Zinc Lithium Method: SW846 EPA 7470A - Analyte Mercury Client Sample ID: 1B-PW	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29 23 150 Mercury (CV Result ND	Qualifier MS) - Dissol Qualifier J	RL 5.0 Ved 1.7 3.3 3.3 8.3 83 1.7 1.7 8.3 83 1.7 8.3 8.3 8.3 1.7 1.7 8.3 8.3 1.7 8.3 8.3 8.3 8.3 8.3	MDL 2.7 0.36 2.6 1.9 2.2 46 0.28 0.86 4.8 1.4 MDL	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	D	Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 Prepared 11/01/22 14:11	Analyzed 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21 11/05/22 15:21	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel Zinc Lithium Method: SW846 EPA 7470A - Analyte Mercury	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29 23 150 Mercury (CV Result ND	Qualifier MS) - Dissol Qualifier J	RL 5.0 Ved 1.7 3.3 3.3 8.3 83 1.7 1.7 8.3 83 1.7 8.3 8.3 8.3 1.7 1.7 8.3 8.3 1.7 8.3 8.3 8.3 8.3 8.3	MDL 2.7 0.36 2.6 1.9 2.2 46 0.28 0.86 4.8 1.4 MDL	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	D	Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 Prepared 11/01/22 14:11	Analyzed 11/05/22 15:21	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel Zinc Lithium Method: SW846 EPA 7470A - Analyte Mercury Client Sample ID: 1B-PW	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29 23 150 Mercury (CV Result ND	Qualifier MS) - Dissol Qualifier J	RL 5.0 Ved 1.7 3.3 3.3 8.3 83 1.7 1.7 8.3 83 1.7 8.3 8.3 8.3 1.7 1.7 8.3 8.3 1.7 8.3 8.3 8.3 8.3 8.3	MDL 2.7 0.36 2.6 1.9 2.2 46 0.28 0.86 4.8 1.4 MDL	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	D	Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 Prepared 11/01/22 14:11	Analyzed 11/05/22 15:21	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel Zinc Lithium Method: SW846 EPA 7470A - Analyte Mercury Client Sample ID: 1B-PW vate Collected: 10/14/22 14:56 vate Received: 10/18/22 10:35	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29 23 150 Mercury (CV Result ND	Qualifier MS) - Dissol Qualifier J (AA) - Dissol Qualifier	RL 5.0 Ived 1.7 3.3 3.3 8.3 8.3 1.7 1.7 8.3 8.3 8.3 8.3 1.7 1.7 8.3 8.3 Ived RL 0.50	MDL 2.7 0.36 2.6 1.9 2.2 46 0.28 0.86 4.8 1.4 0.33	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	D	Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 Prepared 11/01/22 14:11	Analyzed 11/05/22 15:21	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel Zinc Lithium Method: SW846 EPA 7470A - Analyte Mercury Client Sample ID: 1B-PW vate Collected: 10/14/22 14:56 ate Received: 10/18/22 10:35 Method: SW846 EPA 9056A -	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29 23 150 Mercury (CV Result ND	Qualifier MS) - Dissol Qualifier J (AA) - Dissol Qualifier Chromatogr	RL 5.0 ved 1.7 3.3 3.3 8.3 1.7 1.7 8.3 8.3 1.7 1.7 8.3 8.3 1.7 0.50	MDL 2.7 0.36 2.6 1.9 2.2 46 0.28 0.86 4.8 1.4 0.33	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	D D La	Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:31 11/04/22 14:31 Prepared 11/01/22 14:11 b Sample	Analyzed 11/05/22 15:21 11/05/22 13:25 ID: 180-146 Matrix	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - Analyte Cadmium Chromium Copper Manganese Iron Lead Nickel Zinc Lithium Method: SW846 EPA 7470A - Analyte Mercury Client Sample ID: 1B-PW vate Collected: 10/14/22 14:56 vate Received: 10/18/22 10:35	Result 120 Metals (ICP/ Result ND 20 13 12 110 0.36 29 23 150 Mercury (CV Result ND	Qualifier MS) - Dissol Qualifier J (AA) - Dissol Qualifier	RL 5.0 Ived 1.7 3.3 3.3 8.3 8.3 1.7 1.7 8.3 8.3 8.3 8.3 1.7 1.7 8.3 8.3 Ived RL 0.50	MDL 2.7 0.36 2.6 1.9 2.2 46 0.28 0.86 4.8 1.4 0.33 0.33	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	D	Prepared 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 Prepared 11/01/22 14:11	Analyzed 11/05/22 15:21	Dil Fa

Job ID: 180-146342-1

Matrix: Water

5

9

Lab Sample ID: 180-146342-3

Client Sample ID: 1B-PW Date Collected: 10/14/22 14:56 Date Received: 10/18/22 10:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.22	ug/L		11/04/22 14:30	11/05/22 15:35	1
Chromium	ND		2.0	1.5	ug/L		11/04/22 14:30	11/05/22 15:35	1
Copper	4.8		2.0	1.1	ug/L		11/04/22 14:30	11/05/22 15:35	1
Manganese	230		5.0	1.3	ug/L		11/04/22 14:30	11/05/22 15:35	1
Iron	4400		50	28	ug/L		11/04/22 14:30	11/05/22 15:35	1
Lead	0.39	J	1.0	0.17	ug/L		11/04/22 14:30	11/05/22 15:35	1
Nickel	1.0		1.0	0.52	ug/L		11/04/22 14:30	11/05/22 15:35	1
Zinc	20		5.0	2.9	ug/L		11/04/22 14:30	11/05/22 15:35	1
Lithium	510		5.0	0.83	ug/L		11/04/22 14:30	11/05/22 15:35	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.20	0.13 ug/L		11/01/22 14:11	11/03/22 13:26	1

Client Sample ID: 1B-SW

Date Collected: 10/14/22 14:56 Date Received: 10/18/22 10:35

Lab Sample	ID:	180-146342-4
		Matrix: Water

Method: SW846 EPA 9	056A - Anions, Ion	Chromatogi	raphy - Diss	solved					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	120		5.0	2.7	mg/L			10/20/22 18:57	50
Method: SW846 EPA 6	020B - Metals (ICP/	MS) - Disso	lved						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.22	ug/L		11/04/22 14:30	11/05/22 15:49	1
Chromium	ND		2.0	1.5	ug/L		11/04/22 14:30	11/05/22 15:49	1
Copper	10		2.0	1.1	ug/L		11/04/22 14:30	11/05/22 15:49	1
Manganese	5.2		5.0	1.3	ug/L		11/04/22 14:30	11/05/22 15:49	1
Iron	ND		50	28	ug/L		11/04/22 14:30	11/05/22 15:49	1
Lead	0.45	J	1.0	0.17	ug/L		11/04/22 14:30	11/05/22 15:49	1
Nickel	1.0		1.0	0.52	ug/L		11/04/22 14:30	11/05/22 15:49	1
Zinc	33		5.0	2.9	ug/L		11/04/22 14:30	11/05/22 15:49	1
Lithium	180		5.0	0.83	ug/L		11/04/22 14:30	11/05/22 15:49	1
Method: SW846 EPA 7	470A - Mercury (C\	/AA) - Disso	lved						
Analyte	· · · · · · · · · · · · · · · · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20	0.13	ug/L		11/01/22 14:11	11/03/22 13:27	1
Client Sample ID: 10	C-PW					La	b Sample	ID: 180-146	342-5

Date Collected: 10/14/22 11:51 Date Received: 10/18/22 10:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	230		5.0	2.7	mg/L			10/20/22 19:12	50
Method: SW846 EPA 6	•					_	_ .		
Method: SW846 EPA 6 Analyte	•	MS) - Dissolv Qualifier	red RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	•			MDL 0.22		<u>D</u>	Prepared 11/04/22 14:30	Analyzed	Dil Fac
Analyte	Result		RL	0.22		<u> </u>			Dil Fac

Eurofins Pittsburgh

Matrix: Water

Copper

Iron

Lead

Manganese

Client Sample ID: 1C-PW Date Collected: 10/14/22 11:57						La	id Sample	ID: 180-146 Matrix	
ate Received: 10/18/22 10:38	5								
Method: SW846 EPA 6020B	- Metals (ICP/	'MS) - Disso	lved (Contii	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Manganese	36		5.0	1.3	ug/L		11/04/22 14:30	11/05/22 16:03	
Iron	230		50	28	ug/L		11/04/22 14:30	11/05/22 16:03	
Lead	ND		1.0	0.17	ug/L		11/04/22 14:30	11/05/22 16:03	
Nickel	ND		1.0	0.52	ug/L		11/04/22 14:30	11/05/22 16:03	
Zinc	5.6		5.0	2.9	ug/L		11/04/22 14:30	11/05/22 16:03	
Lithium	19000		250	42	ug/L		11/04/22 14:30	11/10/22 13:12	5
Method: SW846 EPA 7470A	- Mercury (C\	/AA) - Disso	lved						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.20	0.13	ug/L		11/01/22 14:11	11/03/22 13:28	
Client Sample ID: 1C-SW Date Collected: 10/14/22 11:57	1					La	b Sample	ID: 180-146 Matrix	
ate Received: 10/18/22 10:35 Method: SW846 EPA 9056A	- Anions, Ion	•							
Analyte		Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Bromide	120	^2	5.0	2.7	mg/L			10/20/22 19:56	5
Method: SW846 EPA 6020B · Analyte	Result	Qualifier	RL	MDL	Unit ug/L	D	Prepared	Analyzed	Dil Fa
Cadmium Chromium	0.36 ND	J	1.0 2.0		ug/L ug/L		11/04/22 14:30 11/04/22 14:30	11/05/22 16:24	
	7.4		2.0		ug/L			11/05/22 16:24	
Copper			2.0 5.0		ug/L			11/05/22 16:24	
Manganese Iron	6.6 ND		5.0 50		ug/L			11/05/22 16:24	
			1.0		ug/L			11/05/22 16:24	
Lead	0.17		1.0		ug/L			11/05/22 16:24	
Nickel Zinc	0.79 15	J	5.0		-			11/05/22 16:24	
Lithium	180		5.0		ug/L ug/L			11/05/22 16:24	
-			b co al		0				
Method: SW846 EPA 7470A · Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.20	0.13	ug/L			11/03/22 13:29	
lient Sample ID: 2-PW						La	b Sample	ID: 180-146	342-
ate Collected: 10/13/22 12:0								Matrix	: Wate
ate Received: 10/18/22 10:38)								
Method: SW846 EPA 9056A		Chromatog Qualifier	raphy - Diss _{RL}		Unit	п	Prepared	Analyzad	Dil Fa
Analyte Bromide	Result				mg/L	D	Fiehalen	Analyzed 10/20/22 20:11	5
Method: SW846 EPA 6020B	Motale (ICB)		lyod						
Analyte	•	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium			1.0		ug/L			11/05/22 16:38	
Chromium	ND		2.0		ug/L			11/05/22 16:38	
			2.0	1.5	~g, L				

Eurofins Pittsburgh

1

1

1

1

11/04/22 14:30 11/05/22 16:38

11/04/22 14:30 11/05/22 16:38

11/04/22 14:30 11/05/22 16:38

11/04/22 14:30 11/05/22 16:38

2.0

5.0

50

1.0

1.1 ug/L

1.3 ug/L

28 ug/L

0.17 ug/L

3.6

77

1400

ND

Job ID: 180-146342-1

Client Sample ID: 2-PW Date Collected: 10/13/22 12:07 Date Received: 10/18/22 10:35						La	b Sample	ID: 180-146 Matrix	5342-7 : Water
Method: SW846 EPA 6020B - Me	etals (ICP/	MS) - Dissol	ved (Contii	nued)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Nickel	ND		1.0		ug/L		11/04/22 14:30	11/05/22 16:38	1
Zinc	3.1	J	5.0	2.9	ug/L		11/04/22 14:30	11/05/22 16:38	
Lithium	5100		50	8.3	ug/L		11/04/22 14:30	11/10/22 13:16	10
Method: SW846 EPA 7470A - Me	· · · · ·	<mark>/AA) - Disso</mark> l Qualifier	ved RL	MDI	Unit	D	Bronorod	Analyzad	Dil Fac
Analyte	ND	Quaimer	0.20		ug/L		Prepared 11/01/22 14:11	Analyzed 11/03/22 13:30	DIFA
	ND		0.20	0.15	ug/L		11/01/22 14.11	11/03/22 13.30	
Client Sample ID: 2-SW Date Collected: 10/13/22 12:06 Date Received: 10/18/22 10:35						La	b Sample	ID: 180-146 Matrix	5342-8 : Water
Method: SW846 EPA 9056A - An						_	- .		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Bromide	110	^2	5.0	2.7	mg/L			10/20/22 20:26	50
Method: SW846 EPA 6020B - Me	tale (ICP		ved						
Analyte	•	Qualifier	RL	мп	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	ND		1.0		ug/L		11/04/22 14:30	11/05/22 16:52	Dirta
Chromium	ND		2.0		ug/L		11/04/22 14:30	11/05/22 16:52	
Copper	6.6		2.0		ug/L		11/04/22 14:30	11/05/22 16:52	
	6.3		5.0		ug/L		11/04/22 14:30		
Manganese Iron	ND		50		ug/L		11/04/22 14:30	11/05/22 16:52	
Lead	0.18		1.0		ug/L		11/04/22 14:30	11/05/22 16:52	
Nickel	0.10		1.0		ug/L		11/04/22 14:30	11/05/22 16:52	
Zinc	11	5	5.0		ug/L		11/04/22 14:30	11/05/22 16:52	
Lithium	180		5.0		ug/L			11/05/22 16:52	
				0.00	ug/L		11/04/22 14:00	11/00/22 10:02	
Method: SW846 EPA 7470A - Me									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20	0.13	ug/L		11/01/22 14:11	11/03/22 13:32	
Client Sample ID: 3-PW						la	h Sample	ID: 180-146	342-0
Date Collected: 10/14/22 14:02						La			: Water
Date Received: 10/18/22 10:35								WathA	. water
Method: SW846 EPA 9056A - An	ions, Ion	Chromatogr	aphy - Diss	solved					
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Bromide	230	^2	5.0	2.7	mg/L			10/20/22 20:41	50
Method: SW846 EPA 6020B - Me						_			
Analyte		Qualifier			Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.7		ug/L		11/04/22 14:30	11/05/22 17:06	
Chromium	ND		3.3		ug/L		11/04/22 14:30	11/05/22 17:06	-
Copper	ND		3.3		ug/L		11/04/22 14:30	11/05/22 17:06	
Manganese	18		8.3		ug/L		11/04/22 14:30	11/05/22 17:06	-
Iron	150		83		ug/L			11/05/22 17:06	
Lead	ND		1.7		ug/L			11/05/22 17:06	
Nickel	1.1	J	1.7		ug/L			11/05/22 17:06	-
Zinc	11		8.3	4.8	ug/L		11/04/22 14:30	11/05/22 17:06	
Lithium	18000		170		ug/L			11/10/22 13:23	20

Eurofins Pittsburgh

Job ID: 180-146342-1

Client Sample ID: 3-PW Date Collected: 10/14/22 14:02						La	b Sample	ID: 180-146 Matrix	
ate Received: 10/18/22 10:35									
Method: SW846 EPA 7470A - N	lercury (C\	/AA) - Disso	lved						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.50	0.33	ug/L		11/01/22 14:11	11/03/22 13:33	
lient Sample ID: 3-SW						l ah	Sample II	D: 180-1463	42-1
ate Collected: 10/14/22 14:02						Lan	oumpic in	Matrix	
ate Received: 10/18/22 10:35								Matrix	. wate
Method: SW846 EPA 9056A - A			raphy - Diss	solved					
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Bromide	140	^2	5.0	2.7	mg/L			10/20/22 21:40	5
Method: SW846 EPA 6020B - N	letals (ICP)	MS) - Dissol	lved						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	ND		1.0	0.22			11/04/22 14:30	11/05/22 17:19	
Chromium	ND		2.0	1.5	ug/L		11/04/22 14:30	11/05/22 17:19	
Copper	6.2		2.0		ug/L		11/04/22 14:30	11/05/22 17:19	
Manganese	6.5		5.0	1.3	ug/L		11/04/22 14:30	11/05/22 17:19	
ron	ND		50	28	ug/L		11/04/22 14:30	11/05/22 17:19	
ead	ND		1.0	0.17	ug/L		11/04/22 14:30	11/05/22 17:19	
lickel	0.79	J	1.0	0.52	ug/L		11/04/22 14:30	11/05/22 17:19	
Zinc	10		5.0	2.9	ug/L		11/04/22 14:30	11/05/22 17:19	
Lithium	170		5.0	0.83	ug/L		11/04/22 14:30	11/05/22 17:19	
	I a maximum ((()		h co al						
Method: SW846 EPA 7470A - N Analyte	· · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.20	0.13			11/01/22 14:11	11/03/22 13:37	
			0.20	0.10	ug/L		11/01/22 14.11	11/00/22 10:07	
lient Sample ID: 4-PW						Lab	o Sample II	D: 180-1463	842-1
ate Collected: 10/14/22 14:20								Matrix	: Wate
ate Received: 10/18/22 10:35									
	nione Ion	Chromatog	anhy Diec	bowod					
Mothod: SW846 EDA 9056A - A			apily - Dise	Solveu	11	_	Prepared	Analyzed	Dil Fa
		Qualifier	RI	MDI	Unit				5
Method: SW846 EPA 9056A - A Analyte Bromide	Result	Qualifier	RL 5.0	2.7		<u>D</u>		10/20/22 21:34	
Analyte			RL 5.0		mg/L	Ľ		10/20/22 21:54	```
Analyte Bromide	Result 130	^2	5.0			<u>D</u>		10/20/22 21.34	,
Analyte Bromide Method: SW846 EPA 6020B - N Analyte	Result 130 Aetals (ICP/ Result	^2	5.0 Ived RL	2.7 MDL	mg/L Unit	D	Prepared	Analyzed	
Analyte Bromide Method: SW846 EPA 6020B - N Analyte Cadmium	Result 130 Aletals (ICP/ Result ND	^2 /MS) - Dissol	5.0 Ived RL 1.0	2.7 MDL 0.22	mg/L Unit ug/L		11/04/22 14:30	Analyzed 11/05/22 17:33	Dil Fa
Analyte Bromide Method: SW846 EPA 6020B - N Analyte Cadmium Chromium	Result 130 Aetals (ICP/ Result ND ND	^2 /MS) - Dissol	5.0 Ived RL 1.0 2.0	2.7 MDL 0.22 1.5	mg/L Unit ug/L ug/L		11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 17:33 11/05/22 17:33	
Analyte Bromide Method: SW846 EPA 6020B - N Analyte Cadmium Chromium Copper	Result 130 Aetals (ICP) Result ND ND 6.2	^2 /MS) - Dissol	5.0 Ived RL 1.0 2.0 2.0	2.7 MDL 0.22 1.5 1.1	mg/L Unit ug/L ug/L ug/L		11/04/2214:3011/04/2214:3011/04/2214:30	Analyzed 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33	
Analyte Bromide Method: SW846 EPA 6020B - N Analyte Cadmium Chromium Copper Manganese	Result 130 Aetals (ICP) Result ND 6.2 5.2	^2 /MS) - Dissol	5.0 Ived RL 1.0 2.0 2.0 5.0	2.7 MDL 0.22 1.5 1.1 1.3	mg/L Unit ug/L ug/L ug/L		11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33	
Analyte Bromide Method: SW846 EPA 6020B - N Analyte Cadmium Chromium Copper Manganese ron	Result 130 Aetals (ICP) Result ND 6.2 5.2 ND	^{^2} MS) - Dissol Qualifier	5.0 RL 1.0 2.0 2.0 5.0 50	2.7 MDL 0.22 1.5 1.1 1.3 28	mg/L Unit ug/L ug/L ug/L ug/L ug/L		11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33	
Analyte Bromide Method: SW846 EPA 6020B - N Analyte Cadmium Chromium Copper Manganese ron Lead	Result 130 //etals (ICP/ Result ND 6.2 5.2 ND 0.20	^{^2} MS) - Dissol Qualifier	5.0 RL 1.0 2.0 2.0 5.0 5.0 5.0 1.0	2.7 MDL 0.22 1.5 1.1 1.3 28 0.17	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L		11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33	
Analyte Bromide Method: SW846 EPA 6020B - N Analyte Cadmium Chromium Copper Manganese ron Lead Nickel	Result 130 //etals (ICP/ Result ND ND 6.2 5.2 ND 0.20 1.1	^{^2} MS) - Dissol Qualifier	5.0 RL 1.0 2.0 2.0 5.0 50 1.0 1.0	2.7 MDL 0.22 1.5 1.1 1.3 28 0.17 0.52	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L		11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33	
Analyte Bromide Method: SW846 EPA 6020B - N Analyte Cadmium Chromium Copper Manganese ron	Result 130 //etals (ICP/ Result ND 6.2 5.2 ND 0.20	^{^2} MS) - Dissol Qualifier	5.0 RL 1.0 2.0 2.0 5.0 5.0 5.0 1.0	2.7 MDL 0.22 1.5 1.1 1.3 28 0.17 0.52	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L		11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	Analyzed 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33 11/05/22 17:33	

wethod: 500846 EPA /4/UA - werd	cury (CVAA) - Dissolve	a					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.50	0.33 ug/L		11/01/22 14:11	11/03/22 13:38	1

Eurofins Pittsburgh

Client Sample ID: 4-SW

Lab Sample ID: 180-146342-12

P/MS) - Disso t Qualifier B J C D C D C D C D C D C D C D C D	RL 1.0 2.0 5.0 50 1.0 1.0 250 Dived RL 0.20	1.1 1.3 28 0.17 0.52 2.9 42 MDL 0.13	ug/L ug/L ug/L ug/L ug/L ug/L ug/L Unit ug/L	D D Lak	11/04/22 14:30 11/04/22 14:30 Prepared 11/01/22 14:11	Analyzed 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/03/22 13:26 Analyzed 11/03/22 13:40 D: 180-1463 Matrix	
It Qualifier	RL 1.0 2.0 5.0 50 1.0 5.0 250 Sived RL	0.22 1.5 1.1 1.3 28 0.17 0.52 2.9 42 MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:31	11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/03/22 13:26	5 Dil Fa
It Qualifier	RL 1.0 2.0 5.0 50 1.0 5.0 250 Sived RL	0.22 1.5 1.1 1.3 28 0.17 0.52 2.9 42 MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:31	11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/03/22 13:26	5 Dil Fa
It Qualifier	RL 1.0 2.0 5.0 50 1.0 5.0 250 Sived RL	0.22 1.5 1.1 1.3 28 0.17 0.52 2.9 42 MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:31	11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 13:26 Analyzed 11/03/22 11/03/22 13:40	5 Dil Fa
It Qualifier	RL 1.0 2.0 5.0 50 1.0 5.0 250 Sived RL	0.22 1.5 1.1 1.3 28 0.17 0.52 2.9 42 MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 13:26 Analyzed	5 Dil Fa
It Qualifier D B J 0 0 0 0 0 J 0 0 CVAA) - Disso	RL 1.0 2.0 5.0 50 1.0 5.0 250	0.22 1.5 1.1 1.3 28 0.17 0.52 2.9 42	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u> </u>	11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01	
It Qualifier	RL 1.0 2.0 5.0 50 1.0 5.0	0.22 1.5 1.1 1.3 28 0.17 0.52 2.9	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01	
It Qualifier	RL 1.0 2.0 5.0 50 1.0 5.0	0.22 1.5 1.1 1.3 28 0.17 0.52 2.9	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u> </u>	11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01	
It Qualifier	RL 1.0 2.0 5.0 50 1.0 1.0	0.22 1.5 1.1 1.3 28 0.17 0.52	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u> </u>	11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01	<u>Dil F</u> i
it Qualifier 5 8 J 0 0 0	RL 1.0 2.0 2.0 5.0 50 1.0	0.22 1.5 1.1 1.3 28 0.17	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01	<u>Dil F</u> a
It Qualifier D D B J 0 0	RL 1.0 2.0 2.0 5.0 50	0.22 1.5 1.1 1.3 28	ug/L ug/L ug/L ug/L ug/L	<u> </u>	11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01	Dil Fa
lt Qualifier -	RL 1.0 2.0 2.0 5.0	0.22 1.5 1.1 1.3	ug/L ug/L ug/L ug/L	<u> </u>	11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01 11/05/22 18:01	Dil F
Qualifier	RL 1.0 2.0 2.0	0.22 1.5 1.1	ug/L ug/L ug/L	<u> </u>	11/04/22 14:30 11/04/22 14:30	11/05/22 18:01 11/05/22 18:01 11/05/22 18:01	Dil F
Qualifier	RL 1.0	0.22 1.5	ug/L ug/L	<u>D</u>	11/04/22 14:30	11/05/22 18:01 11/05/22 18:01	Dil Fa
lt Qualifier	RL			<u>D</u>	<u> </u>		Dil Fa
		MDL	Unit	D	Prepared	Analyzed	Dil Fa
P/MS) - Disso	lved						
0 ^2	5.0	2.7	mg/L			10/20/22 22:54	
lt Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
						Matrix	
				Lab	Sample II	D: 180-1463	842-1
C	0.20	0.13	ug/L		11/01/22 14:11	11/03/22 13:39	
	RL			D	Prepared	Analyzed	Dil Fa
VAA) - Disso	lved						
0	5.4	0.90	ug/L		11/04/22 14:30	11/05/22 17:47	
9	5.4		•		11/04/22 14:30	11/05/22 17:47	
0 J	1.1	0.56	ug/L		11/04/22 14:30	11/05/22 17:47	
C	1.1	0.18	ug/L		11/04/22 14:30	11/05/22 17:47	
	54		-		11/04/22 14:30	11/05/22 17:47	
9	5.4	1.5	ug/L		11/04/22 14:30	11/05/22 17:47	
3	2.2		-		11/04/22 14:30	11/05/22 17:47	
C	2.2		-		11/04/22 14:30	11/05/22 17:47	
				<u> </u>	<u> </u>		
		мы	Unit	п	Prenared	Analyzed	Dil Fa
0 ^2	5.0	2.1	mg/L			10/20/22 22:09	Ę
				<u>D</u>	Prepared		Dil Fa
-	raphy - Diss	solved					
	It Qualifier 0 ^2 P/MS) - Disso It Qualifier 0 3 9 3 0 J 9 0 CVAA) - Disso It Qualifier 0	It Qualifier RL 0 ^2 5.0 P/MS) - Dissolved It Qualifier RL D 1.1 2.2 3 2.2 9 5.4 3 54 D 1.1 9 5.4 3 54 54 54 D 1.1 9 5.4 0 J 1.1 9 5.4 0 5.4 54 CVAA) - Dissolved 1.1 9 5.4 CVAA) - Dissolved 1.1 0.20 0.20	0 ^2 5.0 2.7 P/MS) - Dissolved RL MDL D 1.1 0.24 D 2.2 1.7 3 2.2 1.2 9 5.4 1.5 3 54 30 D 1.1 0.18 0 J 1.1 0.56 9 5.4 3.1 0 5.4 0.90 CVAA) - Dissolved It Qualifier RL MDL 0.20 0.13	It Qualifier RL MDL Unit 0 ^2 5.0 2.7 mg/L P/MS) - Dissolved It Qualifier RL MDL Unit D 1.1 0.24 ug/L Unit ug/L D 2.2 1.7 ug/L ug/L ug/L ug/L 2 2.2 1.7 ug/L ug/L	It Qualifier RL MDL Unit D 0 ^2 5.0 2.7 mg/L D P/MS) - Dissolved It Qualifier RL MDL Unit D 0 1.1 0.24 ug/L D <td>It Qualifier RL MDL Unit D Prepared 0 ^2 5.0 2.7 mg/L D Prepared P/MS) - Dissolved 11 0.24 ug/L D Prepared 0 1.1 0.24 ug/L D Prepared 0 2.2 1.7 ug/L 11/04/22 14:30 3 2.2 1.2 ug/L 11/04/22 14:30 9 5.4 1.5 ug/L 11/04/22 14:30 9 5.4 1.5 ug/L 11/04/22 14:30 0 1 1.1 0.18 ug/L 11/04/22 14:30 0 J 1.1 0.56 ug/L 11/04/22 14:30 0 J 1.1 0.56 ug/L 11/04/22 14:30 0 J 1.1 0.56 ug/L 11/04/22 14:30 0 J 1.1 0.50 ug</td> <td>It Qualifier RL MDL Unit D Prepared Analyzed 0 ^22 5.0 2.7 mg/L D Prepared Analyzed P/MS) - Dissolved It Qualifier RL MDL Unit D Prepared Analyzed D 1.1 0.24 ug/L 11/04/22 14:30 11/05/22 17:47 D 2.2 1.7 ug/L 11/04/22 14:30 11/05/22 17:47 3 2.2 1.2 ug/L 11/04/22 14:30 11/05/22 17:47 9 5.4 1.5 ug/L 11/04/22 14:30 11/05/22 17:47 0 1.1 0.18 ug/L 11/04/22 14:30 11/05/22 17:47 0 J 1.1 0.56 ug/L 11/04/22 14:30 11/05/22 17:47 0 J 1.1 0.56 ug/L 11/04/22 14:30 11/05/22 17:47 0 J 1.1 0.56 ug/L 11/04/22 14:30 11/05/22 17:47 0</td>	It Qualifier RL MDL Unit D Prepared 0 ^2 5.0 2.7 mg/L D Prepared P/MS) - Dissolved 11 0.24 ug/L D Prepared 0 1.1 0.24 ug/L D Prepared 0 2.2 1.7 ug/L 11/04/22 14:30 3 2.2 1.2 ug/L 11/04/22 14:30 9 5.4 1.5 ug/L 11/04/22 14:30 9 5.4 1.5 ug/L 11/04/22 14:30 0 1 1.1 0.18 ug/L 11/04/22 14:30 0 J 1.1 0.56 ug/L 11/04/22 14:30 0 J 1.1 0.56 ug/L 11/04/22 14:30 0 J 1.1 0.56 ug/L 11/04/22 14:30 0 J 1.1 0.50 ug	It Qualifier RL MDL Unit D Prepared Analyzed 0 ^22 5.0 2.7 mg/L D Prepared Analyzed P/MS) - Dissolved It Qualifier RL MDL Unit D Prepared Analyzed D 1.1 0.24 ug/L 11/04/22 14:30 11/05/22 17:47 D 2.2 1.7 ug/L 11/04/22 14:30 11/05/22 17:47 3 2.2 1.2 ug/L 11/04/22 14:30 11/05/22 17:47 9 5.4 1.5 ug/L 11/04/22 14:30 11/05/22 17:47 0 1.1 0.18 ug/L 11/04/22 14:30 11/05/22 17:47 0 J 1.1 0.56 ug/L 11/04/22 14:30 11/05/22 17:47 0 J 1.1 0.56 ug/L 11/04/22 14:30 11/05/22 17:47 0 J 1.1 0.56 ug/L 11/04/22 14:30 11/05/22 17:47 0

Job ID: 180-146342-1

Lab Sample ID: 180-146342-14

Client Sample ID: 5-SW Date Collected: 10/14/22 15:52 Date Received: 10/18/22 10:35

Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND	1.0	0.22	ug/L		11/04/22 14:30	11/05/22 18:15	1
Chromium	ND	2.0	1.5	ug/L		11/04/22 14:30	11/05/22 18:15	1
Copper	5.6	2.0	1.1	ug/L		11/04/22 14:30	11/05/22 18:15	1
/ anganese	7.7	5.0	1.3	ug/L		11/04/22 14:30	11/05/22 18:15	1
ron	ND	50	28	ug/L		11/04/22 14:30	11/05/22 18:15	1
.ead	0.23 J	1.0	0.17	ug/L		11/04/22 14:30	11/05/22 18:15	1
lickel	0.97 J	1.0	0.52	ug/L		11/04/22 14:30	11/05/22 18:15	1
linc	12	5.0	2.9	ug/L		11/04/22 14:30	11/05/22 18:15	1
ithium	170	5.0	0.83	ug/L		11/04/22 14:30	11/05/22 18:15	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.20	0.13 ug/L		11/01/22 14:11	11/03/22 13:41	1

Client Sample ID: 6-PW

Date Collected: 10/14/22 12:49 Date Received: 10/18/22 10:35

Lab Sample ID: 180-146342-15 Matrix: Water

Lab Sample ID: 180-146342-16

Method: SW846 EPA 9056A	- Anions, Ion	Chromatogr	aphy - Diss	olved					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	220	^2	5.0	2.7	mg/L			10/20/22 23:23	50
Method: SW846 EPA 6020E	- Metals (ICP/	MS) - Dissol	ved						

Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte 11/04/22 14:30 11/05/22 18:36 Cadmium ND 1.0 0.22 ug/L 1 Chromium ND 2.0 1.5 ug/L 11/04/22 14:30 11/05/22 18:36 1 Copper ND 2.0 1.1 ug/L 11/04/22 14:30 11/05/22 18:36 1 Manganese 5.0 11/04/22 14:30 11/05/22 18:36 150 1.3 ug/L 1 3100 50 28 ug/L 11/04/22 14:30 11/05/22 18:36 Iron 1 Lead ND 1.0 0.17 ug/L 11/04/22 14:30 11/05/22 18:36 1 Nickel 0.52 ug/L ND 1.0 11/04/22 14:30 11/05/22 18:36 1 Zinc ND 5.0 2.9 ug/L 11/04/22 14:30 11/05/22 18:36 1 17000 250 42 ug/L 11/04/22 14:30 11/10/22 13:30 50 Lithium Method: SW846 EPA 7470A - Mercury (CVAA) - Dissolved

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.20	0.13 ug/L		11/01/22 14:11	11/03/22 13:42	1

Client Sample ID: 6-SW Date Collected: 10/14/22 12:49

Date Received: 10/18/22 10:35

	9056A - Anions, Ion	-				_	_ .		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	130	^2	5.0	2.7	mg/L			10/20/22 23:38	50
Method: SW846 EPA	6020B - Metals (ICP/	MS) - Dissol	ved						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Cadmium	Result ND				Unit ug/L	<u> </u>	Prepared 11/04/22 14:30		Dil Fac
			RL	0.22		<u> </u>		11/05/22 18:50	Dil Fac 1

Eurofins Pittsburgh

Matrix: Water

5

9

Matrix: Water

Job ID: 180-146342-1

Client Sample ID: 6-SW Date Collected: 10/14/22 12:4	٥					Lab	sample II	D: 180-1463 Matrix	
ate Received: 10/14/22 12:4								Watrix	. wate
Method: SW846 EPA 6020B	- Metals (ICP/	MS) - Dissol	ved (Contii	nued)					
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Manganese	6.9		5.0	1.3	ug/L		11/04/22 14:30	11/05/22 18:50	
Iron	ND		50	28	ug/L		11/04/22 14:30	11/05/22 18:50	
Lead	0.26	J	1.0	0.17	ug/L		11/04/22 14:30	11/05/22 18:50	
Nickel	0.77	J	1.0	0.52	ug/L		11/04/22 14:30	11/05/22 18:50	
Zinc	10		5.0	2.9	ug/L		11/04/22 14:30	11/05/22 18:50	
Lithium	180		5.0	0.83	ug/L		11/04/22 14:30	11/05/22 18:50	
Method: SW846 EPA 7470A	- Mercury (C\	/AA) - Disso	ved						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.50	0.33	ug/L		11/01/22 14:11	11/03/22 13:43	
Client Sample ID: 7-PW						Lab	Sample II	D: 180-1463	342-1
Date Collected: 10/14/22 15:3	3						•	Matrix	
ate Received: 10/18/22 10:3									
Method: SW846 EPA 9056A	- Anions, Ion	Chromatogr	aphy - Diss	solved					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	140	^2	5.0	2.7	mg/L			10/20/22 23:53	5
Method: SW846 EPA 6020B	- Metals (ICP/	MS) - Dissol	ved						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	ND		1.0	0.22			11/04/22 14:30	11/05/22 19:04	
Chromium	ND		2.0		ug/L		11/04/22 14:30	11/05/22 19:04	
Copper	1.1	J	2.0		ug/L		11/04/22 14:30	11/05/22 19:04	
Manganese	98		5.0		ug/L		11/04/22 14:30	11/05/22 19:04	
Iron	1200		50		ug/L		11/04/22 14:30	11/05/22 19:04	
Lead	ND		1.0		ug/L		11/04/22 14:30	11/05/22 19:04	
Nickel	0.77	J	1.0	0.52	ug/L		11/04/22 14:30	11/05/22 19:04	
Zinc	6.2		5.0		ug/L		11/04/22 14:30	11/05/22 19:04	
Lithium	9600		130	21	ug/L		11/04/22 14:30	11/29/22 12:25	2
Method: SW846 EPA 7470A	- Mercury (C\	/AA) - Disso	ved						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.20	0.13	ug/L		11/01/22 14:11	11/03/22 13:44	
Client Sample ID: 7-SW						Lab	Sample II	D: 180-1463	342-1
Date Collected: 10/14/22 15:3							-	Matrix	: Wate
ate Received: 10/18/22 10:3	0								
Method: SW846 EPA 9056A		-	· · ·						
Analyte Bromide		Qualifier	RL 5.0	MDL		D	Prepared	Analyzed	Dil Fa
Bromide	130	°2	5.0	2.7	mg/L			10/21/22 00:08	5
Method: SW846 EPA 6020B					11	-	D	A	B -
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
-		·	4.0				44/04/00 44.00	-	
Analyte Cadmium	ND		1.0		ug/L		11/04/22 14:30	11/05/22 19:18	
			1.0 2.0 2.0	1.5	ug/L ug/L ug/L		11/04/22 14:30 11/04/22 14:30 11/04/22 14:30	-	

11/04/22 14:30 11/05/22 19:18

11/04/22 14:30 11/05/22 19:18

11/04/22 14:30 11/05/22 19:18

5.0

50

1.0

1.3 ug/L

28 ug/L

0.17 ug/L

7.5

29 J

0.26 J

Manganese

Iron

Lead

1

1

Mercury

		Client S	Sample F	Resul	ts				
Client: Sirem, div of Geosyntec Con Project/Site: Paleta Creek	nsultants		-				ل	Job ID: 180-14	6342-1
Client Sample ID: 7-SW							Sample II	D: 180-1463	242-18
Date Collected: 10/14/22 15:33						Las	Janihie ir		: Water
Date Received: 10/18/22 10:35									
Method: SW846 EPA 6020B - Me	etals (ICP/	/MS) - Disso [/]	Ived (Conti	nued)					
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Nickel	0.96	J	1.0		ug/L		11/04/22 14:30		1
Zinc	13		5.0		ug/L		11/04/22 14:30		1
Lithium	190		5.0	0.83	ug/L		11/04/22 14:30	11/05/22 19:18	1
	ercury (C)	VAA) - Disso	lved						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20	0.13	ug/L		11/01/22 14:11	11/03/22 13:45	1
Client Sample ID: FB						l ar	Sample II	D: 180-1463	242 10
						Lau	/ Sample is		
Date Collected: 10/14/22 00:00 Date Received: 10/18/22 10:35								Matrix	: Water
Date Received: 10/10/22 10.35									
Method: SW846 EPA 9056A - An	iions, Ion	Chromatogr	<mark>raphy - Dis</mark> ៖	solved					
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Bromide	980		1.0	0.53	mg/L			10/21/22 19:50	10
_ Method: SW846 EPA 6020B - Me	otale (ICP	MS) - Disso	lvod						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0		ug/L		11/04/22 14:30		1
Chromium	ND		2.0		-		11/04/22 14:30	11/05/22 19:32	1
Copper	ND		2.0		ug/L			11/05/22 19:32	1
Manganese	ND		5.0		ug/L				1
Iron	ND		50		ug/L				1
Lead	ND		1.0		ug/L		11/04/22 14:30		1
Nickel	ND		1.0		ug/L			11/05/22 19:32	
Zinc	78		5.0		ug/L			11/05/22 19:32	1
Lithium	86000		1000		ug/L			11/12/22 14:54	200
	00000		1000		ug, <u>-</u>		11/0-1/22		L
Method: SW846 EPA 7470A - Me	ercury (C)	JAA) - Disso'	lved						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercurv	ND		0.20	0.13	ua/L		11/01/22 14:11	11/03/22 13:46	1

0.20

0.13 ug/L

ND

12/1/2022

11/01/22 14:11 11/03/22 13:46

Iron

Job ID: 180-146342-1

Method: EPA 9056A - Anions, Ion Chromatography

			- 3	, <u> </u>							
Lab Sample ID: MB 180-415689/6 Matrix: Water									Client Sam	ple ID: Metho Prep Type: T	
Analysis Batch: 415689											
	MB	MB									
Analyte	Result	Qualifier		RL			Unit		Prepared	Analyzed	Dil Fa
Bromide	ND			0.10	C	0.053	mg/L			10/20/22 16:47	
Lab Sample ID: LCS 180-415689/7 Matrix: Water								Clier	nt Sample ID	Lab Control : Prep Type: T	
Analysis Batch: 415689											
			Spike		LCS	LCS	6			%Rec	
Analyte			Added		Result		alifier	Unit	D %Rec	Limits	
Bromide			10.0		10.2			mg/L	102	80 - 120	
Lab Sample ID: MB 180-415804/6 Matrix: Water Analysis Batch: 415804									Client Sam	ple ID: Metho Prep Type: T	
Analysis Batch. 415004	мв	мв									
Analyte		Qualifier		RL		MDL	Unit		D Prepared	Analyzed	Dil Fa
Bromide	ND			0.10			mg/L			10/21/22 14:12	
Lab Sample ID: LCS 180-415804/7 Matrix: Water								Clier	nt Sample ID	Lab Control S Prep Type: T	
Analysis Batch: 415804							_				
			Spike		-	LCS				%Rec	
Analyte			Added 10.0		Result 9.46		alifier	Unit mg/L	<u>D</u> <u>%Rec</u> 95	Limits 80 - 120	
Lab Sample ID: MB 180-417288/1-4	4									ple ID: Metho	
Matrix: Water									Prep Typ	e: Total Reco	
Analysis Batch: 417507	MD	МВ								Prep Batch:	41/200
Analyte		Qualifier		RL		мпі	Unit		D Prepared	Analyzed	Dil Fa
Cadmium	ND	quamer		1.0			ug/L		11/04/22 14:30		Dirit
Chromium	ND			2.0			ug/L		11/04/22 14:30		
Copper	ND			2.0			ug/L) 11/05/22 14:57	
Manganese	ND			5.0			ug/L		11/04/22 14:30		
Iron	ND			50			ug/L		11/04/22 14:30		
Lead	ND			1.0			ug/L		11/04/22 14:30		
				1.0					11/04/22 14:30		
	ND						ug/L				
Zinc	ND			5.0 5.0			ug/L		11/04/22 14:30) 11/05/22 14:57) 11/05/22 14:57 	
Lithium	ND			5.0		0.03	ug/L		11/04/22 14:30) 11/05/22 14.57	
Lab Sample ID: LCS 180-417288/2- Matrix: Water	A							Clier		Lab Control	
Analysis Batch: 417507										Prep Batch:	417288
			Spike		LCS	LCS	3			%Rec	
Analyte			Added	_	Result	Qua	alifier	Unit	D %Rec	Limits	
Cadmium			500		520			ug/L	104	80 - 120	
Chromium			500		511			ug/L	102	80 - 120	
Copper			500		491			ug/L	98	80 - 120	
Manganese			500		504			ug/L	101	80 - 120	

Eurofins Pittsburgh

5270

ug/L

105

80 - 120

Prep Type: Total Recoverable

10

|1 |2 |3

Method: EPA 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 180-417288/2-A Matrix: Water				Clie			: Lab Control Sample pe: Total Recoverable
Analysis Batch: 417507							Prep Batch: 417288
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Lead	500	522		ug/L		104	80 - 120
Nickel	500	515		ug/L		103	80 - 120
Zinc	250	258		ug/L		103	80 - 120
Lithium	500	522		ug/L		104	80 - 120
Lab Sample ID: LCSD 180-417288/3-A Client Sample ID: Lab						Control Sample Dup	

41/200/J-A Matrix: Water la Datala 447507

Analysis Batch: 417507							Prep Batch: 417		
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	500	529		ug/L		106	80 - 120	2	20
Chromium	500	519		ug/L		104	80 - 120	2	20
Copper	500	495		ug/L		99	80 - 120	1	20
Manganese	500	517		ug/L		103	80 - 120	3	20
Iron	5000	5420		ug/L		108	80 - 120	3	20
Lead	500	528		ug/L		106	80 - 120	1	20
Nickel	500	514		ug/L		103	80 - 120	0	20
Zinc	250	261		ug/L		104	80 - 120	1	20
Lithium	500	521		ug/L		104	80 - 120	0	20

Method: EPA 7470A - Mercury (CVAA)

Lab Sample ID: MB 180-416905/1- Matrix: Water Analysis Batch: 417201		МВ							Clie	ent Sam	ple ID: Me Prep Typ Prep Bat	e: To	tal/NA
Analyte	Result	Qualifier		RL		MDL (Unit	D) Р	repared	Analyze	d	Dil Fac
Mercury	ND			0.20		0.13 ı	ug/L		11/0	1/22 14:11	11/03/22 1	3:18	1
Lab Sample ID: LCS 180-416905/2 Matrix: Water Analysis Batch: 417201	- A							Clier	nt Sai	mple ID:	Lab Cont Prep Typ Prep Bat	e: To	tal/NA
			Spike		LCS	LCS					%Rec		
Analyte			Added		Result	Quali	ifier	Unit	D	%Rec	Limits		
Mercury			2.50		2.37			ug/L		95	80 - 120		
Lab Sample ID: LCSD 180-416905 Matrix: Water Analysis Batch: 417201	/ 3-A						C	lient Sa	mple	ID: Lab	Control S Prep Typ Prep Bat	e: To	tal/NA
-			Spike		LCSD	LCSE)				%Rec		RPD
Analyte			Added		Result	Quali	ifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury			2.50		2.41			ug/L		97	80 - 120	2	20

Job ID: 180-146342-1

HPLC/IC

Analysis Batch: 415689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-146342-1	1A-PW	Dissolved	Water	EPA 9056A	
180-146342-2	1A-SW	Dissolved	Water	EPA 9056A	
180-146342-3	1B-PW	Dissolved	Water	EPA 9056A	
180-146342-4	1B-SW	Dissolved	Water	EPA 9056A	
180-146342-5	1C-PW	Dissolved	Water	EPA 9056A	
180-146342-6	1C-SW	Dissolved	Water	EPA 9056A	
180-146342-7	2-PW	Dissolved	Water	EPA 9056A	
180-146342-8	2-SW	Dissolved	Water	EPA 9056A	
180-146342-9	3-PW	Dissolved	Water	EPA 9056A	
180-146342-10	3-SW	Dissolved	Water	EPA 9056A	
180-146342-11	4-PW	Dissolved	Water	EPA 9056A	
180-146342-12	4-SW	Dissolved	Water	EPA 9056A	
180-146342-13	5-PW	Dissolved	Water	EPA 9056A	
180-146342-14	5-SW	Dissolved	Water	EPA 9056A	
180-146342-15	6-PW	Dissolved	Water	EPA 9056A	
180-146342-16	6-SW	Dissolved	Water	EPA 9056A	
180-146342-17	7-PW	Dissolved	Water	EPA 9056A	
180-146342-18	7-SW	Dissolved	Water	EPA 9056A	
MB 180-415689/6	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-415689/7	Lab Control Sample	Total/NA	Water	EPA 9056A	

Analysis Batch: 415804

Lab Sample ID 180-146342-19	Client Sample ID FB	Prep Type Dissolved	Matrix Water	EPA 9056A	Prep Batch
MB 180-415804/6	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-415804/7	Lab Control Sample	Total/NA	Water	EPA 9056A	

Metals

Prep Batch: 416905

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-146342-1	1A-PW	Dissolved	Water	7470A	
180-146342-2	1A-SW	Dissolved	Water	7470A	
180-146342-3	1B-PW	Dissolved	Water	7470A	
180-146342-4	1B-SW	Dissolved	Water	7470A	
180-146342-5	1C-PW	Dissolved	Water	7470A	
180-146342-6	1C-SW	Dissolved	Water	7470A	
180-146342-7	2-PW	Dissolved	Water	7470A	
180-146342-8	2-SW	Dissolved	Water	7470A	
180-146342-9	3-PW	Dissolved	Water	7470A	
180-146342-10	3-SW	Dissolved	Water	7470A	
180-146342-11	4-PW	Dissolved	Water	7470A	
180-146342-12	4-SW	Dissolved	Water	7470A	
180-146342-13	5-PW	Dissolved	Water	7470A	
180-146342-14	5-SW	Dissolved	Water	7470A	
180-146342-15	6-PW	Dissolved	Water	7470A	
180-146342-16	6-SW	Dissolved	Water	7470A	
180-146342-17	7-PW	Dissolved	Water	7470A	
180-146342-18	7-SW	Dissolved	Water	7470A	
180-146342-19	FB	Dissolved	Water	7470A	
MB 180-416905/1-A	Method Blank	Total/NA	Water	7470A	

Eurofins Pittsburgh

QC Association Summary

Metals (Continued)

Prep Batch: 416905 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 180-416905/2-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 180-416905/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	

Analysis Batch: 417201

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-146342-1	1A-PW	Dissolved	Water	EPA 7470A	416905
180-146342-2	1A-SW	Dissolved	Water	EPA 7470A	416905
180-146342-3	1B-PW	Dissolved	Water	EPA 7470A	416905
180-146342-4	1B-SW	Dissolved	Water	EPA 7470A	416905
180-146342-5	1C-PW	Dissolved	Water	EPA 7470A	416905
180-146342-6	1C-SW	Dissolved	Water	EPA 7470A	416905
180-146342-7	2-PW	Dissolved	Water	EPA 7470A	416905
180-146342-8	2-SW	Dissolved	Water	EPA 7470A	416905
180-146342-9	3-PW	Dissolved	Water	EPA 7470A	416905
180-146342-10	3-SW	Dissolved	Water	EPA 7470A	416905
180-146342-11	4-PW	Dissolved	Water	EPA 7470A	416905
180-146342-12	4-SW	Dissolved	Water	EPA 7470A	416905
180-146342-13	5-PW	Dissolved	Water	EPA 7470A	416905
180-146342-14	5-SW	Dissolved	Water	EPA 7470A	416905
180-146342-15	6-PW	Dissolved	Water	EPA 7470A	416905
180-146342-16	6-SW	Dissolved	Water	EPA 7470A	416905
180-146342-17	7-PW	Dissolved	Water	EPA 7470A	416905
180-146342-18	7-SW	Dissolved	Water	EPA 7470A	416905
180-146342-19	FB	Dissolved	Water	EPA 7470A	416905
MB 180-416905/1-A	Method Blank	Total/NA	Water	EPA 7470A	416905
LCS 180-416905/2-A	Lab Control Sample	Total/NA	Water	EPA 7470A	416905
LCSD 180-416905/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 7470A	416905

Prep Batch: 417288

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-146342-1	1A-PW	Dissolved	Water	3005A	
180-146342-2	1A-SW	Dissolved	Water	3005A	
180-146342-3	1B-PW	Dissolved	Water	3005A	
180-146342-4	1B-SW	Dissolved	Water	3005A	
180-146342-5	1C-PW	Dissolved	Water	3005A	
180-146342-6	1C-SW	Dissolved	Water	3005A	
180-146342-7	2-PW	Dissolved	Water	3005A	
180-146342-8	2-SW	Dissolved	Water	3005A	
180-146342-9	3-PW	Dissolved	Water	3005A	
180-146342-10	3-SW	Dissolved	Water	3005A	
180-146342-11	4-PW	Dissolved	Water	3005A	
180-146342-12	4-SW	Dissolved	Water	3005A	
180-146342-13	5-PW	Dissolved	Water	3005A	
180-146342-14	5-SW	Dissolved	Water	3005A	
180-146342-15	6-PW	Dissolved	Water	3005A	
180-146342-16	6-SW	Dissolved	Water	3005A	
180-146342-17	7-PW	Dissolved	Water	3005A	
180-146342-18	7-SW	Dissolved	Water	3005A	
180-146342-19	FB	Dissolved	Water	3005A	
MB 180-417288/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-417288/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Eurofins Pittsburgh

Prep Type

Total Recoverable

Matrix

Water

Client Sample ID

Lab Control Sample Dup

Method

3005A

2 3 4 5 6

11 12

Prep Batch

Analysis Batch: 417507

LCSD 180-417288/3-A

Metals (Continued)

Lab Sample ID

Prep Batch: 417288 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-146342-1	1A-PW	Dissolved	Water	EPA 6020B	417288
180-146342-2	1A-SW	Dissolved	Water	EPA 6020B	417288
180-146342-3	1B-PW	Dissolved	Water	EPA 6020B	417288
180-146342-4	1B-SW	Dissolved	Water	EPA 6020B	417288
180-146342-5	1C-PW	Dissolved	Water	EPA 6020B	417288
180-146342-6	1C-SW	Dissolved	Water	EPA 6020B	417288
180-146342-7	2-PW	Dissolved	Water	EPA 6020B	417288
180-146342-8	2-SW	Dissolved	Water	EPA 6020B	417288
180-146342-9	3-PW	Dissolved	Water	EPA 6020B	417288
180-146342-10	3-SW	Dissolved	Water	EPA 6020B	417288
180-146342-11	4-PW	Dissolved	Water	EPA 6020B	417288
180-146342-12	4-SW	Dissolved	Water	EPA 6020B	417288
180-146342-13	5-PW	Dissolved	Water	EPA 6020B	417288
180-146342-14	5-SW	Dissolved	Water	EPA 6020B	417288
180-146342-15	6-PW	Dissolved	Water	EPA 6020B	417288
180-146342-16	6-SW	Dissolved	Water	EPA 6020B	417288
180-146342-17	7-PW	Dissolved	Water	EPA 6020B	417288
180-146342-18	7-SW	Dissolved	Water	EPA 6020B	417288
180-146342-19	FB	Dissolved	Water	EPA 6020B	417288
MB 180-417288/1-A	Method Blank	Total Recoverable	Water	EPA 6020B	417288
LCS 180-417288/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020B	417288
LCSD 180-417288/3-A	Lab Control Sample Dup	Total Recoverable	Water	EPA 6020B	417288

Analysis Batch: 418005

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-146342-1	1A-PW	Dissolved	Water	EPA 6020B	417288
180-146342-5	1C-PW	Dissolved	Water	EPA 6020B	417288
180-146342-7	2-PW	Dissolved	Water	EPA 6020B	417288
180-146342-9	3-PW	Dissolved	Water	EPA 6020B	417288
180-146342-13	5-PW	Dissolved	Water	EPA 6020B	417288
180-146342-15	6-PW	Dissolved	Water	EPA 6020B	417288

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-146342-19	FB	Dissolved	Water	EPA 6020B	417288
– Analysis Batch: 419389)				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-146342-17	7-PW	Dissolved	Water	EPA 6020B	417288

Eurofins Pittsburgh

Minimum In Vicio 2000 Total Internet Interne	Eurorins Pittsburgn 301 Alpha Drive RIDC Park		CUAIL	unain of custody Record		CUROTINS Environment Testing America
Product Function Product Function<	Pittsburgh, PA 15238-2907 phone 412.963.7058 fax 412.963.2468			CRA		Eurofins Environment Testing America
Client Contact: Example Spectrum com Size Contact: Forent Rhamber Example Spectrum contact: Forent Rhamber		Project Manager: Florent Risacl	her			
Constract Contraction Terms of the context Carry of	Client Contact	Email: frisacher@geosyntec.com		Site Contact: Florent Risacher	10/141	1 of2 COCs
Contracted Done, Sulte 260	Geosyntec Consultants	Tel/Fax: 437-347-3455		Lab Contact: Carrie Gamber		TALS Project #:
State Consideration Consideration <td>2355 Northside Drive, Suite 250</td> <td>Analysis Turnaround T</td> <td>ime</td> <td>(וריים)</td> <td></td> <td>Sampler: F. Cisacher</td>	2355 Northside Drive, Suite 250	Analysis Turnaround T	ime	(וריים)		Sampler: F. Cisacher
All: 21:3455 Phone Trut interviention takes Interviention Interviention Interviention Print Constraint 1 1 1 1 1 1 1 Print Constraint 1 1 1 1 1 1 1 Print Constraint 1 1 1 1 1 1 1 Print Constraint 1 1 1 1 1 1 1 Sample Identification 2 1 1 1 1 1 1 Sample Identification 2 1 1 1 1 1 1 Sample Identification 0 1 1 1 1 1 1 Sample Identification 0 1 1 1 1 1 1 Sample Identification 0 1 1 1 1 1 1 Sample Identification 0 1 1 1 1 1 1 1 Sample Identification 0 1 1 1 1 1 1 1 1 Sample Identification 0 1 1 1 1 1	San Diego, CA 92108		VG DAYS	ıM,e		For Lab Use Only:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TAT if different from Below				Walk-in Client:
Total Control 1 outs 1 outs <th< td=""><td></td><td></td><td></td><td>z'qd / 人</td><td></td><td>Lab Sampling:</td></th<>				z'qd / 人		Lab Sampling:
Bits Parata Creek 30%	Project Name: PNG7584			λιη '!N''		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Site: Paleta Creek			Ierc MSI		Job / SDG No.:
Sample learnification Sample supple learnification Sample learnin of case case learnification Sampl	P O # 100034641	1 da		n) A (n)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Commolo Idonatification	Sample Sample (c=Comp. Time G=Comp.		وبڑەنس W PA 6020 (QT47 AG		Sample Specific Notes:
1A.PW 10/14/0 14/54 C Water Z Y 1A.SW 10/14/0 14/54 C Water Z Y 1B.SW 10/14/0 14/56 C Water Z Y 1B.SW 10/14/0 14/56 C Water Z Y 1C.SW 10/14/0 14/51 C Water Z Y 1C.SW 10/14/0 14/51 151 C Water Z Y 2.SW 10/14/0 10/14/0 1207 C Water Z Y 2.SW 10/14/0 1400 C Water Z Y 2.SW 10/14/0 1400 C Water Z Y 3.PW 10/14/0 1400 C Water Z Y 4.PW 3.PW 10/14/0 C Water Z Y 4.PW 10/14/0 1400 C Water Z Y 3.SW 10/14/0 1400 C Water Z Y 4.PW 3.PW 10/14/0 C Water Z Y 4.PW 4.PW 10/12 C Wate			-			•
1A-SW 10/14/b2 14/5 C Water 2 Y 1B-PW 1B-SW 10/14/b2 14/5 C Water 2 Y 1B-SW 10/14/b2 14/5 C Water 2 Y 1C-SW 10/14/b2 14/5 C Water 2 Y 2-PW 10/14/b2 14/5 C Water 2 Y 2-PW 10/14/b2 12.07 C Water 2 Y 2-PW 10/14/b2 14.00 C Water 2 Y 2-SW 10/14/b2 14.00 C Water 2 Y 2-PW 2-PW 10/14/b2 14.00 C Water 2 Y 2-SW 10/14/b2 14.00 C Water 2 Y 2-SSW 10/14/b2 14.00	1A-PW	2 1428 C	_	۲ ۲		
$1B$ -PW $10[h_1/h_2 - 1!5]$ C Water 2 V $1C$ -PW $1(J_1/h_2 - 1!5)$ C Water 2 V $1C$ -PW $1(J_1/h_2 - 1!5)$ C Water 2 V $1C$ -SW $10[h_1/h_2 - 1!5)$ C Water 2 V $1C$ -SW $10[h_1/h_2 - 1!5)$ C Water 2 V 2 -SW $10[h_1/h_2 - 1!5)$ $120T$ C Water 2 V 2 -SW $10[h_1/h_2 - 1!5)$ $120T$ C Water 2 V 2 -SW $10[h_1/h_2 - 1]$ 1402 C Water 2 V 3 -SW $10[h_1/h_2 - 1]$ 1402 C Water 2 V 3 -SW $10[h_1/h_2 - 2]$ 1402 C Water 2 V 3 -SW $10[h_1/h_2 - 2]$ 1402 C Water 2 V 4 -BW $0[h_1/h_2 - 2]$ 1402 C Water 2 V 0 -T-SW	1A-SW	//4/22 14 54 C		X X Z		
1B-SW $10/14/1-2$ $1(1+5/6)$ C Water 2 Y 1C-PW $10/14/1-2$ 115 C Water 2 Y 1C-SW $10/14/1-2$ 115 C Water 2 Y 2-PW $10/14/1-2$ 115 C Water 2 Y 2-SW $10/14/1-2$ 115 C Water 2 Y 2-SW $10/14/1-2$ 1206 C Water 2 Y 3-SW $10/14/1-2$ 1402 C Water 2 Y 3-SW $10/14/1-2$ 1402 C Water 2 Y 4-PW $10/14/1-2$ 1402 C Water 2 Y 4-SW $10/14/1-2$ 1400 C Water 2 Y 10 102 1	1B-PW	1456 C		× × z		
1C-PW 1C-PW 16/14/br 1151 C Water 2 Y 2-PW 10/14/br 10/14/br 1207 C Water 2 Y 2-SW 10/14/br 1207 C Water 2 Y 3-PW 10/14/br 1402 C Water 2 Y 3-SW 10/14/br 1402 C Water 2 Y 3-SW 10/14/br 1402 C Water 2 Y 4-PW 10/14/br 1402 C Water 2 Y 4-SW 10/14/br 1402 C Water 2 Y 10 11 1202 C Wat	1B-SW	1456 C		* * 1		
1C-SW $10/14/2z$ 1151 C Water 2 Y 2-PW $10/14/2z$ 1151 C Water 2 Y 2-SW $10/14/zz$ 1200 C Water 2 Y 2-SW $10/14/zz$ 1402 C Water 2 Y 3-SW $10/14/zz$ 1402 C Water 2 Y 3-SW $10/14/zz$ 1402 C Water 2 Y 4-PW $10/14/zz$ 1402 C Water 2 Y 4-SW $10/14/zz$ 1402 C Water 2 Y 4-SW $10/14/zz$ 14120 C Water 2 Y 4-SW $10/14/zz$ 1420 C Water 2 Y 6 11 1200 C	1C-PW	tisi c		XXN		
Condition Condition 2-PW $10/13/12$ 1207 C Water 2 Y 2-SW $10/13/12$ 1206 C Water 2 Y 3-PW $10/13/12$ 1402 C Water 2 Y 3-SW $10/14/122$ 1402 C Water 2 Y 3-SW $10/14/122$ 1402 C Water 2 Y 4-PW $10/14/122$ 14120 C Water 2 Y 4-SW $10/14/122$ 1420 C Water 2 Y 6 122044 $5=0416$ C Water 2 Y filentification: Totel test $2=14103$ Y D C W <td>1C SW</td> <td>1151 c</td> <td> </td> <td>≁ ≁ z</td> <td></td> <td></td>	1C SW	1151 c		≁ ≁ z		
2-SW $ 0/13 U$ 1206 C Water 2 Y 3-PW $ 1/1 V^2$ $ 1/1 V^2$ $ 1/1 V^2$ $ 1/1 V^2$ 2 Y 3-SW $ 0/11 V^2$ $ 1/1 V^2$ $ 1/1 V^2$ 2 Y 4-PW $ 0/11 V^2$ $ 1/1 V^2$ $ 1/1 V^2$ 2 Y 4-SW $ 0/11 V^2$ $ 1/1 V^2$ $ 1/1 V^2$ 2 Y d: 1= Let 2= HCI; $3=HOO3$; $5=HOO1$; C Water 2 Y d: 1= Let 2= HCI; $3=HOO3$; $5=HOO1$; $6=Other$ 2 Y d: 1= Let $2= HOI;$ $3=HOO3$; $5=NaOH;$ $6=Other$ 2 Y d: 1= Let $2= HOI;$ $3=HOO3$; $5=NaOH;$ $6=Other$ 2 Y d: 1= Let $2= HOI;$ $3=HOO3;$ $5=NaOH;$ $6=Other$ 2 Y if the lab is to dispose of the sample. in the sample. in the sample. 0 0 0 0 if the lab is to dispose of the sample. if the sample.	2-PW	1207 C	ļ	X X Z		
SPW $10 h h h c h c h c h c h c h ater 2 7 3-SW 0 h h h c h c h c h c h c h c h c h c h $	2-SW	1206 C		⊀ ¥ z		
Jerwise Labor Labor <thlabor< th=""> <</thlabor<>	2 DW	122 1407 C	ļ	X X Z	180-146342 CF	ain of Custody
Out $Io/iy/z_2$ $Id/iy/z_2$ <	3-EW	22 1407 C		XZ		
4-SW 10/14/123 14-20 C Water 2 V dci 1= Les, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other C Water 2 V Identification: rom a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the n if the lab is to dispose of the sample. 2 V In fit the lab is to dispose of the sample. 0 fit of the sample. 2 V If the lab is to dispose of the sample. 0 fit of the sample. 2 V In fit the lab is to dispose of the sample. 0 fit of the sample. 2 V If the lab is to dispose of the sample. 0 fit of the sample. 0 fit of the sample. 2 Infact: restorting 0 fit of the sample. 0 fit of the sample. 2 Infact: restorting 0 fit of the sample. 0 fit of the sample. Infact: res No 0 fit of the sample. 0 fit of the sample. Infact: res No 0 fit of the sample. 0 fit of the sample. Infact: res No 0 fit of the sample. 0 fit of the sample. Infact: res No 0 fit of the sample. 0 fit of the sample.	4-DW	1450 C	<u> </u>	X		
d: 1= Ica, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Identification: identification: row a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the in the lab is to dispose of the sample. n: fr the lab is to dispose of the sample. Identification: n: fr the lab is to dispose of the sample. Identification: n: fract: Skin Irritant Poison B Unknown n: fract: Vestory Seal No.: Intact: Vestory Seal No.: florent Risacher Cond & Cond & Date/Time: Cond & Cond & Company: Date/Time: Cond & Company: Date/Time: Interfine:		1420 C		Z		
Identification: Identification: rom a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the In if the lab is to dispose of the sample. In if the lab is to dispose of the sample. In if the lab is to dispose of the sample. In if the lab is to dispose of the sample. In if the lab is to dispose of the sample. Intert Date/Time: Intact: Intact: Intact: Internet:		5=NaOH; 6= Other			* * * * * *	
Image Skin Irritant Poison B Unknown Return to Client Discosal by Lab Arctive for Infact: Image Ves No Confer Confer Confer Confer Confer Confer Confer Arctive for Infact: Image Ves No Confer			te sample in t		e assessed if samples ar	e retained longer than 1 month)
Intact: vs No Cooler Temp. (°C): Obsid: Corrd: Florent Risacher Company: Geosyntec Date/Time: Received by: Confd: Corrd: Code Code Confd: Corrd: Corrd: Corrd: Corrd: Code Code Date/Time: Received by: Conpany: Company: Conpany: Conde Conde Conpany: Date/Time: Received by: Conpany: Conpany: Conde Conpany: Date/Time: Received by: Conpany: Conpany: Conpany:	Z Non-Hazard					
Intact: > ves No Custody Seal No.: Cooler Temp. (°C): Obs/d: Corrd: Florent Risacher Company: Geosyntec Date/Time: Received by: Conduction Company: Geosyntec Florent Risacher Montification Date/Time: Received by: Conduction Company: Geosyntec Conduct Conduction Conduction Company: Company: (°C): Obs/d: Company: (°C): Obs/d: Conduction Conduction Company: Date/Time: Received by: Conduction Company: (°C): Obs/d: Company: (°C): Obs/d: Conduction Company: Date/Time: Received by: Received by: Company: (°C): Obs/d: Company: (°C): Company: Company: Date/Time: Received by: Company: (°C):	Special Instructions/QC Requirements & Comments:					
Florent Risacher Company: Geosyntec Date/Time: Received by: Conduct Conspany: Conspan	Yes 🗆	Custody Seal No.:		Cooler Temp. (°C): O		Therm ID No.:
Relinquished by: Condic Company: Compan		30	Date/Time: 10-15-22 09	Received by:	Company:	60
Relinquished by: Company: Oth Date/Time: Received in Laboratory by: Company: Oth Date/Time	Relinquished by:		Date/Time: //		Company: Fed Ex	Date/Time: 14:34
	Relinquished by:		Date/Time:		Q	A Date/Time: Date/Time: Date/Time: Date/Time:
				1	8 9 (3 4 5 7

Eurofins Pittsburgh		Chain	Chain of Custody Record		💸 eurofins Environment Testine
301 Alpha Urive RIDC Park				1927 - N.(11)	America
Pittsburgh, PA 15238-2907 phone 412.963.7058 fax 412.963.2468	Regulatory Program:	DW DPDES	CCRA Other:		Eurofins Environment Testing America
	Project Manager: Florent I	t Risacher			
Client Contact	Email: frisacher@geosyntec.com	mo	Site Contact: Florent Risacher	Date: (0/パイ/22	2 of2 CUCs
	Tel/Fax: 437-347-3455		Lab Contact: Carrie Gamber	Carrier: / peAex	TALS Project #:
2355 Northside Drive, Suite 250	s Turnar	und Time	(1'נ		Sampler: F. CisAt AC
San Diego, CA 92108	🗆 CALENDAR DAYS 🔄 🛛	WORKING DAYS	nM,e		For Lab Use Only:
437.347.3455 Phone	TAT if different from Below	^			Walk-in Client:
(xxx) xxx-xxxx FAX	2 weeks		'ባብ' /		Lab Sampling:
Project Name: PNG7584	1 week		(uno (IN'n) a		
Site: Paleta Creek	2 days		Cr,C		Job / SDG No.:
P O # 100034641	10) V (PC) SV		
Sample Identification	Sample Sample (C=Comp. Date Time G=Grab)	e # of b) Matrix Cont.	Filtered S Perform I EPA 6020 (EPA 300 (EPA 300 (Sample Specific Notes:
5-PW	10/14/22 1552 C	Water 2	×××××××××××××××××××××××××××××××××××××		
ېر. مېر	10/4/2 122 C		X X X N X		
Md-9			× × × × × ×		
e-SW	1 2		X X Z		
MU 7	12		× × ×		
			(JE		
AA-1-0-		Watch			
			Z		
	/				
				md n wizz	
			/		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	5=NaOH; 6= Other	1. At . A set			We wanted the cost
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.	se List any EPA Waste Code	s for the sample in t		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ed longer than 1 month)
Skin Irritant	Poison B	Unknown	Return to Client	Disposal by Lab Description	Months
Special Instructions/QC Requirements & Comments:					
	Custody Seal No.:		Cooler Temp. (°C): Obs'd		Therm ID No.:
Florent Risacher	Company: Geosyntec	Date/Time: 09:30	Preceived by:	Company: Geosyntae	Date/Time: 10-15. 22 09:30
Relinquished by: Jasin Conder	Company:	Date/Time:1	174 Received by:	Company:	Date/Time: 10-17.22 14:34
Relinquished by:	Company:	Date/Time:	Rećeived in Laboratory by:	Company	Date/Time: / U-1822 1025
			11 12 13	7 8 9 10	1 2 3 4 5 6

-12/1/2022

Login Sample Receipt Checklist

Client: Sirem, div of Geosyntec Consultants

Login Number: 146342 List Number: 1 Creator: Abernathy, Eric L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 180-146342-1

List Source: Eurofins Pittsburgh

APPENDIX F PEEPER DEPLOYMENT, RETRIEVAL AND PROCESSING METHOD

OVERVIEW

- Peepers are a small chamber containing deionized water capped with a semi-permeable membrane. The water may be spiked with lithium and/or bromine tracer.
- Peepers should be shipped in a plastic or mylar zipseal bag. The bags may have a few milliliters of water in them to keep peepers moist. The bags should be kept after deployment to store peepers during retrieval
- Peeper (within their bags) should ship from the laboratory in a cooler for ultimate protection during shipping.
- Prior to deployment, the peepers do not need to be refrigerated; however, they should be kept (ideally within their protective cooler) at temperatures above freezing (i.e., 32°F or 0°C) and below excessively hot temperatures (i.e., 100 °F or 38°C).
- A portion of the peeper water (e.g., at least 20 mL) from the peepers may be used for bromine tracer analysis while the remainder (e.g., 20 to 60 mL) is used for metal analysis (including lithium tracer).
- After retrieval, peepers should be processed, limiting exposure of the peeper to air to 10 minutes or less.
- If rapid processing is not possible, peeper should be stored in a plastic or mylar zipseal bag with oxygen absorbing packets within approximately 10 minutes or less after removal from sediment or water.
- At least 1 sample for blank analysis of metals and tracer should be created using a set of peepers that have not been deployed at the site (store them in the cooler in a safe location during the field deployment).

DEPLOYMENT

Materials for Deployment:

- Peepers– please ensure that extra peepers (approximately 10% extra, plus additional for Trip Blanks) are shipped to the field, as peepers can be damaged during transport and handling
- Peeper frame (if deployed in array)
- Polyester rope
- Laminated sample ID card
- Zip-ties
- Electrical tape & duct tape
- Handheld GPS unit with 1 second (or less) refresh rate and accuracy of 1-2 m or better
- Plastic or mylar bags for peepers storage

Deployment

- 1. If deployment is made from a vessel using divers, the vessel should be anchored to maintain the location and stability if possible.
- 2. Confirm the water depth at the location where the peepers will be deployed using vessel instruments (i.e., sonar) or a marked anchor line.
- 3. If peepers are deployed in a frame, take out the frame and put it together.
- 4. Label each peeper by attaching a laminated sample ID card to the frame with a zip-tie. If peepers are not deployed in a frame, attach the laminated card later directly to the peeper.
- 5. Attach a polyester rope to an attachment point at the top corner of the peeper frame or to the peeper itself. This rope can be attached to a sand bag or weight and serve as an anchor line. The length of rope should be long enough to facilitate the retrieval of the peepers by divers or with a grappling hook; ideally the length of the rope should extend at least 30 feet from the insertion point. Alternatively, if the deployment is close to an accessible shoreline the rope can be tied to a tree or a stake. If tied to shore, make sure the location has limited public access.
- 6. Remove the peepers from the bag. Note, there may be ~0.5 L of water in the bag surrounding the peepers; this is not leakage from the peepers. The extra water is included in the bag to assure the peepers stay moist. Keep the plastic or mylar bags, as they will be used for retrieval of the peepers. Inspect the peepers to make sure the water inside does not contain bubbles, and inspect the membrane of each peepers to make sure it wasn't damaged during transport. A damaged membrane (below, left) will appear wrinkled or punctured; a secure membrane will appear smooth (below, right):

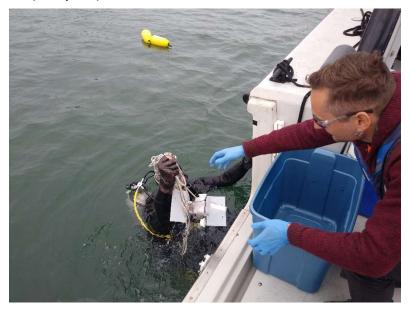
A wrinkle in the peeper membrane due to damage or mishandling; do not use the peeper for field deployment, although it can be used as a Trip Blank if needed

A smooth peeper membrane

If a peeper has a damaged membrane or contains bubbles in the peeper water, do not use it for field sampling as it may negatively impact sampling performance. It can be used to create a Trip Blank sample, however.

- 7. Secure the peeper into the frame, being sure to not touch the peeper membranes. If no frames are used, attached a label to the peeper.
- 8. Insert the peeper frame or peeper into the sediment with the membrane facing the side. This can be achieved using divers, or by wading if the location is shallow enough. A diverless push pole apparatus can also be used. If full insertion cannot be achieved pull up the frame or peepers and retry insertion a few feet away.
- 9. The anchor line should be extended from the insertion point and the direction of the extension should be noted. If using divers, the diver can swim from the insertion point and drop the anchor a few feet (10 to 30 feet) away. If the peeper is being deployed from the surface (from a vessel) using a push pole or other apparatus, the anchor line should be tossed so that it enters the water approximately 30 feet (or more) away. This methods requires a longer anchor line (length equal to 30 feet plus water depth at station).
- 10. Using a handheld GPS unit, note (and/or mark) GPS coordinates of deployed peepers.

RETRIEVAL


Materials for Retrieval:

- Bags for peeper storage (use peeper bags from deployment)
- Oxygen absorbing packets
- Coolers with wet ice

Note: Before retrieving the peepers, ensure that you are ready to process them right away or that you have the supplies to preserve them until processing. If working from a boat, preserving the peepers and processing them on shore may be the best approach. After removal from the sediment, peepers should be exposed to surface water and air for as little time as possible (ideally 10 minutes or less). This can be achieved by having the plastic/mylar bags and oxygen absorbing packets ready to be used as soon as the peeper is retrieved at the surface. Note that once the oxygen absorbing packets are removed from their vacuum packed bag, they need to be used on the same day or be discarded.

Retrieval

- 1. Position the vessel at or near the location of the deployed peepers using the GPS coordinates from the deployment. Use of a handheld GPS system with a graphical display and "navigate to point" is extremely helpful.
- 2. If divers are retrieving the peepers, drop a buoy with an anchor to mark the retrieval location for the diver, then send the diver down to do a search around the buoy, starting adjacent and circling further around until the peepers are found. Once found, return the peeper frame as quickly as possible to the surface via diver or a tender line to the vessel.

- 3. If retrieval is being attempted using grappling hooks from the surface of the boat, catch the weighted rope by tossing the hook in a direction perpendicular to that in which the anchor and anchor line were deployed. Drag the grappling hook on the bottom of the sediment until snagged on the rope. Pull the boat or platform above the hook and pull everything straight up.
- 4. If retrieval is being attempted via wading, safely wade into the water and remove the peeper frame from the sediment. Return the peepers to the shore or vessel.
- 5. Once retrieved, quickly remove the peepers from the frame and place in the plastic/mylar bag. Peepers do not need to be cleaned or rinsed. Be careful in positioning the peepers so that they do not bump against each other's membrane, this can be achieved by storing them flat in the bag, side by side, with the membrane up. Do not stack the peepers on top of each other. Add 2-3 oxygen absorbing packets in the bag before sealing it.
- 6. Label the outside of the storage bag according to the sample nomenclature.
- 7. Store the bags with the peepers in a cooler, on wet ice until they can be processed.
- 8. Processing should ideally occur on the same day after retreival (laboratory research is ongoing to confirm the timing of this recommendation).

Special Note: Once removed from the sediment, the peepers and peeper frames should be visually inspected to confirm they were fully inserted during the deployment duration. This can be seen from the different coloration of the frame between parts that were exposed to surface water and parts that were in the sediments.

PROCESSING

Peeper Processing in Field or Field Lab

- 1. Prepare a clean workstation (i.e. table), ideally in a sheltered area. Essential elements include:
 - a. Serological pipettes tips
 - b. Pipette pump compatible with serological pipettes tips
 - c. Several gallons of DI or distilled water (e.g., approximately 1 gallon per 20 samples)
 - d. Plastic spray bottle of DI or distilled water
 - e. Laboratory supplied sample bottles to contain waters transferred from the peepers; two bottles are needed for each sample:
 - i. An empty HPDE bottle for the bromine sample (if bromine is being used as a tracer)
 - ii. An HDPE bottle for the metals sample, containing a small amount of nitric acid (i.e., 2.5 mL 1:4 concentrated nitric acid) for preservative

- f. Nitrile gloves
- g. Eye protection
- h. Roll of paper towels or box of Kimwipes
- i. Garbage bag or container to contain waste
- j. Cooler with peepers retrieved from the field and peepers for the Trip Blank
- k. Additional ice (as needed) to maintain cool temperatures
- I. Zipseal bags for packaging sample bottles
- m. Processing forms and chain of custody forms
- n. Tape for securing the cooler for shipment

Special Note: Once removed from the protective bag, peepers should be processed within 10 minutes so that contact with the atmosphere is minimized (oxygen will diffuse into the water contained within the peepers and could compromise sample integrity)

2. Two people are recommended for processing. A designated person ("dirty hands") should be responsible to clean peepers, while another person ("clean hands") should be

responsible for transferring water from the peepers into the sample bottles and recording processing information on the processing form. If this is not possible, it is recommended to change gloves between cleaning peepers and transferring the water to the sample bottles.

- 3. Attach the pipette pump to a fresh serological pipette tip. One pipette tip is needed to transfer the water from the multiple peepers used to create a sample (change out the pipette tip when processing peepers being combined for a separate sample).
- 4. Removal from storage, open the bag and remove one peeper; take note of the sampling location.
- 5. Rinse the top of the peeper membrane with DI water to clean off any sediment. Ensure to flush thoroughly around the membrane and cap. A paper towel or Kimwipe can be used to assist removal of sediment as needed, although care must be taken as the membrane is fragile. The membrane should be free of visible grains of sediment.
- 6. Inspect the peeper for contamination by sediments. To ensure sample integrity, peepers should be inspected for sediments by looking inside from the bottom of the vial. If sediment particles can be seen floating inside against the membrane of the peeper, the peeper should not be sampled, as it may have allowed solid particles into the sampler during sampling, and this may not represent freely-dissolved metal concentrations.

Sediment grains that have entered the peeper; they are observable by swirling the water and turning the peeper upside down

Peeper with no observable sediment grains

7. Once cleaned off, use the serological pipette tip to puncture the membrane, angle the serological pipette tip towards the bottom of the vial and drawn up all water from the peeper into the pipette.

- 8. Dispense at least 5 mL from the peeper in the sample container for the bromine analysis (if bromine is being used as a tracer).
- 9. Dispense the rest of the peeper water in the sample container for the metal analysis. The vial for metal analysis should already contain a small volume of nitric acid so that the sample will be acidified.
- 10. In total, ~20 mL or more should be collected for bromine analysis and ~60 mL or more for metal analysis (consult your analytical lab to confirm ideal and minimum sample volumes).
- 11. Cap all sample bottles, label, and store in a cooler on wet ice.
- 12. Note the processing date and time and approximate volume of peeper water used for the bromine sample (ideally \ge 20 mL) and the metals sample (ideally \ge 60 mL).
- 13. Remove the pipette tip from the pipette pump and attach a new pipette tip for use for the next set of peepers that will be used for the next sample.
- 14. Do not to forget to prepare blank samples using unexposed peepers. This will be used as the Trip Blank sample for bromine and metals.
- 15. Once all peeper samples have been processed, prepare the samples for laboratory submission (e.g. fill out chain of custody, initiate transfer of samples to receiving laboratory for analysis, etc.).