

Innovative Solutions Since 1973

GROUNDWATER REMEDIATION STARTUP REPORT SITE MONITORNG & PERFORMANCE EVALUATON

REPORT REVISION 1.0

CHEMICAL INJECTIONS & ATTENUATION MONITORING KDHE 2ND & KIRBY SITE

Hutchinson, Reno County, Kansas KDHE Project Code: C2-078-70770

February 6, 2015

Prepared for:

GROENDYKE TRANSPORT, INC. Enid, Oklahoma

AND

ENVIRONMENTAL MANAGEMENT, INC. Guthrie, Oklahoma

For Submittal to:

KANSAS DEPARTMENT OF HEALTH & ENVIRONMENT BER Site Remediation Unit Topeka, Kansas

RECEIVED

FEB 12 2015 BUREAU OF ENVIRONMENTAL REMEDIATION

Prepared by:

GSI ENGINEERING, LLC

Lenexa, Kansas

GSI Project No. 148032

Geotechnical Engineering
Environmental
Construction Materials Testing
Drilling

15012 W. 106th Street Lenexa, KS 66215 913.495.2360 tel 913.495.2360 fax www.gsinetwork.com

February 6, 2015

Ms. Mary Daily Kansas Department of Health & Environment 1000 SW Jackson, Suite 410 Topeka, KS 66612

RE: Groundwater Remediation Startup Report Site Monitoring & Performance Evaluation KDHE 2nd & Kirby Site, Hutchinson, Kansas GSI No. 148032 / KDHE Project Code: C2-078-70770

Dear Ms. Daily:

GSI Engineering, LLC ("GSI") is pleased to submit this Startup Report on behalf of Groendyke Transport, Inc. and V & M Transport, Inc. ("Client"). Direct-push injection of chemical amendments was performed to enhance the chemical and biological degradation of chlorinated solvents in groundwater. This Report documents remedial activities and performance monitoring consistent with final Remedial Design Plan dated June 2014 and technical amendments thereto.

GSI implemented the remedial design following formal authorizations from our Client and KDHE, pursuant to Consent Order No. 99-E-0209. Specific field activities and performance evaluations are presented in the corresponding sections of this Report. The next performance monitoring event is scheduled for February 2015.

Please contact me directly at (913) 495-2360 or at <u>bconrad@gsinetwork.com</u> if you have questions or wish to discuss the project in greater detail. We look forward to supporting KDHE through completion of this project.

Sincerely, GSI ENGINEERING, LLC

Brian M. Conrad Manager, Kansas City Operations

Enclosures

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	PROJECT HISTORY	1
1.2	OVERVIEW OF REMEDIAL TECHNOLOGY	
1.3	REMEDIAL OBJECTIVES & SCOPE	4
1.4	SCOPE & REPORT LIMITATIONS	4
1.5	RELIANCE	5
2.0	SITE DESCRIPTION	5
2.1	PROPERTY LOCATION & DESCRIPTION	5
2.2	TOPOGRAPHY & SURFACE DRAINAGE	5
2.3	REGIONAL GEOLOGY	6
2.4	SOIL CLASSIFICATIONS	6
2.5	Soil Boring Logs	6
2.6	AQUIFER CONDITIONS	6
2.7	GROUNDWATER CHEMISTRY	7
3.0	FIELD METHODS	8
3.1	TECHNICAL APPROACH	8
3.2	INJECTION FORMATIONS & DESIGN RATIONALE	8
3.3	DIRECT-PUSH INJECTION METHODS	9
3.4	INJECTION AMENDMENTS	9
3.5	DEVIATIONS FROM REMEDIAL DESIGN	
3.6	MONITORING WELL INSTALLATIONS	
3	.6.1 Installation Methods	11
3	.6.2 Monitoring Well Development	
3.7	UNDERGROUND INJECTION CONTROLS	
3.8	FIELD DOCUMENTATION	12
4.0	PERFORMANCE MONITORING	12
4.1	FIELD SAMPLING METHODS	12
4.2	LABORATORY METHODS	13
4.3	WATER LEVEL CONDITIONS & GROUNDWATER FLOW	
4.4	BASELINE MONITORING RESULTS	14
4.5	FIRST QUARTER MONITORING RESULTS	
4.6	HISTORICAL VOC TRENDS	-
4.7	INTERIM MONITORING RESULTS	
4.8		
4.9	DATA VALIDATION	20
5.0	FIRST QUARTER PERFORMANCE REVIEW	21
6.0	RECOMMENDATIONS	22
7.0	REFERENCES	23

REPORT APPENDICES

APPENDIX A – Report Figures

FIGURE 1 – Topographic Map

FIGURE 2 – Aerial Base Map

FIGURE 3A – TCE Isoconcentration Map – Baseline Conditions

FIGURE 3B – TCE Isoconcentration Map – First Quarter Conditions

FIGURE 4A – DCE Isoconcentration Map – Baseline Conditions

FIGURE 4B – DCE Isoconcentration Map – First Quarter Conditions

FIGURE 5A – Oxidation-Reduction Potential (ORP) – Baseline Conditions

FIGURE 5B - Oxidation-Reduction Potential (ORP) - First Quarter Conditions

FIGURE 6A - Total Organic Carbon (TOC) - Baseline Conditions

FIGURE 6B - Total Organic Carbon (TOC) - First Quarter Conditions

FIGURE 7 – Area 1 Groundwater Injection Detail

FIGURE 8 – Area 2 Groundwater Injection Detail

FIGURE 9 – Direct-Push Injection Diagram

APPENDIX B – Report Tables

- TABLE 1 Water Level Observations
- TABLE 2 Historical VOC Results
- TABLE 3 Summary of Groundwater Injection Points
- TABLE 4 Baseline VOC Levels in Groundwater
- TABLE 5 First Quarter VOC Levels in Groundwater
- TABLE 6 Geochemical Results
- TABLE 7 Interim Monitoring Results
- TABLE 8 Quality Control Review

APPENDIX C – Photograph Log

APPENDIX D – Field Logs

- **APPENDIX E Monitoring Well Installation Records**
- **APPENDIX F Underground Injection Control Application**
- **APPENDIX G Laboratory Analytical Reports**

1.0 INTRODUCTION

Groendyke Transport, Inc. ("Groendyke" or "Client") retained GSI Engineering, LLC ("GSI") to support ongoing monitoring and groundwater remediation activities for the East 2nd Avenue and Kirby Street Site in southeast Hutchinson, Kansas ("2nd & Kirby" or "site"). This site includes the Groendyke Transport facility at the intersection of 2nd and Kirby Street and downgradient trichloroethylene (TCE) impacts to groundwater extending approximately one-half mile to the southeast. Appendix A provides topographic and aerial diagrams illustrating the site location and surrounding areas.

The 2nd and Kirby intersection is within a larger area of groundwater contamination known as 4th and Carey site. A potential source of TCE in groundwater was identified near the Groendyke facility in 1998-1999 during investigation of the larger site. Groendyke and the property owner V & M Transport, Inc ("V & M") subsequently entered into a Consent Order with the Kansas Department of Health and Environment ("KDHE") in December 1999 (Case No. 99-E-0209). The Order outlined specific measures to address TCE impacts to soil and groundwater, which appeared to originate near the intersection of 2nd & Kirby. In support of the Order, GSI has worked cooperatively with Groendyke, V & M, and Environmental Management, Inc. ("EMI") as another project consultant to support previous remedial measures and the remediation work documented in this Report.

Site investigation and monitoring data over time indicate persistent TCE impacts above the KDHE Tier 2 cleanup standard. These data also suggest naturally occurring conditions are limited in the ability to degrade chlorinated contaminants in the subsurface. Following several phases of investigation, the KDHE Corrective Action Decision (CAD) in 2009 selected enhanced biodegradation as the preferred remedial alternative.

This Groundwater Remediation Startup Report demonstrates the specific measures applied to accelerate the chemical and biological degradation of TCE and related contaminants in groundwater. Chemical amendments were introduced to shallow groundwater using direct-push methods as detailed in the corresponding sections of this Report.

1.1 Project History

Groendyke has operated a truck transportation facility at the 2nd & Kirby intersection since the 1950s. Specific operations include parking, truck staging/dispatching areas, and light vehicle maintenance facilities. In conjunction with routine maintenance operations, various solvents have been used at the facility. These include benzene, methyl-ethyl ketone (MEK), tetrachloroethylene (PCE), and trichloroethylene (TCE). The spent solvent is contained on site and routinely recovered by Safety-Kleen Systems, Inc. for recycling. KDHE records do not document any known solvent releases or point sources associated with the facility. As such, the inferred TCE source is based on the findings of previous site investigations as discussed below.

<u>4th & Carey Remedial Investigation (RI), 1998-1999</u> – The 2nd and Kirby intersection is within a larger area of groundwater contamination known as 4th and Carey site. Various contaminant sources have been identified within the 4th & Carey limits comprising more than 1,200 acres over impacted groundwater. These contaminants generally include petroleum hydrocarbons, other chlorinated solvents, carbon tetrachloride, and chlorides. A potential source of TCE in groundwater was identified near the Groendyke facility in 1998 and 1999 during investigation of the larger site.

<u>KDHE Site Investigation, 1998-1999</u> – KDHE completed various phases of site investigation in 1998-1999 including a Preliminary Assessment (PA), Supplemental Site Investigation (SSI) and Removal Site Evaluation (RSE) following EPA's pre-CERCLIS screening process. These investigations identified potential TCE release conditions near the northwest corner of the 2nd & Kirby intersection. KDHE findings were similar to those reported during the 4th & Carey RI in that the predominant contaminant was TCE in shallow groundwater, with a localized secondary source of TCE near the intersection of 2nd & Kirby. These findings resulted in KDHE classification of the 2nd & Kirby site as a point source of TCE in soil and groundwater. The specific conditions resulting in the TCE release to groundwater have not been confirmed.

Interim Remedial Measures (IRM), 2003 – IRM work commenced in March 2003 and included various phases of supplemental investigation and cleanup planning to characterize and address subsurface TCE impacts as documented by KDHE. Specifically, interim measures included supplemental soil and groundwater investigations, expanded source area characterization, and geochemical/geotechnical evaluations. GSI applied this information to evaluate cumulative risk consistent with EPA guidance for CERCLA investigations. Cleanup alternatives were then evaluated specific to the nature and extent of TCE contamination characterized in soil and groundwater.

Interim Soil Removal, 2006-2008 – Groendyke implemented a source removal in 2006 through excavation and on-site treatment of TCE-contaminated soil. The KDHE Bureau of Waste Management closed the soil treatment cell in September 2008 following soil characterization testing subsequent to treatment.

<u>Vapor Intrusion Assessment, 2008</u> – In March 2008, KDHE evaluated potential vapor intrusion in residences located over the documented TCE groundwater plume. Indoor air samples were collected at three homes within the area. Laboratory testing for VOCs did not indicate TCE or associated degradation products above laboratory detection limits.

<u>Pre-Design Groundwater Evaluation, 2010-2013</u> – GSI completed a Pre-Design Report in June 2013, which provided a supplemental evaluation of groundwater conditions critical to microbial degradation of chlorinated solvents. With consideration to specific geochemical and microbial parameters, the Pre-Design Report supported continued application of enhanced bioremediation as the preferred alternative consistent with the previous KDHE Corrective Action Decision (CAD). This recommendation was contingent upon specific amendments to enhance the availability of microorganisms that support reductive dechlorination.

<u>Semi-Annual Groundwater Monitoring, 2012-2014</u> – Semi-annual monitoring of groundwater conditions has been ongoing since October 2012. Recent monitoring data indicate persistent TCE impacts to shallow monitoring wells installed less than 30 feet below ground surface (bgs). TCE has not been identified in intermediate or deep wells through the recent monitoring events. TCE levels near the apparent source have generally decreased since the 2006 soil removal. Downgradient levels indicate migration of dissolved-phase TCE to the southeast consistent with the hydraulic gradient. These data also suggest downgradient movement of two concentrated masses of TCE which are no longer in direct connection with the previously characterized source area.

Relatively low levels cis-1,2-dichloroethylene (cDCE) suggest reductive dechlorination has occurred prior to the groundwater injections. Degradation constituents beyond DCE have not been observed to date. Historical monitoring data are presented in Tables 1 & 2 of Appendix B.

1.2 Overview of Remedial Technology

Microorganisms capable of degrading TCE and other chlorinated ethenes are common in aquifers. Various species of naturally occurring bacteria derive energy from breaking the carbon to chlorine bond through a process known as reductive dehalogenation. This process reduces TCE (an electron acceptor) using electrons from an exogenous donor, resulting in the sequential removal of chlorine atoms. Intermediates of this sequential reaction are the compounds cDCE, and vinyl chloride (VC), with non-toxic ethene as the end product.

Biodegradation can be enhanced by adding amendments that provide sufficient carbon, energy, and/or nutrients for microorganisms to grow and thrive. The required amendments are typically electron donors (i.e. a carbon source) for VOC degradation through reduction reactions, or electron acceptors for VOC degradation through oxidation reactions. The reductive mechanism is typically the most efficient and viable degradation pathway for chlorinated ethenes, and thus is the approach applied for this site. Based on previous monitoring results, chemical amendments were necessary to better support and accelerate these processes.

GSI introduced emulsified vegetable oil (EVO) as the carbon source through direct-push injections. This chemical amendment provides the electron donor necessary to produce the necessary reducing and anaerobic conditions, generally defined by dissolved oxygen, oxidation-reduction potential (ORP), and the levels of competing electron acceptors such as nitrate, iron, and sulfate. Once optimum conditions are achieved, anaerobic microbial respiration can occur and support reductive dehalogenation as described above. Intermediate reactions also support chemical dehalogenation through the release of molecular hydrogen that reacts with the chlorinated ethenes, particularly in the reduction of TCE to cDCE.

1.3 Remedial Objectives & Scope

The remedial objective was to enhance and accelerate the in-situ chemical and biological degradation of TCE and related contaminants in groundwater. This process was designed reduce dissolved-phase contaminant levels by degrading TCE, DCE, and other chlorinated compounds at the molecular level, eventually reducing the contaminants to non-toxic byproducts. Enhanced degradation will diminish TCE impacts to groundwater and ultimately meet specific KDHE cleanup standards if the desired reducing anaerobic conditions are maintained over time.

The remedial design was specific to defined areas of the groundwater plume where TCE levels are the highest based on previous monitoring (i.e. near MW-27 and GMW-8). Chemical amendments were introduced in these areas using the following procedures:

- Groundwater injection of chemical amendments using direct-push (Geoprobe®) methods and in-situ dispersion at target subsurface intervals. GSI completed two (2) in-line barrier formations intercepting the center point of the TCE plume. Emulsified vegetable oil (EVO) was injected at each location as a concentrated electron donor.
- Installation, development, and sampling of two (2) new monitoring wells located directly downgradient of each injection formation. Additional monitoring points were installed to provide groundwater data directly upgradient and downgradient of the injection points.
- Interim and quarterly performance monitoring though sampling of the existing monitoring well network and the new wells as indicated above. Performance monitoring evaluations are presented in the corresponding sections of this report.

1.4 Scope & Report Limitations

The technical approach presented herein is specific to the preferred remedial alternative established through the KDHE Corrective Action Decision finalized in 2009. Enhanced biodegradation was accepted by KDHE as the most viable solution based on previous evaluation of technical feasibility and cost. Accordingly, GSI implemented a remedial design consistent with industry practice and published literature specific to enhanced bioremediation. Alternative remedial designs that may be appropriate or necessary to address subsurface contamination are beyond the scope and intent of the GSI remedial design.

The findings and recommendations presented in this report are based solely upon the site conditions, information, and supporting data obtained and reviewed through Client-authorized work and related KDHE approvals. This information is subject to change over time and GSI cannot represent any site conditions beyond those specifically identified through the authorized Scope of Work. As with any remedial design, performance monitoring may indicate the need for modified or alternative measures beyond the scope of the approved remedial design. GSI makes no warranties, express or implied, with regard to professional services, associated findings, or any third party information used in connection with this project.

1.5 Reliance

This Report has been developed for exclusive use and reliance by Groendyke Transport, Inc., V & M Transport, Inc., and Environmental Management, Inc. ("Client"), pursuant to the terms and limitations established in our Professional Services Agreement and the technical proposals authorized by Agreement. The Startup Report shall only be presented in full and may not be used to support any non-scope objectives without prior approval from Client and GSI. Reliance by any other party is prohibited without prior written authorization. GSI assumes no liability for future work performed by others in relation to the findings presented in this report.

GSI recognizes technical reports submitted to KDHE are considered public record pursuant to the Freedom of Information Act and Kansas Open Records Act. This dissemination does not represent authorized use by GSI to additional parties or an extension of professional liability beyond the limitations of our existing Agreement.

2.0 SITE DESCRIPTION

2.1 Property Location & Description

The subject site is located in east/southeast Hutchinson, Kansas at the intersection East 2nd Avenue and Kirby Street. The documented groundwater plume extends up to one-half of a mile to the southeast, mostly all located south of 2nd Avenue and east of Kirby. GSI estimates a groundwater plume area of approximately 25-27 acres based on recent monitoring results. Most of this area is located within the north ½ of Section 16, Township 23 South, Range 5 West in Reno County, Kansas. Figure 1 provides a topographic site location map illustrating the site and surrounding areas.

The upgradient (northwest) portion of subject site includes trucking facilities currently operated by Groendyke Transport, Inc. These facilities are located at 301 North Kirby Street, extending north and south of East 2nd Avenue. Downgradient areas to the southeast mostly include residential developments, large tracts of vacant land, and the Eaton Corporation manufacturing complex farther to the east. The tracts comprise areas of both commercial and residential zoning. Figure 2 provides an aerial site location maps illustrating the site location and surrounding land use.

2.2 Topography & Surface Drainage

Hutchinson is located within the broad alluvial plain of the Arkansas River. At its closest point, the Arkansas River is located approximately three miles south/southwest of the site. Similarly, the Little Arkansas River is located approximately 6.5 miles to the northeast. The surface area is very flat with residential and industrial developments along the perimeter of the TCE plume. Much of the remaining areas over the plume are vacant, unpaved areas with limited trees and brush vegetation. Appendix A provides topographic and aerial base maps illustrating surface conditions and topography.

A stormwater drainage canal flows north to south and bisects the central portion of the TCE plume. Most stormwater runoff from this area enters the canal through an engineered drainage system. The canal directs surface drainage to the south where it discharges to Cow Creek approximately three miles south of 2nd & Kirby, then ultimately to the Arkansas River approximately six miles downstream.

2.3 Regional Geology

The southeast Hutchinson area is characterized by unconsolidated alluvial deposits underlain by the Ninnescah Shale. Alluvial deposits are variable and typically consist of sand and gravel interbedded with clay or silt. Particle size distributions generally become coarser with depth. These deposits are present at approximate depths of 55 to 69 feet below ground surface (bgs) throughout the previous investigation areas.

The Ninnescah Shale acts as an aquitard with an average thickness of approximately 300 feet. The Milan Limestone Member of the Wellington Formation is found immediately below the Ninnescah Shale. This formation generally consists of shaly or dolomitic limestone. The Hutchinson Salt Member underlies the Milan Limestone, which represents the formation mined for salt in the Hutchinson area.

2.4 Soil Classifications

Soils in the vicinity of the 2nd and Kirby site are mapped as the urban land-Darlow-Elmer complex. The parent material is loamy alluvium characterized by poorly drained soils with very slow surface runoff. Sandy loam exists in localized areas. Soils within the area are protected by the Hutchinson levee system. The minimum depth to groundwater is greater than 80 inches.

2.5 Soil Boring Logs

Site-specific data are available from soil boring logs prepared during previous subsurface investigations and monitoring well installations. Boring logs generally indicate lower permeability unconsolidated materials for the first 10 to 12 feet bgs, typically logged as silty or clayey silts, sandy or silty clays, or clay. Occasionally, very fine to fine sand is found at or near ground level. Between the finer-grained materials and bedrock, there is a layer of sand that coarsens with depth and may contain gravel, particularly as depth approaches bedrock. This layer may also contain occasional thin or relatively thick seams of silt and clay. Bedrock is generally encountered around 60 feet, with a documented range of 55 to 69 feet bgs. In nearly all cases where bedrock was encountered, it was classified as shale.

2.6 Aquifer Conditions

Groundwater impacts to the subject site are within unconsolidated alluvium of the Equus Beds system. The Equus Beds consist of alluvial deposits that underlie and border the

Arkansas River. The water table in the Equus Beds aquifer varies from as little as 10 feet bgs near the Arkansas River to much greater depths farther away. Monitoring wells on site generally indicate ranges from 8 to 14 feet bgs. Monitoring data also indicate shallow ground water flow the southeast, parallel to the direction of the Arkansas River and consistent with surrounding regional conditions.

The Equus Beds system is generally characterized as a slow moving aquifer with a groundwater velocity of 300 to 500 feet per year (KGS, 1983). Historical pump test data from the adjoining Cessna/Eaton site and the IMC Salt facility to the southwest have indicated variable hydraulic conductivities in the range of 517 to 2891 feet/day (Burns & McDonnell). These findings suggest higher velocity conditions may exist in localized areas of the site, upwards of 1,000 feet per year under high-flow conditions.

The most notable aspect of regional ground water quality in the Hutchinson area is the high salt (chloride) levels. Both naturally occurring and anthropogenic sources (e.g. oil fields & salt mining) have contributed to these conditions. The biodegradation of chlorinated solvents in groundwater also produces chlorides, yet this influence appears to be minimal in comparison to other documented sources.

2.7 Groundwater Chemistry

Recent monitoring data indicate slightly aerobic conditions with relatively neutral values for pH and oxidation-reduction potential (ORP). The occurrence of cDCE in downgradient portions of the site indicates reductive dechlorination is already occurring to some degree. Other specific oxidation-reduction ("redox") parameters are either inconclusive or suggest groundwater conditions that are limited in the ability to consistently support the dechlorination of TCE beyond the cDCE byproduct. Vinyl chloride (VC) or other byproducts beyond cDCE have not been identified to date.

Monitoring data report depleted levels of nitrate as a competing electron acceptor; however, reported levels of iron and sulfate are relatively abundant in the system. Indications of sulfate (to sulfide) or other highly reducing conditions have not been identified to date. Indications of intermediate reductions such as chemically reduced iron (to ferrous iron) and/or manganese are generally inconclusive. As such, competing electron accepters on a significant scale appear to include oxidized manganese (IV), ferric iron, and sulfate.

The presence of cDCE may be an indicator of limited biological activity. Yet available data suggest limited anaerobic degradation with not dechlorination byproducts beyond cDCE. Based on these conditions, groundwater amendments are necessary to produce and maintain anaerobic microbial growth and highly reducing conditions over time. Other chemical and physical parameters generally indicate neutral and non-toxic conditions amenable to reductive dechlorination with the appropriate groundwater conditioning.

Figures 3 and 4 provide isoconcentration diagrams contouring recent TCE and cDCE concentrations. Figures 5 and 6 provide isoconcentration diagrams contouring ORP and total organic carbon (TOC) as critical geochemical parameters.

3.0 FIELD METHODS

3.1 Technical Approach

GSI injected emulsified vegetable oil (EVO) into areas of TCE contamination to manipulate specific groundwater conditions. Based on case study of this remedial technology, the EVO (concentrated electron donor) will initiate a step-wise series of reactions to reduce ORP, dissolved oxygen, and competing electron acceptors in the groundwater system. Oxygen depleted and chemically reducing conditions will then support specific chemical and biological processes to further enhance the dechlorination of TCE and related contaminants.

EVO distributed throughout the treatment zone collides with the aquifer material and gradually builds as a long-lasting carbon source. In contact with groundwater, emulsified oils are fermented to molecular hydrogen (H_2) and acetate by naturally occurring microorganisms. The hydrogen and acetate are then used as a carbon and energy source for enhanced microbial growth. Enhanced biological activity ultimately produces the anaerobic and reducing conditions required for reductive dehalogenation.

GSI introduced the EVO groundwater amendment using direct-push (Geoprobe®) methods and in-situ dispersion at target subsurface treatment intervals. GSI initiated the remedial design as two (2) injection formations within defined areas of the groundwater plume where TCE levels are highest (i.e. near MW-27 and GMW-8). The specific injection points were configured in barrier formations intercepting the center point of the TCE plume.

GSI implemented a Performance Monitoring Program to evaluate the performance of the remedial design. Performance monitoring was initiated as a "baseline" monitoring event consistent with the pre-established monitoring program for the site. Subsequent performance monitoring included interim and first quarter sampling as defined in the approved Remedial Design Plan.

The following sections detail the specific injection methods applied by GSI. Appendix C provides a photograph log of specific field activities. Baseline, interim, and first quarter performance monitoring are presented under Section 4.0.

3.2 Injection Formations & Design Rationale

GSI initiated the remedial design as two (2) injection formations within the highest TCE concentrations as indicated above. The first formation ("Area 1") was located in the center of the plume near MW-27. The second formation ("Area 2") intercepted the downgradient end of the plume near GMW-8.

Each formation was comprised of 10 injection points in a row oriented perpendicular to the documented hydraulic gradient. Each injection point along the formation was spaced approximately 19-21 feet apart, comprising barriers of approximately 185 to 195 feet. The distribution of the barriers was designed to extend through the most concentrated areas of

impact, based on the 5.0 micrograms per liter (μ g/L) contour lines established through previous monitoring. The spacing between points was based on the proposed injection volumes and an effective porosity in the range of 0.30 to 0.40, adjusted to account for preferential dispersion pathways. Although difficult to predict, injection spacing was also determined by the area of radial influence estimated by the EVO manufacturer.

Figure 2 illustrates the two injection formations over the areal base map. Figures 7 and 8 illustrate the specific injection points based on field survey data.

3.3 Direct-Push Injection Methods

GSI applied direct-push methods (Geoprobe® Model 6620) to hydraulically advance injection borings and introduce the EVO chemical amendment. Injection borings were advanced, retracted, and subsequently abandoned with bentonite following the baseline direct-push operations presented in the approved Pre-Design Work Plan. Both formations comprised a total of 20 direct-push injection points.

The advancing tip of the Geoprobe® tool string was equipped with a 41-inch stainless steel screen-point (Geoprobe® SP-15) to distribute the amendments in-situ at specific subsurface intervals. Each injection boring was advanced to approximately 28 feet bgs, then retracted at intervals of approximately 2-4 feet for "bottom-up" injections. This process continued upward to a depth of approximately 12 feet bgs – i.e. comprising a total injection interval of approximately 16 feet.

Groundwater amendments were introduced as liquid blends through a batch tank and feed line at the surface. An injection machine was used to inject the materials through positive pressure generated from a pump at the surface. The material was delivered through high-pressure nylon tubing extending from the machine, through the tool string, and into the injection screen for subsurface distribution. Figure 9 provides a schematic illustrating the tool string design used to inject the materials.

The chemical amendment and water blend was injected at relatively low surface pressures maintained at approximately 18 to 22 pounds per square inch (psi). This resulted in the injection of approximately 10 to 15 gallons per minute (gpm) within each injection interval. Table 3 of Appendix B details the pressure readings recorded during the injections. Field logs are included in Appendix D.

3.4 Injection Amendments

GSI injected emulsified vegetable oil (EVO) as the chemical amendment and carbon source to enhance the availability of electron donor. This process was also applied as a means to reduce the mobility of TCE and similar contaminants as these compounds absorb to the oil droplets introduced into the system. Each batch of material was visually assessed and blended in the field according to the Design Plan prior to use. The emulsified oil was prepared for batch delivery to the site using patented emulsification processes established and applied by Terra Systems, Inc. The EVO product was supplied as SRS®-FRL large droplet EVO substrate containing at least 60% (by weight) food grade vegetable oil. The EVO product was enhanced with proprietary carbon source release and nutrient blends containing sodium lactate, yeast extracts, nitrogen/phosphorus, and Vitamin B12. In addition, this EVO product is prepared with a relatively large mean droplet size (5 micron) and contains a proprietary anionic emulsifier for maximum retention in the aquifer.

Injection points were established in two barrier formations as previously described. The EVO material was diluted with clean water by a factor of 10 to enhance the transport of the emulsion into and through the treatment zone. Each dilution was prepared at the surface in dedicated batch tanks prior to the injections. Dilution water was supplied by a water hydrant on site connected to the City water supply system.

The EVO-water blend was injected at a rate of approximately 25 to 30 gallons per vertical foot within the treatment interval – i.e. 2.5 to 3.0 gallons of EVO product per vertical foot. This rate was established based on geochemical conditions, estimated dispersion, and stoichiometric calculations for electron donor demand. The injection rate was also supported by commercial volume calculators available through the EVO provider. The treatment interval extended from approximately 12 to 28 feet bgs to address the most concentrated areas of impact and treat the target area captured by the existing shallow monitoring wells.

The injection details presented above resulted in the addition of approximately 45 gallons of EVO product per location, or approximately 450 gallons of the EVO-water solution. This approach resulted in the injection of approximately 450 gallons (or 3,640 pounds) of EVO product in each barrier formation. As such, GSI injected a total of approximately 9,000 gallons of the EVO-water solution (900 gallons EVO product) throughout the course of the project.

3.5 Deviations from Remedial Design

The EVO product and solution volumes indicated above differ from the totals projected in the Final Remedial Design Plan. This variation is due to the use of the more concentrated SRS®-FRL product (i.e. 60% oil content by weight), rather than the 46% oil content EVO product used in the previous estimates. Using the SRS®-FRL product weight of 8.09 lb/gal, these adjustments reflect slightly higher totals for the amount of vegetable oil injected by weight.

GSI adjusted the injection formations to 10 points each based on the location access and surface conditions encountered in the field (e.g. fence lines, etc.). The amount of EVO per location was adjusted accordingly to distribute equivalent EVO volumes per formation. Spacing between individual points was also slightly adjusted in response to these same conditions.

3.6 Monitoring Well Installations

3.6.1 Installation Methods

GSI installed of two (2) additional one-inch diameter monitoring wells directly downgradient of each barrier formation. These monitoring points were located to better assess the effectiveness of the chemical injections in a direct "before/after" alignment. Field activities were performed by GSI as a Kansas-licensed driller, following the procedures and technical oversight established in the Remedial Design Plan Addendum dated June 19, 2014. Figure 2 and the subsequent contour maps illustrate the new "TMW-1" and "TMW-2" locations.

Monitoring wells were installed using the dual-tube capabilities of the Geoprobe® Model 6620 rig. Specifically, each well was advanced to approximately 24 feet bgs using a 3.5" dual-tube core barrel. Subsurface soil profiles were observed and logged during advancement; however, soil samples were not collected for further screening or laboratory analysis. Each well was installed and completed through the following methods:

- Installation of 10 feet of one-inch diameter, 0.010-inch machine slotted PVC well screen with a threaded bottom cap. One-inch PVC riser pipe to the surface.
- Addition of pre-sieved silica sand for annular sand pack around the well screen from the bottom of the boring to approximately 4 feet above the top of the well screen. Sealed with bentonite from top of sand pack to approximately 2 feet bgs. Soil/gravel backfill to the surface.
- Flush mount well completions using concrete pads and bolted steel well enclosures. The top of the PVC casing was secured with a locking plug within the enclosure consistent with industry practice and KDHE monitoring well completion requirements.

Monitoring well installation and WWC5 well registration records are provided in Appendix E. Well development and sampling methods are discussed in the following sections.

3.6.2 Monitoring Well Development

The new monitoring wells were developed 2 to 4 days following the installations. Each well was developed consistent with industry practice and KDHE well development requirements, generally by groundwater surging within the screened interval using a well developer. Groundwater purging and sediment removals occurred until visual turbidity was reduced. Approximately five borehole volumes of purge water were removed from each well during development. Stable readings (generally within 10%) for pH, temperature, and specific conductivity were established in the wells prior to sampling. Monitoring well development records are included in Appendix D.

3.7 Underground Injection Controls

Field operations were implemented in accordance with the Underground Injection Control (UIC) Permit issued by the KDHE Bureau of Water. Each point was plugged with bentonite and restored to the surface similar following the injection to preexisting conditions. The two permanent monitoring wells were completed at the surface with secured well vaults and concrete pads. Monitoring well installation records are provided as Appendix E. The UIC Application and KDHE authorization is provided as Appendix F.

3.8 Field Documentation

GSI surveyed the new monitoring wells and injection points using high-resolution (sub-meter) GPS equipment in the field. Monitoring well elevations were established to 0.01 ft accuracy at top of casing using differential leveling in relation to other surveyed wells within the same area. GPS data for the injection points are provided in Table 3 of Appendix B. GPS data for the new well installations are indicated in the well installation logs included in Appendix E. These measurements are also reflected in the scaled site diagrams in Appendix A.

Field logs were maintained by GSI through the duration of the project. These records include performance logs documenting specific injection details, field monitoring data, and other related field measurements used to document implementation of the Remedial Design. Field logs are attached as Appendix D.

4.0 PERFORMANCE MONITORING

4.1 Field Sampling Methods

The baseline sampling event was completed in July 2014, approximately 30 days prior to the EVO injections. The first quarter monitoring event was completed on October 2014, approximately 11 weeks following the injections ("Quarter 1"). Additionally, GSI completed various rounds of interim monitoring as discussed under Section 4.7 below.

Consistent with the Monitoring Program established in the Final Design Plan, GSI obtained water level data and groundwater samples from several monitoring wells in place for the Groendyke facility and other regional monitoring networks. The baseline event included sampling of 16 target wells with water level measurements from four (4) additional locations. Similarly, the first quarter monitoring event included sampling of 17 monitoring wells with water level measurements from two (2) additional locations. Interim and first quarter sampling also included sampling of the new monitoring well locations as indicated under Section 3.6. Monitoring well locations are identified on Figure 2 of Appendix A and the following isoconcentration maps.

Static groundwater levels and total well depth measurements were collected from each well prior to sampling. Groundwater samples were then collected using controlled-flow, parametric

sampling methods consistent with KDHE low-flow sampling guidelines. Samples were recovered using a submersible pump in connection with a low-flow controller and flow-thru cell for direct groundwater quality measurements.

Due to limited groundwater yield and casing restrictions, low-flow sampling procedures were not applied during baseline sampling of one-inch wells GMW-1, GMW-2, GMW-3, and GMW-4. Alternatively, these three wells were sampled with a check valve and dedicated tubing following volumetric purging procedures consistent with industry practice – i.e. following removal of three well casing volumes. In response to these conditions, GSI used a peristaltic pump to retrieve groundwater from the one-inch wells (including the new TMW-1 and TMW-2 installations) for interim and first quarter sampling. This sampling was performed using controlled flow methods and a flow-thru cell as described above.

GSI monitored specific water quality parameters for water column stability prior to sampling. These parameters included temperature, pH, specific conductivity, ORP, and dissolved oxygen (DO). Stable parameters, generally within 10 percent for at least three consecutive readings, were demonstrated prior to sampling. Static water level readings generally indicated limited draw-down on purging, using optimum low-flow rates of approximately 400 to 600 milliliters per minute (mL/min). Field parameters are discussed in the results sections of this report.

GSI collected groundwater samples after field monitoring indicated stable conditions as discussed above. Samples were collected directly from dedicated polyethylene tubing into preserved, laboratory-supplied sample containers with minimal agitation. Samples were placed on ice in a dedicated sample cooler and maintained under chain-of-custody.

4.2 Laboratory Methods

GSI submitted each groundwater sample for full-range volatile organic compound (VOC) analysis by Method 8260B. In addition, geochemical samples were obtained from target monitoring locations to provide results for critical natural attenuation parameters before and following the EVO injections. Geochemical sampling was performed at 5 locations during the baseline event, 4 interim locations, and 7 locations during first quarter monitoring. Tables 4 and 5 of Appendix B outline the specific monitoring wells sampled for VOCs during each respective event. Table 6 outlines the monitoring wells subject to geochemical testing.

Laboratory procedures were performed by ESC Lab Sciences in Mount Juliet, Tennessee ("ESC") and Pace Analytical Services in Lenexa, Kansas ("Pace"). Both facilities are accredited through the KDHE Environmental Laboratory Accreditation Program for the specific analytical methods performed.

4.3 Water Level Conditions & Groundwater Flow

Static water level data from both the baseline and first quarter monitoring events indicate an overall groundwater flow to the southeast consistent with the previous semi-annual events. In general, baseline water level elevations were slightly higher than the previous December 2013 monitoring event. Observed first quarter water elevations were slightly lower than both the December 2013 and July 2014 monitoring events. Significant anomalies were not observed. The Groundwater Flow Map is presented as Figure 2 of Appendix A. Groundwater elevation measurements are presented in Table 1 of Appendix B.

4.4 Baseline Monitoring Results

Baseline monitoring indicated TCE concentrations above laboratory detection limits in 13 of the 16 monitoring wells sampled during this event. As previously described, the new TMW-1 and TMW-2 monitoring wells were not installed at the time of the baseline event. The laboratory data tables in Attachment B present historical and baseline VOC results in full detail.

Consistent with previous events, the highest concentrations of TCE were reported at locations GMW-8S and MW-27S, with reported TCE levels of 150 and 48 micrograms per liter (μ g/L), respectively. TCE concentrations above the KDHE Tier 2 Risk-Based Standard (RSK) of 5.0 μ g/L were also identified in monitoring wells GMW-1, GMW-6S, GMW-7S, GMW-9S, GMW-10S, CMW-10S, MW-15, and MW-28S at levels ranging from 7.2 to 24 ug/L. Figure 3A provides a TCE isoconcentration diagram illustrating the groundwater plume based on these results.

Cis-1, 2-dichloroethylene (cDCE) was reported above laboratory detection limits in 10 of the 16 monitoring wells. Monitoring wells GMW-6S and GMW 8S indicated cDCE concentrations of 84 and 98 ug/L, respectively. These levels exceed the KDHE Tier 2 Standard of 70 μ g/L. Other reported concentrations do not exceed the 17 μ g/L detection at GMW-9S. Figure 4A provides a cDCE isoconcentration diagram illustrating these results.

Non-detect levels of TCE and cDCE were limited to monitoring wells CMW-10D, GMW-3, and GMW-4. These locations are upgradient of the drainage canal where TCE levels appear to be decreasing. The CMW-10D location reflects a deeper well screened below the documented limits of the shallow plume. Baseline monitoring did not identify *trans*-1,2-DCE or vinyl chloride concentrations above laboratory detection limits.

Downgradient locations GWM-6S, GMW-8S, GMW-9S, and MW-27S indicated tetrachloroethylene (PCE) levels above laboratory detection limits. These conditions are discussed further under Section 4.5 below.

Additional baseline VOC detections included acetone, sec-butylbenzene, 1,1-dichloroehane (DCA), and 1,1,1-trichloroethane (TCA) at residual levels below applicable KDHE standards. Acetone and sec-butylbenzene in the GMW-4 sample do not correspond with elevated levels of TCE or other chlorinated solvents. Trace levels of 1,1-DCA and/or 1,1,1-TCA were reported in

the GMW-5S, GMW-6S, GMW-8S, and GMW-9S samples in combination with low to moderate levels of TCE.

4.5 First Quarter Monitoring Results

First quarter monitoring indicated TCE concentrations above laboratory detection limits in 15 of the 17 monitoring wells sampled during this event. Consistent with the previous events, the highest concentrations of TCE were reported at locations GMW-8S and MW-27S, in addition to the new TMW-2 location. These wells indicated respective TCE levels of 150, 64.2, and 67.2 ug/L, compared to the KDHE Tier 2 Standard of 5.0 ug/L. TCE levels above the KDHE standard were also reported at monitoring wells GMW-1, GMW-6S, GMW-7S, GMW-9S, GMW-10S, CMW-10S, MW-15, and MW-28S, and TMW-1 at levels ranging from 5.1 to 24.6 ug/L. Figure 3B provides a TCE isoconcentration diagram based on these results.

Cis-1, 2-dichloroethylene (cDCE) was reported above laboratory detection limits in 12 of the 17 monitoring wells sampled during this event. Location GMW-8S indicated the highest cDCE detection of 99.8 ug/L, relative to the Tier 2 Standard of 70 ug/L. Although below the Tier 2 limit, locations GMW-6S, TMW-2, and GMW-9S (duplicate sample) also indicated notable cDCE concentrations of 48.6, 59.7, and 19.8 ug/L, respectively. Other reported concentrations do not exceed the 3.7 μ g/L detection at MW-15. Overall, reported cDCE concentrations are also very consistent with the baseline monitoring conditions. Figure 4B provides a cDCE isoconcentration diagram illustrating these results.

Non-detect levels of TCE and cDCE were limited to monitoring wells GMW-5S and GMW-6I. The GMW-5S location generally defines the northern limit of the TCE in downgradient areas to the southeast. The GMW-6I well represents an intermediate monitoring interval of approximately 35 to 45 feet bgs. The historical and ongoing absence of TCE in intermediate and deep monitoring intervals defines the vertical extent of the groundwater plume.

Similar to the baseline event, first quarter monitoring did not identify *trans*-1,2-DCE or vinyl chloride concentrations above laboratory detection limits. These parameters have remained below detection limits since scheduled monitoring began in 2006.

Downgradient locations GWM-6S, GMW-8S, GMW-9S, and MW-27S indicated PCE levels very consistent with the baseline monitoring event. The GMW-8S sample indicated PCE at 8.1 ug/L, compared to the baseline concentration of 9.3 ug/L. Both results exceed the Tier 2 Standard for PCE of 5.0 ug/L. This detection correlates with the highest levels reported for TCE as discussed above. The remaining PCE detections also correlate with elevated TCE in groundwater but do not exceed 2.4 ug/L. PCE was not identified upgradient of the MW-27 location consistent with other recent monitoring.

Trace levels of 1,1-DCA and/or 1,1,1-TCA were reported in the GMW-6S, GMW-8S, and GMW-9S samples. These compounds were reported in combination with low to moderate levels of TCE consistent with the baseline results. DCA was also indentified in TMW-2. Reported levels reflect residual detections below applicable KDHE standards.

Table 2 provides first quarter monitoring results for TCE and related degradation products in relation to historical data. Table 5 provides first quarter VOC results in full detail. The laboratory analytical reports are provided in Appendix G.

4.6 Historical VOC Trends

Historical TCE and cDCE concentration trends remain consistent with the findings of the baseline and previous semi-annual monitoring events. Specific VOC trends and notable conditions are detailed below:

- The most concentrated areas of TCE in groundwater remain in the vicinity of MW-27/TMW-1 and GMW-8/TMW-2. These impacts are downgradient of the documented source near CMW-10S and suggest dissolved phase TCE migration in concentrated masses (or "waves") over time. TCE levels at CMW-10S have consistently decreased from a peak of 190 µg/L in 2003 to the baseline and first quarter concentrations of 4.1 and 5.1 ug/L, respectively.
- TCE levels in the downgradient MW-27S well have generally decreased from a peak of 200 µg/L in 2009 to baseline and first quarter concentrations 48 and 64.2 ug/L, respectively. TCE levels directly upgradient and downgradient of this location decrease considerably and further suggest the non-continuous or very narrow movement of higher levels of TCE within the system.
- Historical results similar to MW-27S are also apparent in the TCE results for GMW-1, GMW-2, and MW-28S. Each of these locations indicated peak concentrations through various events conducted between 2007 and 2009. These results further demonstrate the mass movement of TCE to the southeast over time. As expected, peak levels at the GMW-1 and GMW-2 locations precede peak concentrations at MW-27S.
- TCE levels in the far downgradient GMW-8S well have consistently increased from a concentration of 50 ug/L in 2012 to 150 ug/L during the baseline and first quarter events. Similar to the above, reported TCE levels directly upgradient of GMW-8S continue to suggest the non-continuous or narrow movement of higher levels of TCE within the system.
- Locations GMW-9S, TMW-2, and MW-15 indicated respective TCE levels of 13.3, 24.6, and 67.2 ug/L near the southeast property line. The GMW-9S and MW-15 results are slightly higher than the 2013 and baseline monitoring results. First quarter results suggest the potential for TCE migration beyond the existing well network.
- The highest levels of cDCE remain at locations GMW-6S, GMW-8S, and GMW-9S with first quarter concentrations of 48.6, 99.8, and 18.1 ug/L, respectively. Reported cDCE at GMW-6S decreased from 84 ug/L during the baseline event, which represented a concentration spike relative to the previous results. Elevated cDCE correlates well with

higher levels of TCE; however, some trailing edge influences are apparent as TCE moves to the southeast.

- Vertical migration of TCE to deeper intervals has not been identified to date. Monitoring
 wells installed at "intermediate" and "deep" intervals have consistently indicated nondetect results since 2003. Similarly, first quarter monitoring of GMW-6I did not indicate
 VOC concentrations above laboratory detection limits.
- Detectable levels of PCE were identified at four (4) downgradient locations
 east/southeast of the drainage canal. PCE above the Tier 2 Standard at location GMW 8S correlates with the highest levels reported for TCE. The remaining PCE detections
 also correlate with elevated TCE. These results suggest commingled PCE within
 downgradient areas of the plume, generally at concentrations an order of magnitude less
 than reported TCE levels. Available data are not indicative of a PCE source within the
 limits of the plume; however, potential secondary sources and PCE migration should be
 evaluated through future monitoring of the site.
- Other low-level VOC detections from the baseline and first quarter events include 1,1-DCA, 1,1,1-TCA, acetone, & sec-butylbenzene below KDHE standards. These detections do not appear to represent significant groundwater conditions related to ongoing monitoring or performance of the remedial design.
- Groundwater monitoring to date has not reported vinyl chloride groundwater. These data indicate that reductive dechlorination has not progressed beyond cDCE.

4.7 Interim Monitoring Results

GSI performed additional "interim" monitoring of paired locations MW-27S/TMW-1 and GMW-8S/TMW-2 as marked center points directly upgradient and downgradient of the EVO injections. GSI obtained additional field and laboratory samples from the four interim reference locations the same week of the remediation work ("Week 0") and at subsequent intervals of one week, two weeks, and four weeks following the injections. The purpose of this sampling was to better demonstrate localized conditions immediately following injection of the EVO carbon source.

The initial "Week 0" sampling included field, laboratory VOC, and laboratory geochemical parameters consistent with baseline and quarterly monitoring. The subsequent interim events included field parameters only. Table 7 provides a summary of the critical interim sampling parameters.

Interim results for dissolved oxygen are sporadic and may fluctuate due to the sampling methods applied – i.e. use of peristaltic pump for one-inch wells. Locations TMW-1 and TMW-2 indicated negative ORP during the initial interim event and/or first quarter monitoring, but these results are also sporadic and do not reflect reducing conditions on a consistent basis.

No significant interim variations were observed with PCE, TCE, cDCE, or other target geochemical parameters. Additional VOC detections were limited to trace levels of PCE, trans-1,2-DCE and 1,1-DCA in the downgradient GMW-8S sample This consistency suggests the desired chemical and biological processes are likely to over period of several months to years, rather than weeks. Expanded geochemical evaluations are presented in Section 4.8 below.

4.8 Geochemical Evaluation

Field parameters including dissolved oxygen, ORP, and pH were collected in conjunction with low flow sampling during the baseline, first quarter, interim monitoring events. Samples from target monitoring wells were evaluated for additional chemical parameters following the Sampling Program outlined in the approved Design Plan. These target wells include, TWM-1, TMW-2, GMW-6S, GMW-8S, MW-15, MW-21, and MW-27S based on specific upgradient and downgradient locations within the TCE plume.

All field parameters from low-flow sampling are recorded in the field logs in Appendix D. Geochemical results including laboratory data are provided as Table 6. Table 7 provides additional geochemical results obtained through interim monitoring. Specific parameters are detailed below:

<u>Dissolved Oxygen</u> – Reported dissolved oxygen levels range from <0.10 up to 1.05 mg/L. Most results fall within the range of 0.10 to 0.80 mg/L. Conditions consistently below 0.5 mg/L (generally considered to be anaerobic) have not been observed in any target well locations to date. Baseline sampling reported anaerobic levels <0.20 mg/L; however, interim and first quarter results do not support these conditions. These findings may be attributable to several variables including seasonal fluctuations, equipment performance, and slight differences in the specific field methods applied (e.g. submersible pumps vs. peristaltic, etc.).

The increase in dissolved oxygen observed following the baseline event may be associated with localized oxygen introduced into the system during the direct push injections. Given this scenario, dissolved oxygen levels should steadily decrease on a relatively short scale. Better distribution of the EVO amendment over time should also deplete oxygen within and downgradient of the injection sites. Other significant dissolved oxygen trends are not apparent in the recent field data.

<u>Oxidation-Reduction Potential (ORP)</u> – Reported ORP levels mostly reflect positive values indicative of neutral groundwater conditions. Baseline ORP levels were reported in the range of 11.5 to 179 millivolts (mV), with an average ORP of 105 mV. First quarter ORP levels were reported in the range of -35 to 144 mV, with an average ORP of 91 mV. Reduced conditions are apparent in localized areas directly downgradient of the injections (i.e. TMW-1 & TMW-2); however, significant changes in the reduction potential of the aquifer have not been observed to date. These conditions are illustrated in the ORP isoconcentration diagrams provided as Figures 5A and 5B.

<u>pH & Alkalinity</u> – Reported pH levels through all sampling events indicate mostly neutral groundwater conditions generally between 6.4 and 7.0 standard units. Reported alkalinity has not changed significantly since the injection work. These data give no indications weak buffering capacity or other potentially toxic or limiting conditions.

<u>Nitrate/Nitrite</u> – Baseline and first quarter results generally indicate depleted nitrate within the aquifer. Downgradient locations TMW-2, MW-15, and MW-21 have recently indicated low levels of nitrate from 0.91 to 2.1 mg/L. Significant trends or specific indications of chemical nitrate reduction (to nitrate) are not apparent in the existing data, yet reported conditions do not suggest nitrate in groundwater as significant competition for the electron donor.

<u>Iron & Manganese</u> – Total and dissolved iron and manganese concentrations are significantly higher in the TMW-1/TMW-2 first quarter results compared to the interim sampling data. These variations may be attributable to field methods and sample turbidity; however, the increase in manganese is a potential indicator of reducing groundwater conditions. These findings also correlate with the TMW locations directly downgradient of the injection points. The presence of reduced iron (ferrous) is another indicator of reducing conditions through the intermediate iron and manganese reductions, which occur in the absence of oxygen and nitrate. Similarly, reported ferrous iron levels are highest in the first quarter results from TMW-1 and TMW-2, with field-reported levels of 3.3 mg/L at each location. First quarter sampling also indicated ferrous iron at GMW-8S and MW-15 with respective concentrations of 2.8 and 0.52 mg/L.

Other results for iron and manganese are generally inconclusive. GSI recommends continued field testing for ferrous iron as the most reliable indicator of reducing conditions beyond the reduction of nitrate. Further testing of total and dissolved manganese if of limited value based on the geochemical conditions reported to date.

<u>Sulfate/Sulfide</u> – Monitoring results document relatively high levels of sulfate within the groundwater plume. Baseline sulfate levels were reported in the range of 98 to 290 mg/L, with an average concentration of 230 mg/L. First quarter sulfate levels were reported in the range of 76 to 275 mg/L, with an average concentration of 179 mg/L. Reported first quarter sulfate levels at TMW-1 and TMW-2 are generally lower than upgradient conditions. These results may be an indicator of sulfate reduction and highly reducing conditions near the injection points. TMW-1 also indicated reduced sulfate in the chemical form of sulfide at a concentration of 0.059 mg/L. Sulfide levels above detection limits were not identified at additional locations.

Despite slightly lower levels following the injections, significant decreasing trends and sulfate reduction beyond localized points are not yet apparent. Abundant sulfate remains in the system as competition for the electron donor and should be monitored consistently through future sampling events. Better distribution of the EVO amendment over time will likely affect sulfate levels on a larger scale.

<u>Methane/Ethane/Ethene</u> – Trace levels of methane were detected at locations TMW-1 and TMW-2 through interim and first quarter monitoring. These detections may be an indicator of anaerobic fermentation, yet reported levels are far from optimum conditions in the range of 1.0 mg/L. Future methane levels should be reviewed in comparison with changing cDCE concentrations to evaluate the potential need for additional electron donor. Ethane and ethene have not been identified in groundwater to date.

<u>Chloride</u> – Reported chloride levels have not changed significantly since the injection work. Chloride levels remain in the range of 140 to 190 mg/L are consistent with documented regional conditions. Future chloride results may be limited in its use as an indicator of reductive dechlorination due to known background influences.

<u>Total Organic Carbon (TOC)</u> – Baseline TOC levels within groundwater plume generally range from 1.0 to 2.0 mg/L. Locations TMW-1 and TMW-2 directly downgradient of the injections points indicated increased TOC levels during first quarter sampling as anticipated following the injection of the carbon source. TWM-1 indicated the highest TOC concentration of 4.1 mg/L. TMW-2 increased from 1.0 to 2.1 mg/L. But reported levels are relatively modest considering the EVO volume introduced. These data suggest the distribution of the EVO substrate has been limited to date. TOC distribution is illustrated in the isoconcentration diagrams provided as Figures 6A and 6B.

Better distribution of the EVO amendment over time will be demonstrated through increasing TOC concentrations in target areas. As such, this parameter remains critical in future performance evaluations.

4.9 Data Validation

GSI submitted field duplicate and blank samples for laboratory testing to demonstrate specific data quality indicators in accordance with the Final Remedial Design Plan. These samples specifically included a rinsate blank, two trip blanks, and field duplicates for both the baseline and first quarter sampling events. Quality control samples were submitted for VOC testing following the procedures outlined in the corresponding sections of this report.

Relative percent difference (RPD) values were calculated below 11 percent for all VOCs with the exception of individual PCE and 1,1,1-TCA results. The baseline duplicate indicated an RPD value for PCE of 20.1 percent. The first quarter duplicate indicated an RPD value for 1,1,1-TCA of 22.2 percent. Rinsate and trip blank samples were non-detect for all VOC constituents. Table 8 provides quality control sample results and individual RPD calculations.

Field and laboratory samples were collected and handled following industry practice and the Pre-Design Work Plan approved by KDHE. The field logs in Appendix D document specific field sampling procedures and collection details. All laboratory samples were submitted to KDHE-accredited facilities under chain-of-custody. Chain-of-custody records and laboratory quality control packages are provided in Appendix G.

GSI validated field laboratory data in accordance with the Final Remedial Design Plan and Quality Assurance Project Plan (QAPP) Addendum to further demonstrate data usability. These evaluations included review of the duplicate and blank sample results indicated above, in addition to other data quality criteria such as laboratory holding times, detection limits, and Level II intra-laboratory controls. Based on the cumulative data validation review, project data meet established data quality objectives and are usable for valid determinations regarding the extent of environmental impacts to the subject site. The minor duplicate variances outlined above do not represent significant data quality failures or other conditions that significantly affect the overall findings of this Startup Report.

5.0 FIRST QUARTER PERFORMANCE REVIEW

GSI compared laboratory VOC results to the KDHE Tier 2 RSK Standards presented in Appendix A of the Risk-Based Standards for Kansas (RSK Manual) – 5th Revision, as amended in March 2014. These thresholds also mirror federal Maximum Contaminant Levels (MCLs) for PCE, TCE and cDCE in both residential and non-residential settings. Thirteen (13) of the 18 target wells in the current Monitoring Program indicated TCE levels above the Tier 2 Standard through the baseline and/or first quarter sampling events. Non-detect conditions were limited to intermediate well GMW-6I and shallow well GMW-3 which were not sampled during both of the monitoring events.

The overall differences in reported in VOC levels from the baseline to the first quarter monitoring events are not significant. Slight variations were observed at GMW-4, GMW-5S, and CMW-10S. The GWM-4 location indicated TCE at 4.2 ug/L following non-detect conditions during baseline sampling. This may be associated with minor widening of the groundwater plume upgradient; however, more data is necessary over time to fully assess this condition. Reported TCE at CMW-10S increased slightly from 4.1 to 5.1 ug/L. Reported TCE at GMW-5S decreased from 1.7 ug/L during baseline sampling to non-detect first quarter conditions. Both of the new TMW well installations indicated elevated TCE levels consistent with the paired MW-27 and GMW-8S locations. Figures 3A and 3B illustrate these slight modifications as TCE isoconcentration diagrams for each respective monitoring event.

Reported cDCE levels at GMW-4 and GMW-5S correlate with the TCE fluctuations as described above. The GWM-4 location indicated cDCE at 1.5 ug/L following non-detect conditions during baseline sampling. Reported cDCE at GMW-5S decreased from 2.4 ug/L during baseline sampling to non-detect first quarter conditions. Additionally, cDCE decreased at GMW-6S from 84 ug/L during the baseline event to 48.6 ug/L as reported through first quarter sampling. Both of the new TMW well installations indicated elevated cDCE levels consistent with the paired upgradient locations as indicated above. Figures 4A and 43B illustrate these slight modifications as cDCE isoconcentration diagrams for each respective monitoring event.

The presence of cDCE as a degradation product of TCE indicates ongoing reductive dechlorination to some degree. Similar conditions were observed during the baseline and previous semi-annual monitoring events. First quarter data do not yet indicate the accelerated

degradation of TCE to cDCE subsequent to the injections. The consistent absence of vinyl chloride, ethane, and ethene give no indications of dechlorination beyond cDCE.

Potential geochemical fluctuations as a result of the EVO injections are detailed above under Section 4.8. In general, first quarter data give positive indications of localized reducing conditions within the immediate vicinity of the injection points. Continued distribution of the EVO in the system should further manipulate redox-conditions sufficient for reductive dechlorination throughout the target remediation areas. Figures 5A and 5B illustrate observed ORP conditions for each respective monitoring event.

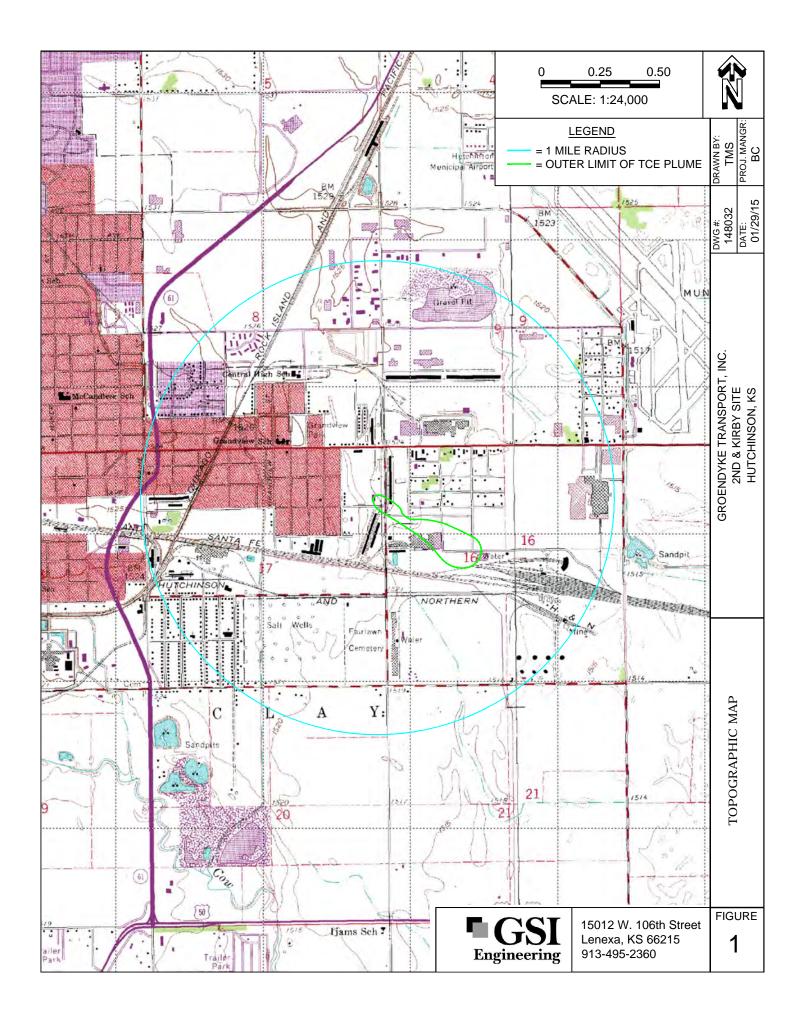
Slow moving aquifer conditions and other localized variables may delay the secondary and tertiary reactions necessary to produce more compelling results. As such, specific geochemical parameters should be monitored over extended quarterly periods to better assess overall performance, which cannot be accurately determined though one quarterly monitoring event. Alternatively, slower moving conditions may further support retention of the carbon source and product long-lasting results over a period of years. Figures 6A and 6B illustrate observed TOC conditions as an indicator of EVO distributions within the system.

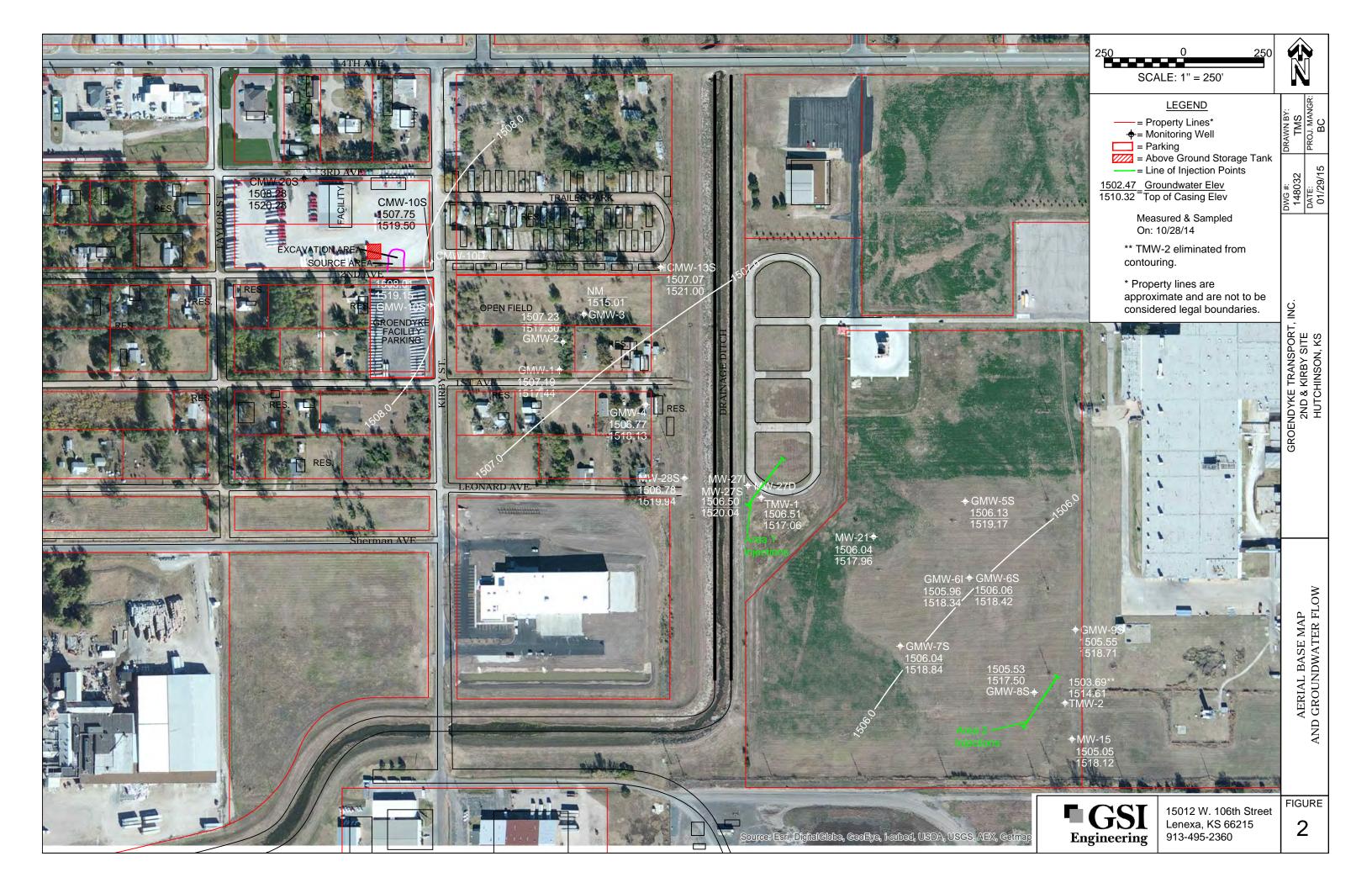
The cumulative findings of the baseline and first quarter monitoring events give preliminary indications of localized and relatively slow moving EVO distribution surrounding the injection points. Observed redox parameters report similar conditions and suggest localized reductions have been accelerated to some degree. These processes have not yet progressed to enhanced chemical or biological dechlorination; however, the desired effects apparent in the preliminary phase. Future efforts to mix and better distribute EVO in the may therefore be appropriate based on future monitoring results.

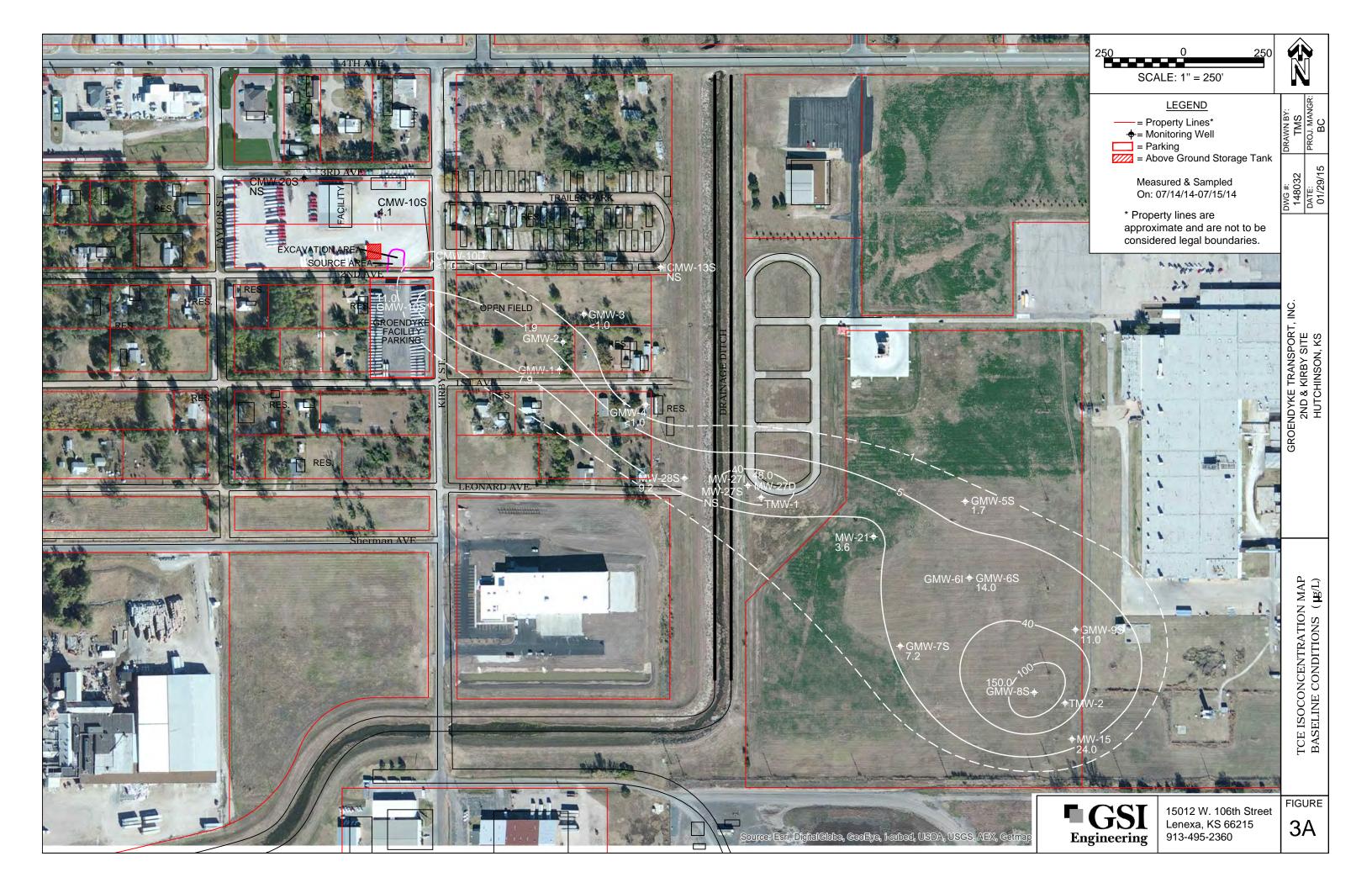
6.0 RECOMMENDATIONS

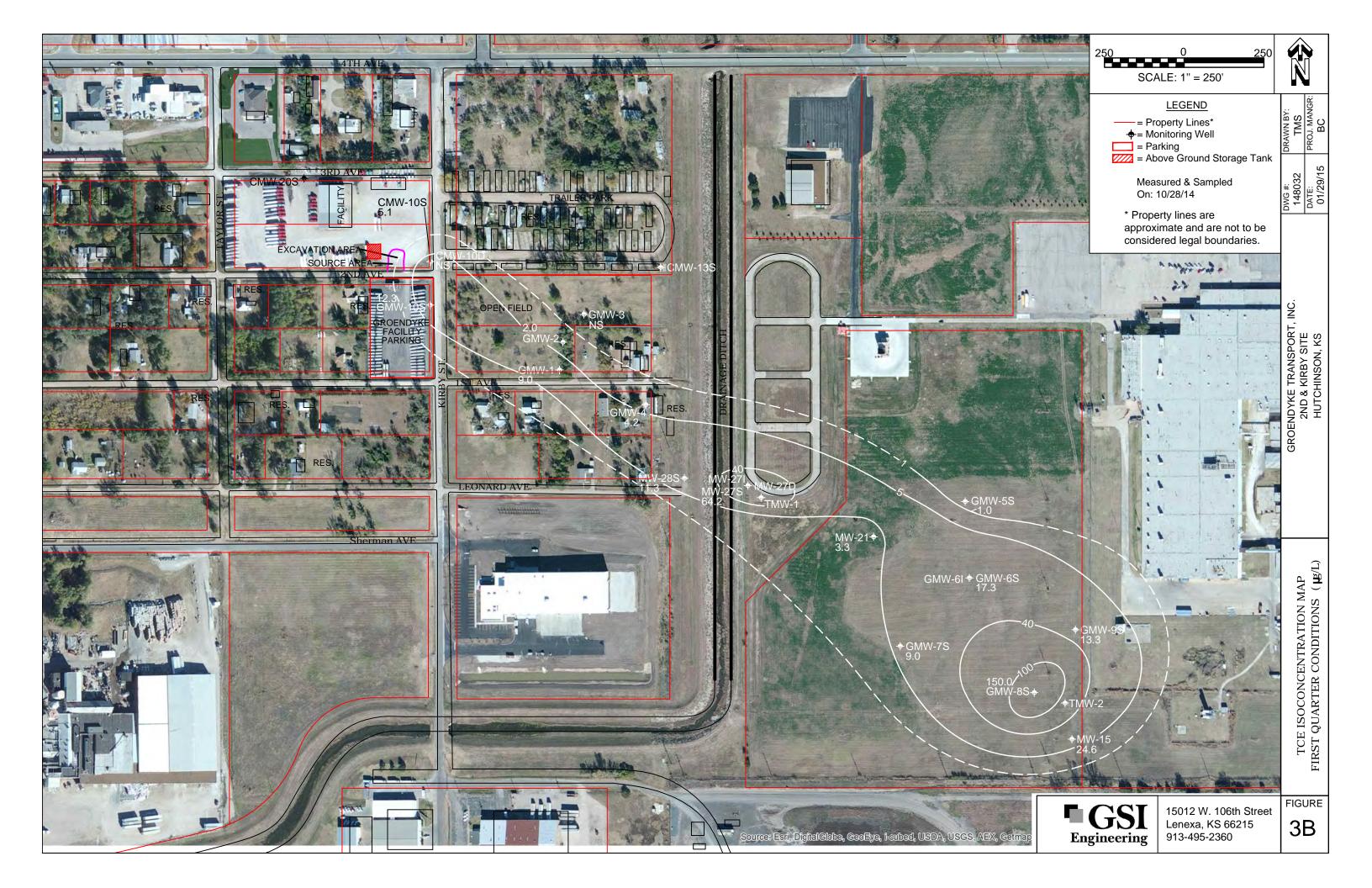
GSI recommends continued groundwater monitoring to assess the effectiveness of the EVO injections completed in August 2014. Subsequent monitoring for chlorinated VOCs and target geochemical parameters should be performed on a quarterly basis as defined in the KDHE-approved Design Plan. The next quarterly monitoring event will be completed in February 2015.

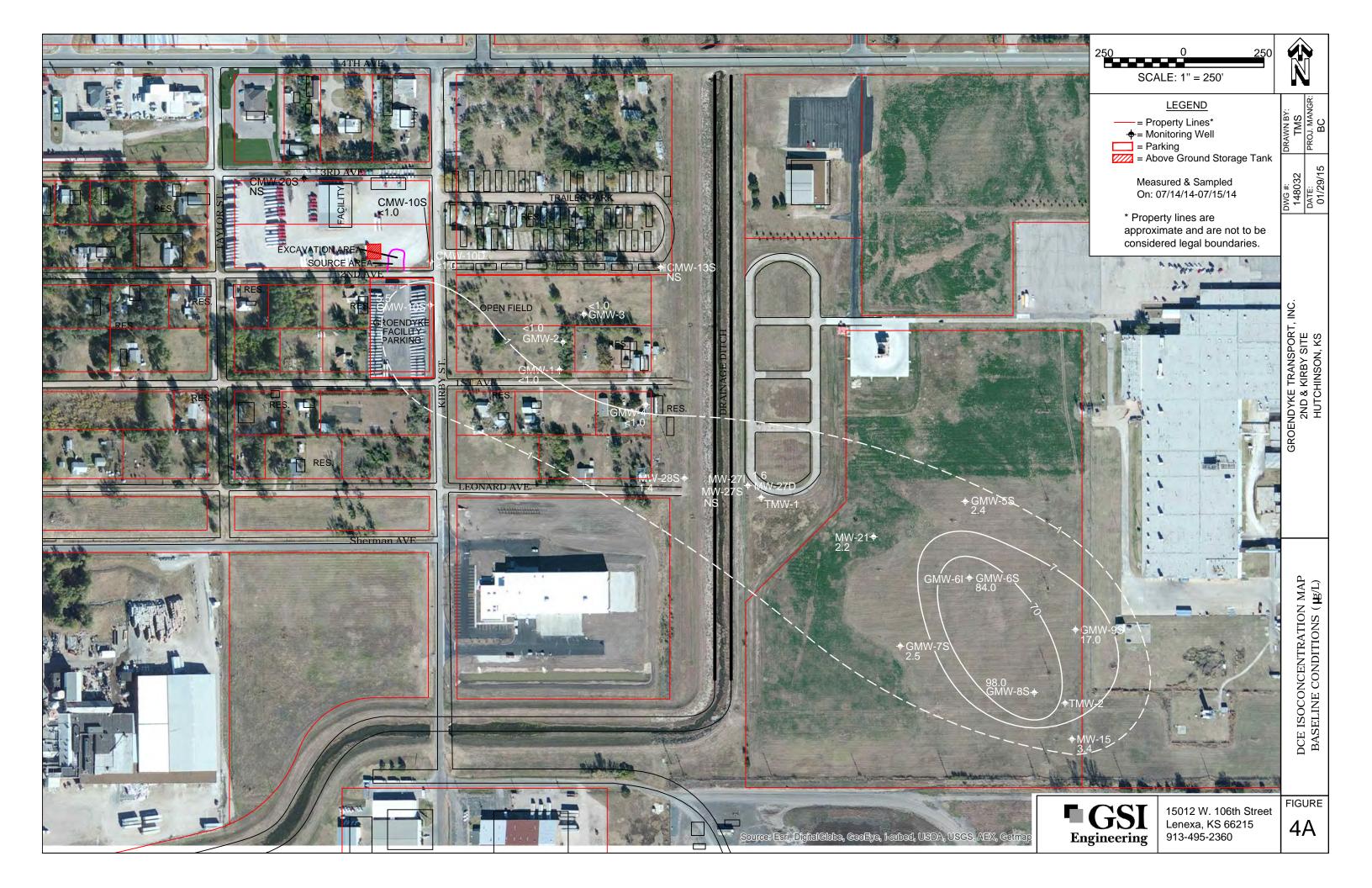
Current groundwater data indicate the existing Monitoring Program as sufficient to support the ongoing characterization of plume conditions. Program modifications and/or ancillary monitoring points may be necessary based on future quarterly reviews. Any expanded monitoring downgradient would require legal access to additional properties.

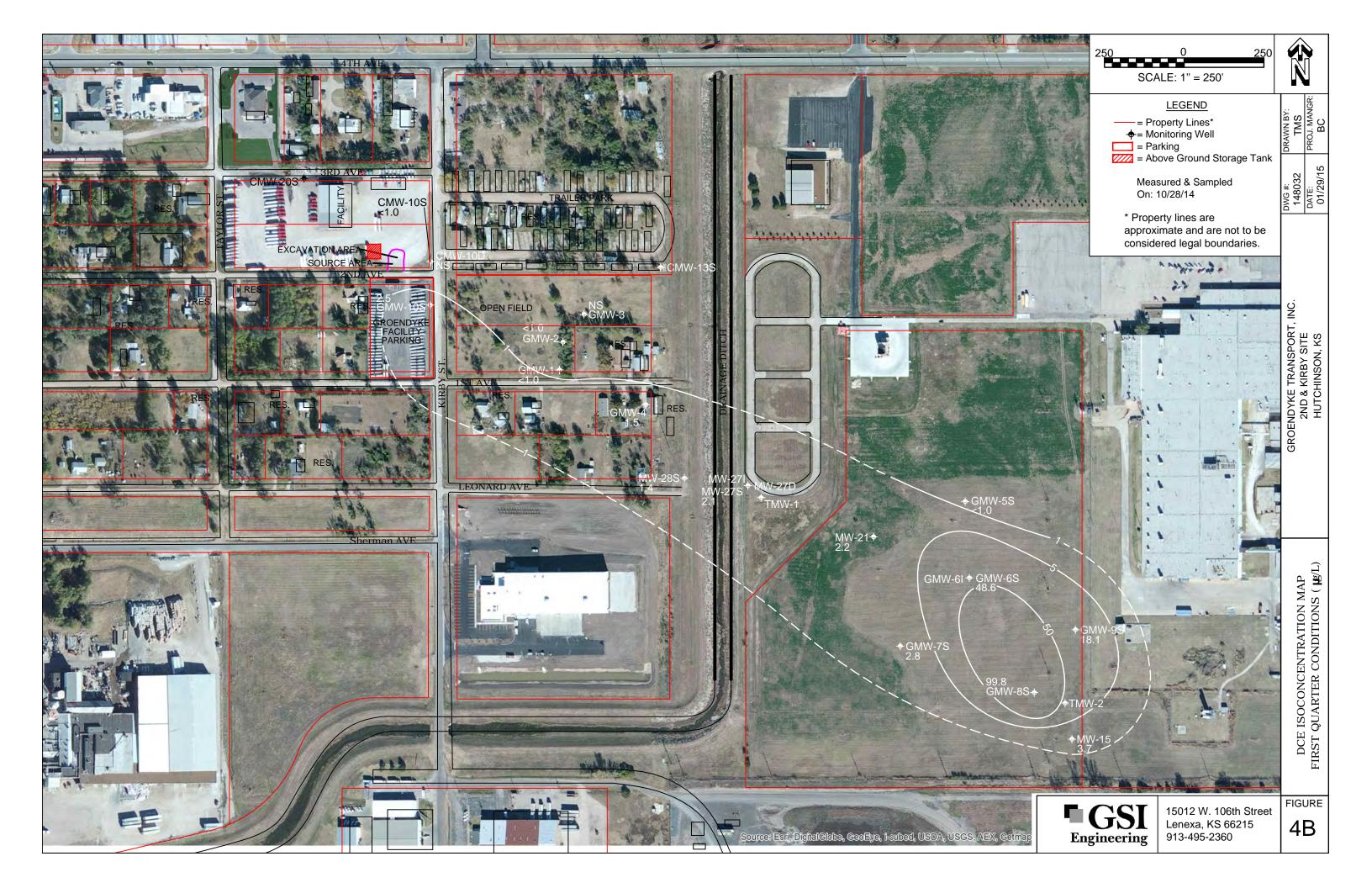

First quarter findings suggest several rounds of quarterly monitoring may be necessary to accurately determine the overall performance of the remedial design. Continued observation of limited EVO distributions may warrant specific efforts to better mix distribute the carbon source. GSI recommends at least one more round of quarterly monitoring prior to any supplemental procedures.

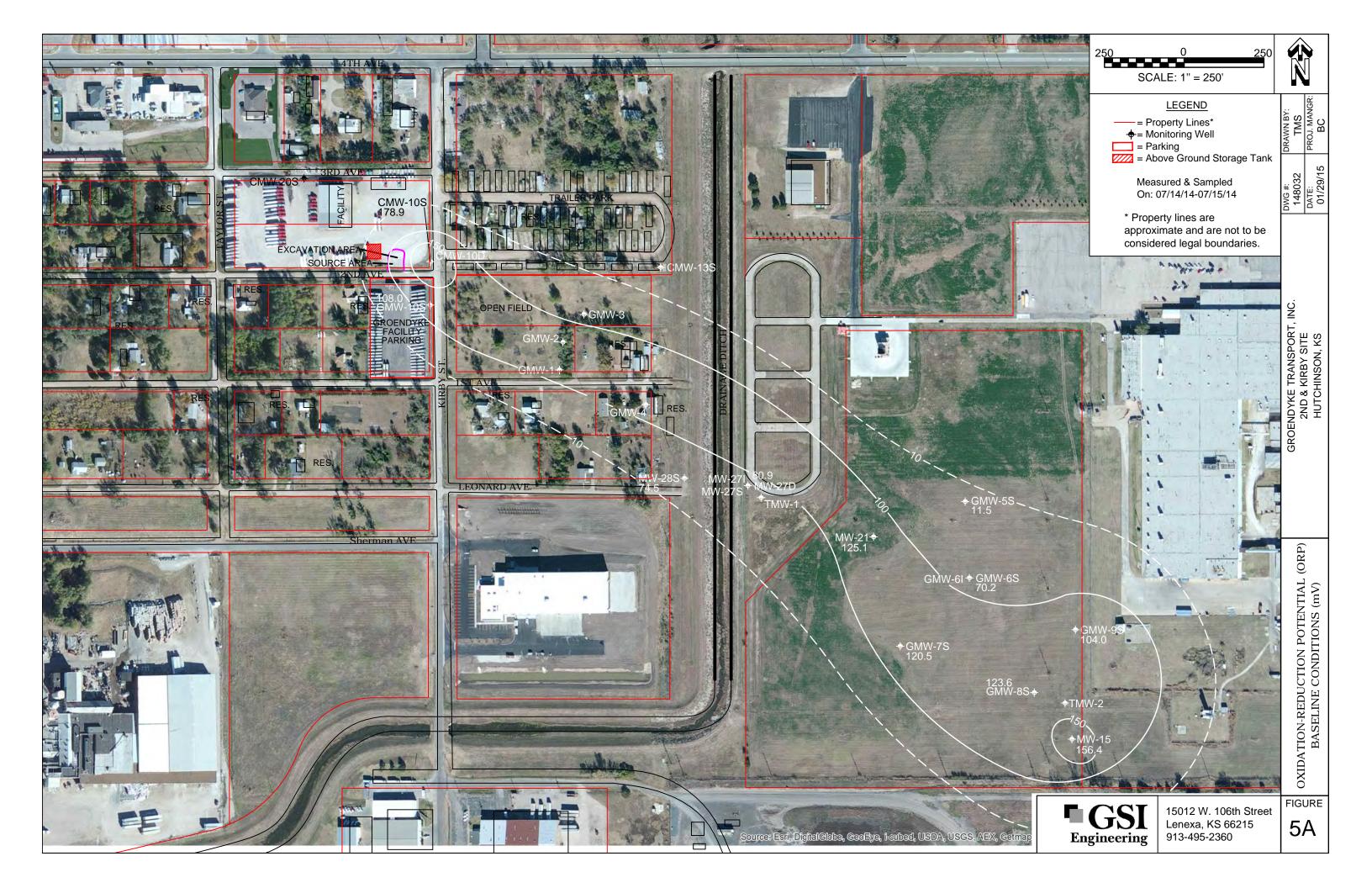

7.0 REFERENCES

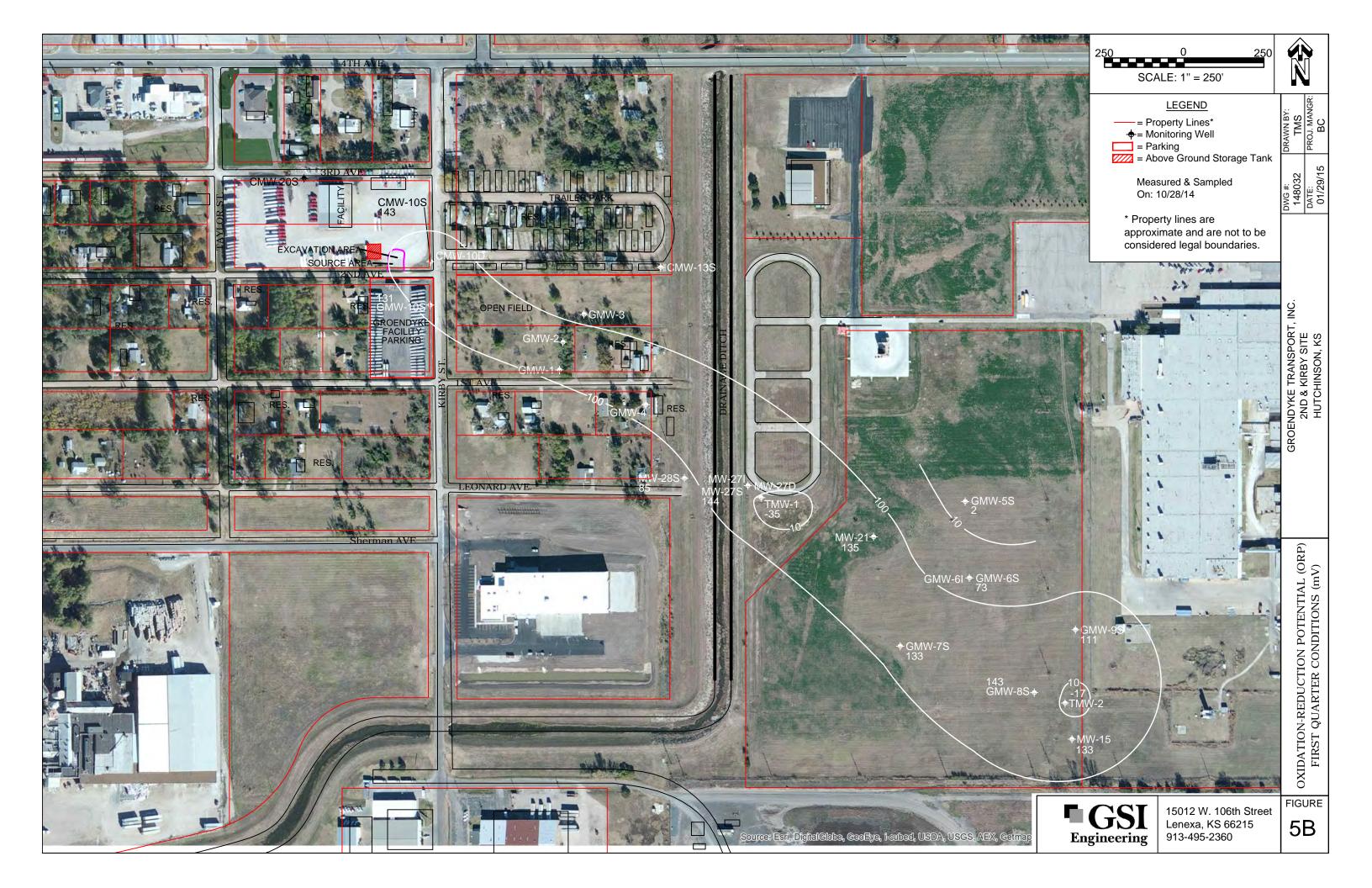

- GSI Engineering, LLC (GSI). 2014. Quarterly Groundwater Monitoring Report Baseline Event, Summer 2014, 2nd & Kirby site, Hutchinson, KS. GSI, Lenexa, Kansas.
- GSI Engineering, LLC (GSI). 2014. Remedial Design Plan Addendum, 2nd & Kirby site, Hutchinson, KS. GSI, Lenexa, Kansas.
- GSI Engineering, LLC (GSI). 2014. Groundwater Remedial Design Plan Final Revision, KDHE 2nd & Kirby site, Hutchinson, KS. GSI, Lenexa, Kansas.
- GSI Engineering. LLC (GSI). 2013. Semi-Annual Monitoring Report. 2nd & Kirby Site, Hutchinson, KS. GSI, Wichita, KS.
- GSI Engineering, LLC (GSI). 2013. Pre-Design Report. Groendyke Transport, Inc., 2nd & Kirby Site, Hutchinson, KS. GSI Wichita, KS.
- Geotechnical Services, Inc. (GSI). 2009. Pre-Design Work Plan. 2nd & Kirby Site, Hutchinson, KS. GSI Wichita, KS.
- Geotechnical Services, Inc. (GSI). 2006. Interim Remedial Measures Report. 2nd & Kirby Site, Hutchinson, KS. GSI Wichita, KS.
- KDHE. 2010. Risk-Based Standards for Kansas, RSK Manual-5th Version. Amended March 2014. KDHE Bureau of Environmental Remediation, Topeka.
- Terra Systems, Inc. 2014. Specification Sheet 60% SRS® FRL Large Droplet Emulsified Vegetable Oil (EVO) Substrate for Maximum Retention, United States Patent #RE40,448. Terra Systems, Claymont, Delaware. Available online at <u>http://www.terrasystems.net/index-2.html</u>.
- U.S. Department of Agriculture (USDA). 2000. Soil Survey of Reno County, Kansas. USDA Soil Conservation Service in cooperation with Kansas Agricultural Experiment Station.
- U.S. Environmental Protection Agency (EPA). 2014. Contaminated Site Cleanup Information, Bioremediation. EPA Office of Superfund Remediation and Technology Innovations. Available online at <u>http://www.clu-in.org/techfocus</u>.
- U.S. Geological Survey (USGS). 1978. Topographic Map (7.5 Minute Series), Hutchinson, Kansas Quadrangle. USGS, Reston, VA. Digital source provided by <u>www.mapcard.com</u>.

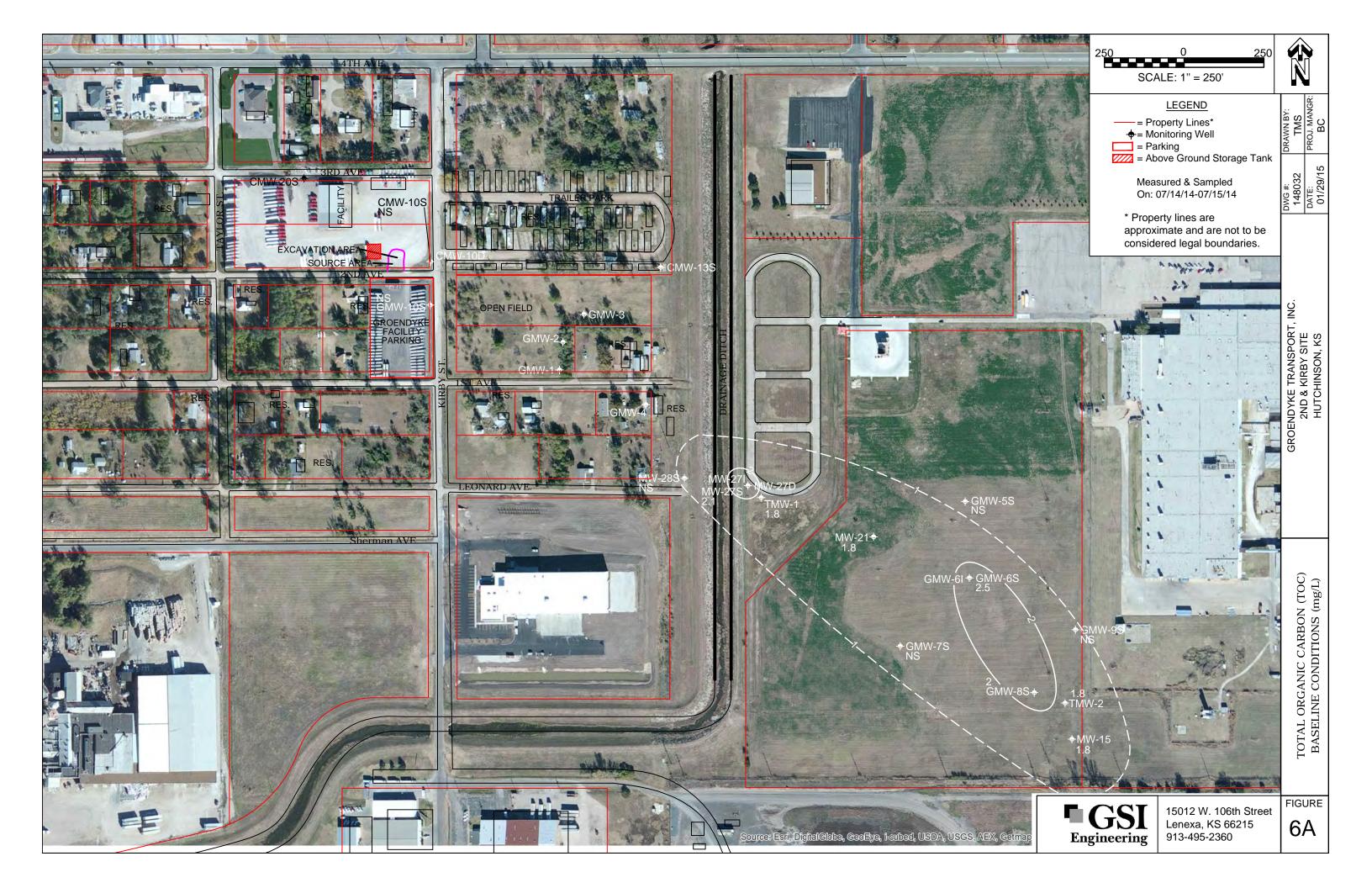

APPENDIX A Report Figures

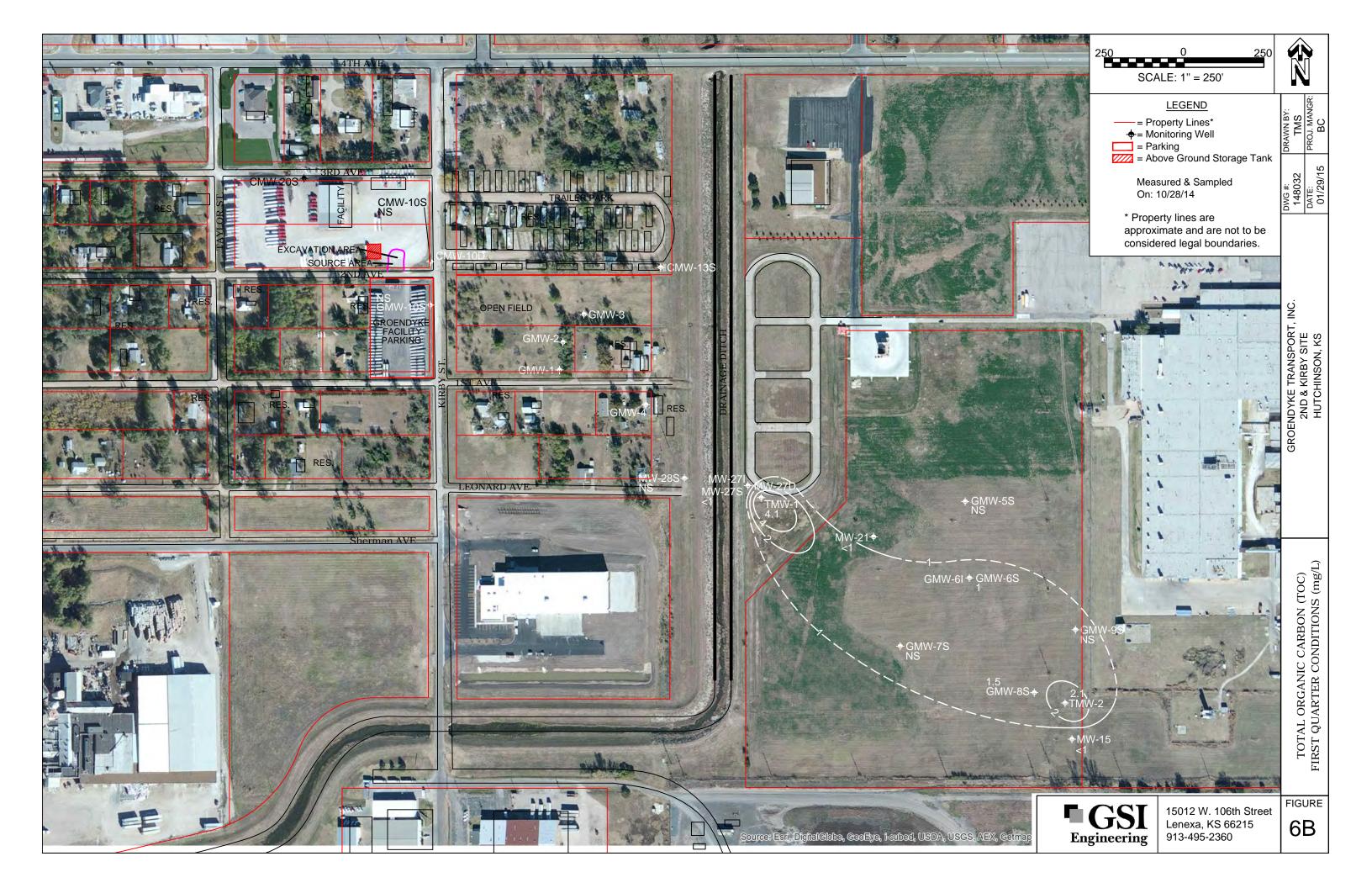


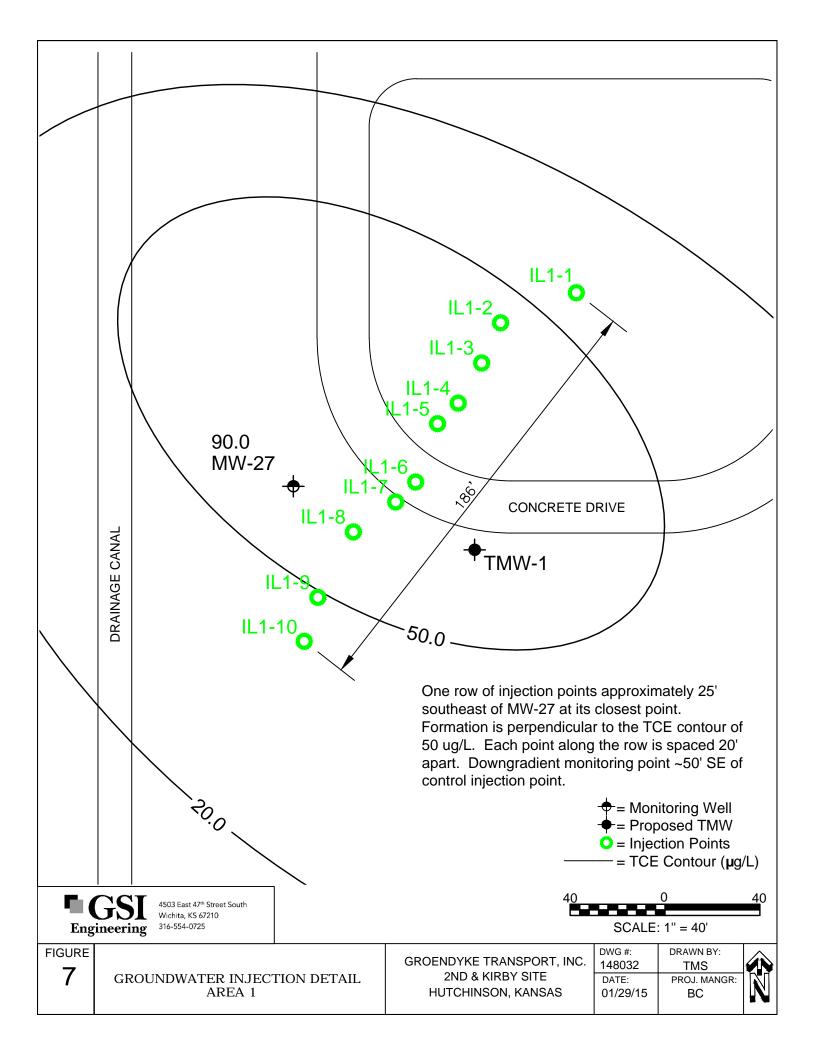


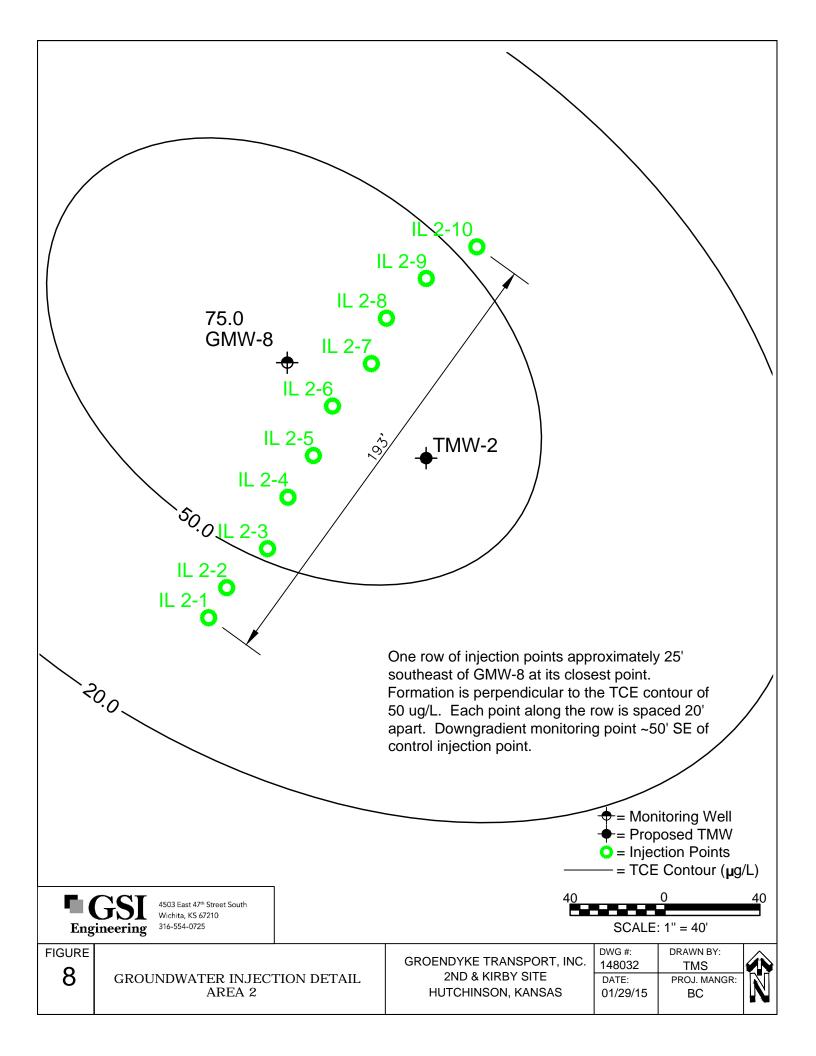


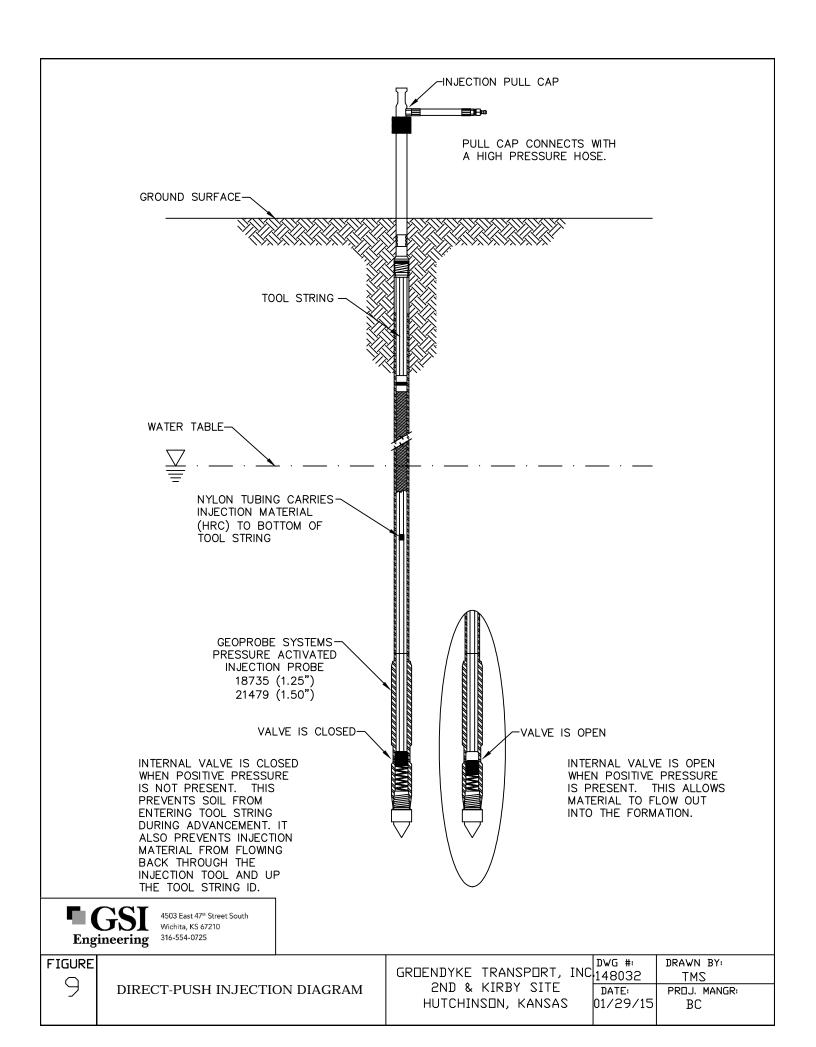












APPENDIX B Report Tables

TABLE 1WATER LEVEL OBSERVATIONSSite Monitoring & Performance EvaluationKDHE 2nd & Kirby Site

Well ID	Date Measured	Measuring Point Elevation	Depth to Water	Groundwater Elevation
	06/05/08		6.44	1511.00
	06/29/09		6.11	1511.33
	04/20/10		8.84	1508.60
	10/15/12		11.14	1506.30
GMW-1	05/20/13	1517.44	11.28	1506.16
	12/04/13		9.73	1507.71
	07/14/14		10.19	1507.25
	07/14/14		10.19	1507.25
	10/28/14		10.25	1507.19
	06/06/08		6.50	1510.80
	06/29/09		5.90	1511.40
	04/20/10		8.63	1508.67
GMW-2	10/15/12	1517.30	11.06	1506.24
GIVIVV-2	05/20/13	1017.30	11.13	1506.17
	12/04/13		9.59	1507.71
	07/14/14		9.05	1508.25
	10/28/14		10.07	1507.23
	06/06/08		7.23	1507.78
	06/29/09		6.62	1508.39
	04/20/10		9.36	1505.65
GMW-3	10/15/12	1515.01	11.78	1503.23
GIVIVV-5	05/20/13	1313.01	11.87	1503.14
	12/04/13		NM	NM
	07/14/14		9.79	-9.79
	10/28/14		NM - Damaged	NM - Damaged
	06/05/08		7.53	1510.60
	06/29/09		7.13	1511.00
	04/20/10		9.83	1508.30
GMW-4	10/15/12	1518.13	12.25	1505.88
Givi vv-4	05/20/13	1010.10	12.27	1505.86
	12/04/13		NM	NM
	07/14/14		10.21	1507.92
	10/28/14		11.36	1506.77

TABLE 1 WATER LEVEL OBSERVATIONS Site Monitoring & Performance Evaluation

-				
KDHE	2nd	&	Kirby	Site

Well ID	Date Measured	Measuring Point Elevation	Depth to Water	Groundwater Elevation
	10/12/12		13.98	1505.19
	05/20/13		13.89	1505.28
GMW-5S	12/05/13	1519.17	12.53	1506.64
	07/14/14		11.85	1507.32
	10/28/14		13.04	1506.13
	10/11/12		13.27	1505.16
	05/20/13		13.20	1505.23
GMW-6S	12/05/13	1518.43	11.83	1506.60
	07/15/14		11.25	1507.18
	10/28/14		12.37	1506.06
	10/11/12		13.34	1505.00
	05/20/13		13.27	1505.07
GMW-6I	12/04/13	1518.34	NM	NM
	07/14/14		NM	NM
	10/28/14		12.38	1505.96
	10/11/12		13.69	1505.15
	05/20/13		13.65	1505.19
GMW-7S	12/05/13	1518.84	12.29	1506.55
	07/15/14		11.58	1507.26
	10/28/14		12.80	1506.04
	10/11/12		12.87	1504.63
	05/20/13		12.74	1504.76
GMW-8S	12/05/13	1517.50	11.42	1506.08
	07/15/14		10.82	1506.68
	10/28/14		11.97	1505.53
	10/11/12		14.05	1504.66
	05/20/13		13.95	1504.76
GMW-9S	12/05/13	1518.71	12.88	1505.83
	07/15/14		12.04	1506.67
	10/28/14		13.16	1505.55
	10/12/12		NM	NM
	05/20/13		12.07	1507.08
GMW-10S	12/04/13	1519.15	10.57	1508.58
	07/14/14		10.06	1509.09
	10/28/14		11.14	1508.01

TABLE 1WATER LEVEL OBSERVATIONSSite Monitoring & Performance EvaluationKDHE 2nd & Kirby Site

Well ID	Date Measured	Measuring Point Elevation	Depth to Water	Groundwater Elevation
	06/06/08		8.14	1511.36
	06/29/09		NM	NM
	04/20/10		10.21	1509.29
CMW-10S	10/12/12	1519.50	12.65	1506.85
<u>c</u> iiii 103	05/20/13	1019.00	12.79	1506.71
	12/04/13		11.17	1508.33
	07/14/14		10.66	1508.84
	10/28/14		11.75	1507.75
	06/06/08		10.32	1510.68
	06/29/09		9.64	1511.36
	04/20/10		12.38	1508.62
<u>C</u> MW-13S WATER LEVELS ONLY	10/12/12	1521.00	NM	NM
	05/20/13	1521.00	14.95	1506.05
	12/05/13		13.46	1507.54
	07/14/14		NM - locked	NM - locked
	10/28/14		13.93	1507.07
	06/05/08		NM	NM
	06/29/09		NM	NM
	04/20/10		10.57	1509.71
<u>C</u> MW-20S WATER LEVELS	10/12/12	1520.28	NM	NM
ONLY	05/20/13	1520.20	NM	NM
	12/04/13		11.47	1508.81
	07/14/14		11.07	-11.07
	10/28/14		12.00	1508.28
MW-15	07/15/14	1518.12	11.97	1506.15
10100-15	10/28/14	1010.12	13.07	1505.05
	05/20/13		12.81	1505.15
MW-21	12/05/13	1517.96	11.44	1506.52
101 00 -2 1	07/15/14	1017.80	10.83	1507.13
	10/28/14		11.92	1506.04

TABLE 1WATER LEVEL OBSERVATIONSSite Monitoring & Performance EvaluationKDHE 2nd & Kirby Site

Well ID	Date Measured	Measuring Point Elevation	Depth to Water	Groundwater Elevation
	06/05/08		9.76	1510.28
	06/29/09		9.43	1510.61
	04/20/10		12.11	1507.93
MW-27S	10/12/12	1520.04	14.50	1505.54
10100-275	05/20/13	1520.04	14.48	1505.56
	12/04/13		13.10	1506.94
	07/15/14		12.55	1507.49
	10/28/14		13.54	1506.50
	06/05/08		9.37	1510.57
	06/29/09		9.02	1510.92
	04/20/10		11.67	1508.27
MW-28S	10/12/12	1519.94	NM	NM
10100-203	05/20/13	1319.94	14.07	1505.87
	12/04/13		12.68	1507.26
	07/14/14		12.09	1507.85
	10/28/14		13.16	1506.78
TMW-1	10/28/14	1517.06	10.55	1506.51
TMW-2	10/28/14	1514.61	10.92	1503.69

NOTES:

NM = not measuredElevations in feet above mean seal level (MSL)Bold Shading - Most recent field data - October 2014

HISTORICAL VOC RESULTS Site Monitoring & Performance Evaluation KDHE 2nd & Kirby Site

Well ID	Sample Date	TCE (μg/L)	cis-1,2-DCE (µg/L)	trans-1,2-DCE (µg/L)	Vinyl Chloride (µg/L)				
Tier 2 RSK	Standards	5.0	70.0	100.0	2.0				
	6/5/2008	180.0	12.0	2.4	<1.0				
	6/29/2009	98.0	6.2	<1.0	<1.0				
	4/20/2010	23.0	1.3	<1.0	<1.0				
01014	10/15/2012	1.7	<1.0	<1.0	<1.0				
GMW-1	5/20/2013	11.0	1.0	<1.0	<1.0				
	12/4/2013	14.0	7.5	<1.0	<1.0				
	7/14/2014	7.5	<1.0	<1.0	<1.0				
	10/28/2014	9.0	<1.0	<1.0	<1.0				
	6/6/2008	140.0	6.9	<1.0	<1.0				
	6/29/2009	80.0	5.7	<1.0	<1.0				
	4/20/2010	12.0	<1.0	<1.0	<1.0				
GMW-2	10/15/2012	1.5	<1.0	<1.0	<1.0				
Givivv-2	5/20/2013	6.7	<1.0	<1.0	<1.0				
	12/4/2013	5.7	<1.0	<1.0	<1.0				
	7/14/2014	1.9	<1.0	<1.0	<1.0				
	10/28/2014	2.0	<1.0	<1.0	<1.0				
GMW-3	7/14/2014	<1.0	<1.0	<1.0	<1.0				
GIVIVV-3	10/28/2014	Not Sampled - Damage/Roots in Well							
	7/14/2014	<1.0	<1.0	<1.0	<1.0				
GMW-4	10/28/2014	4.2	1.5	<1.0	<1.0				
	10/12/2012	4.1	9.1	<1.0	<1.0				
	5/20/2013	2.5	1.9	<1.0	<1.0				
GMW-5S	12/4/2013	1.5	8.1	<1.0	<1.0				
	7/14/2014	1.7	2.4	<1.0	<1.0				
	10/28/2014	<1.0	<1.0	<1.0	<1.0				
	10/11/2012	20.0	100.0	<1.0	<1.0				
	5/20/2013	8.8	28.0	<1.0	<1.0				
GMW-6S	12/5/2013	15.0	8.6	<1.0	<1.0				
	7/15/2014	14.0	84.0	<1.0	<1.0				
	10/28/2014	17.3	48.6	<1.0	<1.0				
	10/11/2012	1.3	4.0	<1.0	<1.0				
	5/20/2013	<1.0	<1.0	<1.0	<1.0				
GMW-6I	12/4/2013	NS	NS	NS	NS				
	7/14/2014	NS	NS	NS	NS				
	10/28/2014	<1.0	<1.0	<1.0	<1.0				

HISTORICAL VOC RESULTS Site Monitoring & Performance Evaluation KDHE 2nd & Kirby Site

Well ID	Sample Date	TCE (μg/L)	cis-1,2-DCE (µg/L)	trans-1,2-DCE (µg/L)	Vinyl Chloride (µg/L)
Tier 2 RSK	Standards	5.0	70.0	100.0	2.0
	10/11/2012	3.9	2.2	<1.0	<1.0
	5/20/2013	9.0	4.3	<1.0	<1.0
GMW-7S	12/4/2013	4.8	1.8	<1.0	<1.0
	7/14/2014	7.2	2.5	<1.0	<1.0
	10/28/2014	9.0	2.8	<1.0	<1.0
	10/11/2012	50.0	36.0	<1.0	<1.0
	5/20/2013	75.0	49.0	<1.0	<1.0
GMW-8S	12/5/2013	110.0	67.0	<1.0	<1.0
GIVIV-03	7/15/2014	150.0	98.0	<1.0	<1.0
	Field Duplicate	140	100.0	<1.0	<1.0
	10/28/2014	150	99.8	<1.0	<1.0
	10/11/2012	7.8	9.6	<1.0	<1.0
	5/20/2013	12.0	13.0	<1.0	<1.0
GMW-9S	12/4/2013	6.1	9.7	<1.0	<1.0
	7/14/2014	11.0	17.0	<1.0	<1.0
	10/28/2014	13.3	18.1	<1.0	<1.0
	10/12/2012	NS	NS	NS	NS
	5/20/2013	14.0	8.1	<1.0	<1.0
GMW-10S	12/4/2013	8.5	2.7	<1.0	<1.0
	7/14/2014	11	5.5	<1.0	<1.0
	10/28/2014	12.3	2.5	<1.0	<1.0
	6/6/2008	6.8	<1.0	<1.0	<1.0
	6/29/2009	NS	NS	NS	NS
	4/20/2010	14.0	<1.0	<1.0	<1.0
CMW-10S	10/12/2012	3.0	<1.0	<1.0	<1.0
<u>CIVIVY-103</u>	5/20/2013	9.9	<1.0	<1.0	<1.0
	12/4/2013	8.8	<1.0	<1.0	<1.0
	7/14/2014	4.1	<1.0	<1.0	<1.0
	10/28/2014	5.1	<1.0	<1.0	<1.0
MW-15	7/15/2014	24.0	3.4	<1.0	<1.0
101 0 0 - 13	10/28/2014	24.6	3.7	<1.0	<1.0
	5/20/2013	15.0	24.0	<1.0	<1.0
MW-21	12/5/2013	3.0	2.3	<1.0	<1.0
141 44 - 2 1	7/15/2014	3.5	2.2	<1.0	<1.0
	10/28/2014	3.3	2.2	<1.0	<1.0

HISTORICAL VOC RESULTS Site Monitoring & Performance Evaluation KDHE 2nd & Kirby Site

Well ID	Sample Date	TCE (μg/L)	cis-1,2-DCE (µg/L)	trans-1,2-DCE (µg/L)	Vinyl Chloride (µg/L)
Tier 2 RSK	Standards	5.0	70.0	100.0	2.0
	6/5/2008	47.0	1.8	<1.0	<1.0
	6/29/2009	200.0	4.7	<1.0	<1.0
	4/20/2010	15.0	<1.0	<1.0	<1.0
MW-27S	10/11/2012	15.0	1.2	<1.0	<1.0
10100-275	5/20/2013	90.0	<1.0	<1.0	<1.0
	12/4/2013	87.0	1.2	<1.0	<1.0
	7/15/2014	48.0	1.6	<1.0	<1.0
	10/28/2014	64.2	2.1	<1.0	<1.0
	6/5/2008	40.0	7.2	<1.0	<1.0
	6/29/2009	39.0	4.6	<1.0	<1.0
	4/20/2010	33.0	4.7	<1.0	<1.0
MW-28S	10/11/2012	NS	NS	NS	NS
11111-200	5/20/2013	15.0	2.4	<1.0	<1.0
	12/4/2013	11.0	1.3	<1.0	<1.0
	7/14/2014	9.2	1.4	<1.0	<1.0
	10/28/2014	11.3	1.4	<1.0	<1.0
TMW-1	10/28/2014	21.3	3.0	<1.0	<1.0
TMW-2	10/28/2014	67.2	59.7	<1.0	<1.0

NOTES:

All concentrations provided in micrograms per liter (ug/L) **Bold Font** - Concentrations above laboratory detection limits **Bold Shading** - Concentrations above KDHE Tier 2 Standard **Red Font** - increasing trend **Green Font** - decreasing trend TCE - Trichloroethene

DCE - dichloroethene

NS - Location not sampled

TABLE 3 SUMMARY OF GROUNDWATER INJECTION POINTS Site Monitoring & Performance Evaluation KDHE 2nd & Kirby Site

Location	Date	Location (Decimal Degrees)	TD (ft)	Dilution (gal)	Total Gallons	Time (24 Hour)	Screen Intervals (ft)	Injection Pressure (psi)	Approx Volume (gal)	Abandonment Date/Time
		38.05419363 °N		Product (gal): 45		Start: 0843	12-16	22	180	8/12/2014
IL1-1	8/12/2014	30.03419303 N	28		450	Start . 0043	16-20	18	140	0/12/2011
	0/12/2014	97.87491787 °W	20	Dilution Water (gal): 405	400	Stop: 0920	20-24	20	160	0940
						Ctop: 0020	24-28	20	160	0010
		38.05414508 °N		Product (gal): 45		Start: 0942	12-16	20	160	8/12/2014
IL1-2	8/12/2014		28		450		16-20	20	160	0, 12,2011
		97.87496186 °W		Dilution Water (gal): 405	100	Stop: 1020	20-24	18	160	1028
							24-28	20	160	
		38.05409769 °N		Product (gal): 45		Start: 1035	12-16	20	160	8/12/2014
IL1-3	8/12/2014		28		450		16-20	20	160	
		97.87499792 °W		Dilution Water (gal): 405		Stop: 1115	20-24	20	160	1120
							24-28	20	160	
	38.05405158 °N		Product (gal): 45		Start: 1234	12-16	20	160	8/12/2014	
IL1-4	8/12/2014		28		450		16-20	20	160	
		97.87503864 °W		Dilution Water (gal): 405		Stop: 1308	20-24	20	160	1315
							24-28	20	160	
		38.05401739 °N		Product (gal): 45		Start: 1326	12-16	20	160	8/12/2014
IL1-5	8/12/2014		28		450		16-20	20	160	0/12/2011
		97.87506847 °W		Dilution Water (gal): 405		Stop: 1400	20-24	20	160	1405
							24-28	20	160	
		38.05395506 °N		Product (gal): 45		Start: 1411	12-16	20	160	8/12/2014
IL1-6	8/12/2014		28		450		16-20	20	160	
		97.87511462 °W		Dilution Water (gal): 405		Stop: 1449	20-24	20	160	1455
							24-28	20	160	
		38.05390839 °N		Product (gal): 45		Start: 1532	12-16	20	160	8/12/2014
IL1-7 8/12/2014		28		450		16-20	18	140	3, 12, 2011	
IL1-7 8/12/2014	97.87514509 °W	-	Dilution Water (gal): 405	-100	Stop: 1615	20-24	22	180	1630	
							24-28	20	160	

TABLE 3 SUMMARY OF GROUNDWATER INJECTION POINTS Site Monitoring & Performance Evaluation KDHE 2nd & Kirby Site

		38.05386318 °N		Product (gal): 45		Start: 0745	12-16	20	160	8/13/2014
IL1-8	8/13/2014	30.03300310 IN	28	Floudet (gal). 45	450	Start: 0745	16-20	20	160	0/13/2014
IL I-0	0/13/2014	97.87518710 °W	20	Dilution Water (gal): 405	430	Stop: 0822	20-24	20	160	0828
		97.07510710 W		Dilution Water (gal). 400		Stop. 0022	24-28	20	160	0020
		38.05380844 °N		Product (gal): 45		Start: 0842	12-16	20	160	8/13/2014
IL1-9	8/13/2014	00.000000+ N	28		450		16-20	18	140	0/13/2014
	0/10/2014	97.87523331 °W	20	Dilution Water (gal): 405	400	Stop: 0923	20-24	18	140	0928
		57.07525551 W		Bildton Water (gal): 400		Stop. 0923	24-28	22	180	0320
		38.05375073 °N		Product (gal): 45		Start: 0956	12-16	20	160	8/13/2014
IL1-10	8/13/2014	30.03373073 N	28		450	Start . 0900	16-20	20	160	0/13/2014
	0/13/2014	97.87527373 °W	20	Dilution Water (gal): 405	430	Stop: 1035	20-24	20	160	1040
		51.01521515 W		Bildion Water (gal): 400		Stop. 1033	24-28	20	160	10-10
		38.05190480 °N		Product (gal): 45		Start: 1116	12-16	20	160	8/13/2014
IL2-1 8/13/2014	00.00100400 11	28	Troduot (gul): 40	450		16-20	20	160	0/10/2014	
	ILZ-1 8/13/2014	97.87232760 °W	20	Dilution Water (gal): 405	400	Stop: 1149	20-24	20	160	1155
		31.01202100 W		Bildtion Mator (gul): 400			24-28	20	160	
		38.05194985 °N		Product (gal): 45		Start: 1322	12-16	20	160	8/13/2014
IL2-2	8/13/2014		28		450	Start . 1522	16-20	20	160	0/10/2014
	0/10/2011	97.87229360 °W	20	Dilution Water (gal): 405	100	Stop: 1400	20-24	18	140	1405
		31.01223000 W		Bildion Mator (gul): 400		0100.1400	24-28	22	180	1400
		38.05199928 °N		Product (gal): 45		Start: 1415	12-16	20	160	8/13/2014
IL2-3	8/13/2014	00.00100020 11	28		450		16-20	20	160	0/10/2014
	0/10/2014	97.87225365 °W	20	Dilution Water (gal): 405	400	Stop: 1515	20-24	20	160	1520
		31.01220000 W		Bildion Mator (gul): 400			24-28	20	160	1520
		38.05204585 °N		Product (gal): 45		Start: 1530	12-16	20	160	8/13/2014
11 2-4	II 2-4 8/13/2014	00.00204000 11	28	Troduot (gul): 40	450 -		16-20	20	160	0/10/2014
IL2-4 8/13/2014	97.87221413 °W	20	Dilution Water (gal): 405	450	Stop: 1621	20-24	20	160	1630	
	01.07221410 W					24-28	20	160	1000	

TABLE 3 SUMMARY OF GROUNDWATER INJECTION POINTS Site Monitoring & Performance Evaluation KDHE 2nd & Kirby Site

						_	12-16	20	160	_ / /
		38.05209388 °N		Product (gal): 45	150	Start: 0735	16-20	20	160	8/14/2014
IL2-5	8/14/2014	07 07040005 004	28		450	0 1	20-24	18	140	0005
		97.87216885 °W		Dilution Water (gal): 405		Stop: 0800	24-28	20	160	0805
		38.05214417 °N		Product (gal): 45		Start: 0845	12-16	20	160	8/14/2014
IL2-6	8/14/2014	30.03214417 IN	28	Product (gal). 45	450	Start. 0645	16-20	20	160	0/14/2014
122-0	0/14/2014	97.87212670 °W		Dilution Water (gal): 405	400	Stop: 0933	20-24	20	160	0938
		91.01212010 W		Bildtion Water (gal). 400		Stop. 0933	24-28	20	160	0930
		38.05219090 °N		Product (gal): 45		Start: 0945	12-16	20	160	8/14/2014
IL2-7	8/14/2014	30.03213030 N	28		450		16-20	20	160	0/14/2014
		97.87207257 °W	20	Dilution Water (gal): 405		Stop: 1030	20-24	20	160	1035
	51.01201201 W				0.000. 1000	24-28	20	160	1000	
		38.05223891 °N		Product (gal): 45	450	Start: 1225	12-16	20	160	8/14/2014
IL2-8	8/14/2014	00.00220001 11	28	- Toulot (gui): 10			16-20	20	160	0,11,2011
122 0	0/11/2011	97.87203135 °W		Dilution Water (gal): 405	100	Stop: 1317	20-24	20	160	1320
		01.01200100 11		Shallon Mator (gal). Ioo			24-28	20	160	1020
		38.05228128 °N		Product (gal): 45		Start: 1338	12-16	20	160	8/14/2014
IL2-9	8/14/2014	00.00220120 11	28	(gui)i io	450		16-20	20	160	0/11/2011
	0/14/2014	97.87198363 °W	20	Dilution Water (gal): 405	400	Stop: 1422	20-24	20	160	1430
		37.07 136000 W		Bildtion Water (gal): 400			24-28	20	160	1400
		38.05232478 °N		Product (gal): 45		Start: 1442	12-16	20	160	8/14/2014
IL2-10	IL2-10 8/14/2014		28		450		16-20	20	160	5/11/2017
IL2-10 8/14/2014 -	97.87194450 °W		Dilution Water (gal): 405	100	Stop: 1528 -	20-24	20	160	1530	
						24-28	20	160	1000	

TABLE 4BASELINE VOC LEVELS IN GROUNDWATERSite Monitoring & Performance EvaluationKDHE 2nd & Kirby Site

MONITORING WELL ID	Sampling Date	Acetone	sec- Butylbenzene	1,1-DCA	cis-1,2-DCE	trans-1,2- DCE	PCE	1,1,1-TCA	TCE	TOTAL VOC
	Method:	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B
	Units:	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	µg/l	µg/l	µg/l
Tier 2 RSK S	Standards	11500	305	25.0	70.0	100	5.0	200	5.0	NA
GMW-1	7/14/2014	<50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.9	ND
GMW-2	7/14/2014	<50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.9	1.9
GMW-3	7/14/2014	<50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND
GMW-4	7/14/2014	240	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	242
GMW-5S	7/14/2014	<50	<1.0	1.8	2.4	<1.0	<1.0	<1.0	1.7	5.9
GMW-6S	7/15/2014	<50	<1.0	2.5	84	<1.0	1.4	<1.0	14	101.9
GMW-7S	7/14/2014	<50	<1.0	<1.0	2.5	<1.0	<1.0	<1.0	7.2	9.7
GMW-8S	7/15/2014	<50	<1.0	3.9	98	<1.0	9.3	<1.0	150	261.2
DUPLICATE*	7/15/2014	<50	<1.0	4.3	100	<1.0	7.6	<1.0	140	251.9
GMW-9S	7/14/2014	<50	<1.0	7.5	17	<1.0	1.4	1.2	11	38.1
GMW-10S	7/14/2014	<50	<1.0	<1.0	5.5	<1.0	<1.0	<1.0	11	16.5
<u>C</u> MW-10S	7/14/2014	<50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.1	4.1
<u>C</u> MW-10D	7/14/2014	<50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND
MW-15	7/15/2014	<50	<1.0	<1.0	3.4	<1.0	<1.0	<1.0	24	27.4
MW-21	7/15/2014	<50	<1.0	<1.0	2.2	<1.0	<1.0	<1.0	3.6	5.8
MW-27S	7/15/2014	<50	<1.0	<1.0	1.6	<1.0	1.4	<1.0	48	51
MW-28S	7/14/2014	<50	<1.0	<1.0	1.4	<1.0	<1.0	<1.0	9.2	10.6
RINSATE	7/15/2014	<50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND
TRIP BLANK	7/15/2014	<50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND

NOTES:

All concentrations provided in micrograms per liter (ug/L)

* Duplicate sample obtained from GMW-8S

Bold Font - Concentrations above laboratory detection limits

Bold Shading - Concentrations above KDHE Tier 2 Risk-Based Standard

ND - Non-detect for all VOC constituents

NA - Tier 2 Standard not applicable

DCA - Dichloroethane

DCE - Dichloroethylene

PCE - Tetrachloroethylene

TCE - Trichloroethylene

TABLE 5 FIRST QUARTER VOC LEVELS IN GROUNDWATER Site Monitoring & Performance Evaluation KDHE 2nd & Kirby Site

MONITORING WELL ID	Sampling Date	1,1-DCA	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride	PCE	1,1,1-TCA	TCE	Total VOC
	Method:	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B
	Units:	µg/l	µg/l	µg/l	µg/l	μg/l	µg/l	μg/l	µg/l
Tier 2 RSK	Standards	25.0	70.0	100.0	2.0	5.0	200	5.0	NA
GMW-1	10/28/2014	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	9.0	9.0
GMW-2	10/28/2014	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0	2.0
GMW-4	10/28/2014	<1.0	1.5	<1.0	<1.0	<1.0	<1.0	4.2	5.7
GMW-5S	10/28/2014	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND
GMW-6S	10/28/2014	1.5	48.6	<1.0	<1.0	1.6	<1.0	17.3	69.0
GMW-6I	10/28/2014	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND
GMW-7S	10/28/2014	<1.0	2.8	<1.0	<1.0	<1.0	<1.0	9.0	11.8
GMW-8S	10/28/2014	4.6	99.8	<2.0	<2.0	8.1	<1.0	150.0	263
DUPLICATE*	10/28/2014	6.8	19.8	<1.0	<1.0	2.1	1.5	14.3	44.5
GMW-9S	10/28/2014	6.1	18.1	<1.0	<1.0	2.0	1.2	13.3	40.7
GMW-10S	10/28/2014	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.1	5.1
<u>C</u> MW-10S	10/28/2014	<1.0	2.5	<1.0	<1.0	<1.0	<1.0	12.3	14.8
MW-15	10/28/2014	<1.0	3.7	<1.0	<1.0	<1.0	<1.0	24.6	28.3
MW-21	10/28/2014	<1.0	2.2	<1.0	<1.0	<1.0	<1.0	3.3	5.5
MW-27S	10/28/2014	<1.0	2.1	<1.0	<1.0	2.4	<1.0	64.2	68.7
MW-28S	10/28/2014	<1.0	1.4	<1.0	<1.0	<1.0	<1.0	11.3	12.7
TMW-1	10/28/2014	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	21.3	21.3
TMW-2	10/28/2014	1.1	59.7	<1.0	<1.0	7.7	<1.0	67.2	136
TRIP BLANK	10/28/2014	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ND

NOTES:

All concentrations provided in micrograms per liter (ug/L)

* Duplicate sample obtained from GMW-8S

Bold Font - Concentrations above laboratory detection limits

Bold Shading - Concentrations above KDHE Tier 2 Risk-Based Standard

ND - Non-detect for all VOC constituents

NA - Tier 2 Standard not applicable

DCA - Dichloroethane

- DCE Dichloroethylene
- PCE Tetrachloroethylene
- TCE Trichloroethylene

TABLE 6GEOCHEMICAL RESULTSSite Monitoring & Performance EvaluationKDHE 2nd & Kirby Site

	Analytical		ТМ	W-1	тм	W-2	GMV	V-6S		GMW-8S		MW	/-15	MW	/-21		MW-27S	
Parameters	Method	Units	August 2014	Oct 2014	August 2014	Oct 2014	July 2014	Oct 2014	July 2014	August 2014	Oct 2014	July 2014	Oct 2014	July 2014	Oct 2014	July 2014	August 2014	Oct 2014
Nitrate	9056	mg/L	<0.10	<0.10	0.91	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	1.3	2.1	1.0	2.1	<0.10	<0.10	<0.010
Nitrite	9056	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.010
Iron - total	6010B	mg/L	0.96	7.60	4.59	4.20	2.50	<0.05	0.65	2.15	<0.05	0.44	<0.05	1.50	<0.05	0.21	<0.05	< 0.05
Iron - dissolved	6010B	mg/L	0.97	7.46	<0.05	4.35	<0.10	<0.05	<0.10	<0.05	<0.05	<0.10	<0.05	<0.10	<0.05	<0.10	<0.05	< 0.05
Ferrous Iron - Lab	3500Fe	mg/L	NA	<0.20	NA	<0.20	1.60	<0.20	0.10	NA	<0.20	<0.050	<0.20	0.06	<0.20	0.12	NA	<0.20
Ferrous Iron - Field	8146	mg/L	NA	3.30	NA	3.30	NA	0.63	NA	NA	2.80	NA	0.52	NA	ND	NA	NA	ND
Manganese - total	6010B	mg/L	0.45	1.15	NA	2.63	0.25	0.199	0.30	NA	0.249	0.38	0.188	0.94	0.798	0.57	0.54	0.553
Manganese - dissolved	6010B	mg/L	0.46	1.13	0.32	2.73	0.18	0.194	0.27	0.26	0.249	0.12	0.184	0.87	0.806	0.43	0.57	0.545
Sulfate	9056	mg/L	NA	100	NA	136	98	75.7	280	NA	244	280	190	290	275	200	NA	229
Sulfide	4500s2	mg/L	<0.050	0.059	<0.050	<0.50	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050
Methane	RSK 175	mg/L	<0.0066	0.0083	0.0135	0.0198	0.170	0.4060	0.014	<0.0066	0.0167	<0.010	<0.0066	<0.010	<0.0066	<0.010	<0.0066	< 0.0066
Ethane	RSK 175	mg/L	< 0.0062	<0.0062	<0.0062	< 0.0062	<0.013	<0.0062	<0.013	< 0.0062	<0.0062	<0.013	<0.0062	<0.013	<0.0062	<0.013	<0.0062	< 0.0062
Ethene	RSK 175	mg/L	< 0.0062	<0.0062	<0.0062	< 0.0062	<0.013	<0.0062	<0.013	< 0.0062	< 0.0062	<0.013	<0.0062	<0.013	<0.0062	<0.013	<0.0062	< 0.0062
Alkalinity	2320 B	mg/L	NA	469	NA	405	390	424	300	NA	311	250	299	300	312	240	NA	294
Chloride	9056	mg/L	184	187	171	157	160	148	170	169	156	160	160	190	178	150	150	142
TOC	9060A	mg/L	NA	4.1	1.0	2.1	2.5	1.0	2.0	1.0	1.5	1.8	<1.0	1.8	<1.0	2.1	NA	<1.0
рН	Field**	std units	6.61	6.78	6.65	6.72	6.91	6.98	6.62	6.59	6.51	6.48	6.51	6.50	6.48	6.58	6.64	6.58
Dissolved Oxygen*	Field**	mg/L	0.19	1.05	0.36	0.76	0.10	0.58	0.07	0.3	0.87	0.08	0.75	0.07	0.71	0.16	0.70	0.40
ORP	Field**	m/V	29.9	-35	-11.9	-18	70	73	124	59.9	144	156	133	125	135	81	66	144

NOTES:

Bold Results - Reflect detections of competing electron acceptors which may inhibit reductive dechlorination

mg/L = milligrams per liter mV - mllivolts

* July and August field data recorded in percent oxygen converted using dissolved oxygen calculator

** Field Parameters recorded immediately before sample collection using low-flow methods

ND - Below field detection limits

NA - Sample not analyzed for listed parameter

INTERIM MONITORING RESULTS Site Monitoring & Performance Evaluation KDHE 2nd & Kirby Site

L	ocation	Time Lapse (weeks)	Date	Dissolved Oxygen (mg/L)*	рН	ORP	TOC (mg/L)	Sulfate (mg/L)	TCE (µg/L)	cDCE (µg/L)
		July Baseline	7/15/2014	0.16	6.58	81	2.1	200	48	1.6
		0	8/13/2014	0.70	6.64	66	NR	NR	33	1.9
Upgradient	MW-27S	1	8/22/2014	0.96	6.24	42	NA	NA	NA	NA
rad	10100-275	2	8/29/2014	0.73	6.36	40	NA	NA	NA	NA
Upg		4	9/12/2014	0.13	6.37	47	NA	NA	NA	NA
		11 (1st QTR)	10/28/2014	0.40	6.58	144	<1.0	229	64.2	2.1
		July Baseline	7/15/2014	NA	NA	NA	NA	NA	NA	NA
n Li		0	8/13/2014	0.18	6.61	30	NR	NR	26.7	2.0
ctio	TM\\/ 4	1	8/22/2014	0.27	6.46	10	NA	NA	NA	NA
Inje	Injection Line	2	8/29/2014	0.58	6.42	28	NA	NA	NA	NA
_		4	9/12/2014	1.87	6.34	11	NA	NA	NA	NA
		11 (1st QTR)	10/28/2014	1.05	6.78	-35	4.1	100	21.3	3.0
		July Baseline	7/15/2014	0.07	6.62	124	2.0	280	150	98
ŧ		0	8/13/2014	0.32	6.59	60	1.0	NR	159	107
dien	GMW-8S	1	8/22/2014	0.25	6.68	81	NA	NA	NA	NA
gra	GIVIVV-03	2	8/29/2014	0.61	6.56	117	NA	NA	NA	NA
Downgradient		4	9/12/2014	0.13	6.37	18	NA	NA	NA	NA
- Do		11 (1st QTR)	10/28/2014	0.87	6.51	143	1.5	244	150	99.8
		July Baseline	7/15/2014	NA	NA	NA	NA	NA	NA	NA
Lin	Injection Line LTMM-5	0	8/13/2014	0.36	6.65	-12	1.0	NR	65.1	47.5
tior		1	8/22/2014	0.18	6.71	73	NA	NA	NA	NA
njec	1 101 00 -2	2	8/29/2014	0.50	6.57	95	NA	NA	NA	NA
=		4	9/12/2014	0.10	6.38	13	NA	NA	NA	NA
		11 (1st QTR)	10/28/2014	0.76	6.72	-17	2.1	136	67.2	59.7

NOTES:

* Field data recorded in percent oxygen converted using dissolved oxygen calculator

Bold Font - Laboratory results above detection limits

NA - Location not applicable

Red Font - increasing trend Green Font - decreasing trend

NR - Data not reported

TABLE 8 QUALITY CONTROL REVIEW 2nd & Kirby Remediation Hutchinson, Kansas

				TOID	7010	Bas	eline Dupli	cate	First	Quarter Dup	licate
	Client Sample ID		EQUIPMENT BLANK	TRIP BLANK	TRIP BLANK	GMW-8S	DUP-1	RPD	GMW-9S	Dup-1	RPD
	Collect	ion Date	7/15/2014	7/15/2014	10/28/2014	7/15/2014	7/15/2014	7/15/2014	10/28/2014	10/28/2014	10/28/2014
Method	Parameter	Units									
8260B	1,1-Dichloroethane	μg/l	<1.0	<1.0	<1.0	3.9	4.3	-9.76%	6.1	6.8	-10.85%
8260B	cis-1,2-Dichloroethene	μg/l	<1.0	<1.0	<1.0	98.0	100.0	-2.02%	18.1	19.8	-8.97%
8260B	Tetrachloroethene (PCE)	μg/l	<1.0	<1.0	<1.0	9.3	7.6	20.12%	2.0	2.1	-4.88%
8260B	Trichloroethene (TCE)	μg/l	<1.0	<1.0	<1.0	150.0	140.0	6.90%	13.3	14.3	-7.25%
8260B	1,1,1-Trichloroethane	μg/l	<1.0	<1.0	<1.0	<1.0	<1.0	***	1.2	1.5	-22.22%
8260B	Vinyl Chloride	μg/l	<1.0	<1.0	<1.0	<1.0	<1.0	***	<1.0	<1.0	***

Notes:

Groundwater concentrations provided in micrograms per liter (µg/L)

RPD - Relative Percent Difference

*** RPD not calculated due to results below laboratory detection limits

APPENDIX C Photograph Log

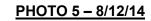
<u>PHOTO 1 – 8/12/14</u>

Emulsified Vegetable Oil (EVO) totes provided by Terra Systems Inc. Delivered 8/12/14

<u>PHOTO 2 – 8/12/14</u>

Truck with mounted dilution tank

<u>PHOTO 3 – 8/12/14</u>


Geoprobe® 6620 – Used to advance borings and facilitate injections

<u>PHOTO 4 – 8/12/14</u>

Lead driller Corey Lewis preparing pumping apparatus.

Connection of pump apparatus to Geoprobe® advanced Macro-core rods with an extendable screen.

<u>PHOTO 6 – 8/14/14</u>

Terra Systems Inc. MSDS labels on EVO totes.

<u>PHOTO 7 – 8/14/14</u>

Geoprobe® pump attachment.

<u> PHOTO 8 – 8/14/14</u>

Pumping apparatus.

<u> PHOTO 9 – 8/14/14</u>

Development of new TMW-2 on 8/15/14.

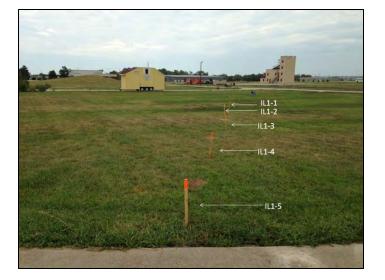
<u>PHOTO 10 – 8/14/14</u>

City provided water meter. Installed on 8/12/14 and removed by city employees on 8/14/14

<u> PHOTO 11 – 8/14/14</u>

Final meter values before pickup by city.

<u>PHOTO 12 – 8/15/14</u>


View facing south west of the southern most points in injection line number 1. Also includes GMW 27S west of the injection line.

<u>PHOTO 13 – 8/15/14</u>

View facing south west of the southern most points in injection line number 1. Includes newly installed TMW-1 to the east of the injection line.

<u>PHOTO 14 – 8/15/14</u>


View facing north east of the northern most points in injection line 1.

PHOTO 15- 8/15/14

View facing north east of injection line number 2.

<u>PHOTO 16 – 8/15/14</u>

View facing east of injection line number 2. Includes GMW 8S west of the injection line, and the approximate location of the newly installed flush mount TMW-2.

<u> PHOTO 17 – 8/15/14</u>

View facing south east of southern most points in injection line number 2.

Site Name: 2nd & Kirby Remediation City/State: Hutchinson, Kansas	Injection Product: Terra Systems SRS Emulsified Vegetable Oil
GSI Project Number: 148032	Dilution Material: City of Hutchinson Municipal Water
KDHE Project Number: C2-078-70770	Targeted Dilution: 1:10
Date: August 2014 412114	GPS: Trimble GeoExplorer Datum: WGS 1984

GSI Professionals J. Mellema. B. Ortega, C. Lewis, C. Hoffert

Plugging Material: Hydrated Bentonite Chips

Direct Push Equipment: Track Mounted Geoprobe 6620

Page

Location	Location (Decimal Degrees)	TD (ft TOC)	Dilution	Total Gallons	Time (24 Hour)	Screen Intervals (ft)	Pressure (psi)	Approximate Volume (gal)	Plug Date/Time	
	38,05419343"	1	Product (gal) 45		Start	12-14	22	16	/ tonin	
IL1-1	.50,05417543	20		1.54	0543	16-20	145	110	5/12/14	
THE T	97 . 87441787 W	28	Water (gal) 450 5	500p 6420	20-24	20	Xo	20114		
	111 21 111001			1		24-29	20	iso	69410	
	24 200 10 1		Product (gal)		Start	12-14	25	116	6/12/14	
TL1-2	3% 05414508	nr.	45	400	400	6943	14-20	26	1(0	11-114
TCT N	47. 5749615W	28	Water (gal)	450	Stop	20-24	20	KO		
	110 OTHLISH		405		1620	24-24	20	ko	1024	
	'N		Product (gal)		Start	12-16	20	110	6/12/14	
T12-3	38,05404749	00	415	450	1035	14-20	20	110	7/12/14	
THT D	97, 87499742"	28	Water (gal)		Stop 1115	20-24	20	110	11070	
	11, 01991119		405			24-23	20	116	11020	
	20		Product (gal)		Start 1234	12-14	20	110	6/12/14	
12-4	38.05405156	245	45	1.0		16-20	20	110	a livit-i	
ter 1	97. 575035644	23	Water (gal) 405	450	Stop 12	20-24	20	110	1315	
				1	1304	24-24	26	110		
	38.05401734"N		Product (gal)		Start	12-14	20	110	6/12/14	
11-5	337 - 3 101/34	24	45		1324	16-20	20	110	-5/12/11	
14-0	97. 87506847W	20	Water (gal)	450	Stop	20-24	20	110	1405	
	-11		405		1400	24-23	26	ilo	1103	
	38. 0534 5504"		Product (gal) 45		Start 1411	12-16	20	110	5/12/14	
5/2-6		28	Water (gal)			16-20	20	110		
	97 - 575114620				Stop ILLII A	20-24	20	110	1455	
			405	1449	24-28	20	1:0	A CONTRACTOR		

Site Name: 2nd & Kirby Remediation City/State: -	utchinson, Kansas	njection Product:	Terra Systems SRS Emulsifie	ed Vegetable Oil	
GSI Project Number: 148032		· · · · · · · · · · · · · · · · · · ·	City of Hutchinson Municipal		
KDHE Project Number: C2-078-70770		argeted Dilution:	the second se		
Date: August 2014 6112114		PS: Trimble Ge		Datum	WGS 1984
GSI Professionals J. Mellema, B. Ortega, C. Lewis, C. Hoffer	t P	lugging Material:	Hydrated Bentonite Chins	- Oaturn.	1100 1004

Plugging Material: <u>Hydrated Bentonite Chips</u> Direct Push Equipment: <u>Track Mounted Geoprobe 6620</u>

Page_of_

Location	Location (Decimal Degrees)	TD (ft TOC)	Dilution	Total Gallons	Time (24 Hour)	Screen Intervals (ft)	Pressure (psi)	Approximate Volume (gal)	Plug Date/Time
	38. 05340434"		Product (gal) 45	1	start 1532	12-14	20	110	6)12/14
TL1-7		28	Water (gal)	450	Stop	14-20	145	110	.l.zud
104 1	97 . 57514509"	49	405	190	1415	20-24	22	110	1630
	11		Product (gal)		Start	24-245	20	110	14.2
				1					
	·w		Water (gal)		Stop	-	0.		
	*N		Product (gəl)		Start				
	·w		Water (gal)		Stop				
	·N		Product (gal)		Start				-
	-w		Water (gal)	1	Stop				
	'N		Product (gal)		Start	1			
	•w		Water (gal)	1	Stop				
1 - 1	-10		Product (gal)		Start				
	-w		Water (gal)		Stop				

Site Name:	2nd & Kirby	Remediation	City/State:	Hutchinson, Kansas
and a second second				riaconnioon, riandas

GSI Project Number: 148032

Dilution Material: City of Hutchinson Municipal Water

KDHE Project Number: C2-078-70770

Date: August 2014 4115/14

GPS: Trimble GeoExplorer

Targeted Dilution: 1:10

Datum: WGS 1984

Page 3 of 5

GSI Professionals J. Mellema, B. Ortega, C. Lewis, C. Hoffert

Plugging Material: <u>Hydrated Bentonite Chips</u> Direct Push Equipment: <u>Track Mounted Geoprobe 6620</u>

Injection Product: Terra Systems SRS Emulsified Vegetable Oil

Location	Location (Decimal Degrees)	TD (ft TOC)	Dilution	Total Gallions	Time (24 Hour)	Screen Intervals (ft)	Pressure (psi)	Approximate Volume (gal)	Plug Date/Time
	2/1 052012 11'N		Product (gal) 45		Start	12-14	26	116	6113114
IL1-8	36:05344315	S		1.000	6745	16-20	20	110	P110114
1(1-2	97, 57515710 W	28	Water (gal)	450	5top 0532	20-24	20	110	0928
	113 3/51310		405			24-24	20	110	0020
	20 0570 W		Product (gal)	1	Start 6042	12-14	20		6/13/14
Tin a	38, 05380844	0.	45	1	0042	12-20	15		2112124
IL1-9	97, *757333jw	245	Water (gal)	450	Stop	20-24	16		0926
	7/2 01040001	-	405		6923	24-28	22		UILU
	2 N		Product (gal)		Start	12-16	20		6/13/14
T	38.05375673	245	45	450	6954	16-20	20	-	Pilella
IL1-10	47. 57527373	19	Water (gal)		Stop	20-24	20		1040
	110 010 103		405		1635	24-28	20		10 10
	24		Product (gal)		Start	12-14	20		6/13/14
	38,05190490	25	45		Int	16-20	20		01151-1
ILZ-M.	97, 97232760		Water (gal)	450	Stop	20-24	20		1155
	TTP - HOATS		405		1149	24-28	20		1105
	3		Product (gal)		Start	12-1h	20		6/13/14
12-2	38.05194995	0.1	45	1.000	1322	16-20	20		57157.1
TT-X	97-57229340"	24	Water (gal)	450	Stop 1460	20:24	15		1405
	1.19/24 1940		405			24-25	20	_	1 5
	201 DENGGAR		Product (gal)		Start 1415	12-14	26		6/13/14
IL2-3	38, 05144428"	28	45	450 5		16-20	20		01137.1
the O	97. 57225363	20 1	Water (gal)		Stop 1515	20-24	20		1520
-	112 01423-203		405		1515	34-28	30		1020

Site Name: 2nd & Kirby Remediation City/State: Hutchinson, Kansas	Injection Product: Terra Systems SRS Emulsified Vegetable Oil
GSI Project Number: 148032	Dilution Material: City of Hutchinson Municipal Water
KDHE Project Number: C2-078-70770	Targeted Dilution: 1:10
Date: August 2014 6113114	GPS: Trimble GeoExplorer Datum: WGS 1984
GSI Professionals _ J. Mellema, B. Ortega, C. Lewis, C. Hoffert	Plugging Material: Hydrated Bentonite Chips

Direct Push Equipment: Track Mounted Geoprobe 6620

Page_of_5

Location	Location (Decimal Degrees)	TD (ft TOC)	Dilution	Total Gallons	Time (24 Hour)	Screen Intervals (ft)	Pressure (psi)	Approximate Volume (gai)	Plug Date/Time
	34 -57		Product (gal)	1000	Start	12-1h	26	1\6	6/13/14
TL2-4	2010340-1593	28	45	1.00	1530	14-20	20	110	1-110-10
LLL -	38.0520-1565" 97. 9722,413 W	くび	Water (gal)	450	Stop 1621	20-24	20	110	1630
	CIFIANTS		405			24-25	20	110	14.50
	-N		Product (gal)		Start	100 million - 100 million	1		
	-w		Water (gal)	1	Stop				
	'N		Product (gal)		Start				-
	·w		Water (gal)	1	Stop				
	'N		Product (gal)		Start		-		
	"w		Water (gal)	1	Stop				
	•N		Product (gal)		Start				
	w.		Water (gal)	1	Stop				
	'n		Product (gal)		Start				
	-w		Water (gal)	1	Stop				

City/State: Hutchinson, Kansas

Site Name:	2nd & Kirby	Remediation	

GSI Professionals J. Mellema, B. Ortega, C. Lewis, C. Hoffert

GSI Project Number: 148032

Injection Product: Terra Systems SRS Emulsified Vegetable Oil
Dilution Material: City of Hutchinson Municipal Water

KDHE Project Number: C2-078-70770

Date: August 2014 5/14/14

Targeted Dilution: 1:10 GPS: Trimble GeoExplorer

_____Datum:__WGS 1984

Page_of_C

Plugging Material: Hydrated Bentonite Chips

Direct Push Equipment: Track Mounted Geoprobe 6620

Location	Location (Decimal Degrees)	TD (ft TOC)	Dilution	Total Gallons	Time (24 Hour)	Screen Intervals (ft)	Pressure (psi)	Approximate Volume (gal)	Plug Date/Time	
112-5 [38,052043175	29	Product (gal) 45		Start	12-14	20	116	6/141/14	
	30:00201595		Water (gal)	(sal) 450	0735	12-20	20	110		
	97. \$?314535W				Stop	20-24	146	110		
			405		6500	24-24	20	110	0505	
	24		Product (gai)		Start	12-14	26	110	Ch. her	
EL2-4	38,05714417	26	45	- , · · ·	0445	16-20	26	110	6/14/14	
LLA Y	97. 87212470	245	Water (gal)	450	5top 6933	20-24	20	110	6938	
			405			24-28	20	11D		
	24 5574 N	0.00	Product (gal)	450	Start 0945	12-14	20	110	6114)14 1035	
IL2-7	38.05214040		45			12-20	26	110		
	97. 87207257	26	Water (gal)		Stop	20-24	20	010		
	11: 012013.91		405		1630	24-28	20	110		
	211	28	Product (gal)	450	Start	12-14	26	NO	6114114 1320	
12-8	38,05223591		45 Water (gal)		1225	16-20	26	NO		
	97, 87203135				1317	20-24	20	110		
			H05 Product (gal)			24-29	20	11D		
112-9 -	3.5, 65235:28"	28	45		Start 1338	12-1h	20	110	6/14/14	
	007-00110-0		Mater (gal)	11-2		16-20	20	110	Linua	
	47. 57148343"		405	450	stop)422	20-24	26	110	1430	
			Product (gal)			24-28	20	110	11,20	
12-10 -	38. 05232479"	28	and the second sec	450	Start 1442 Stop	12-16	20	110	6)14/14	
	201-00213		45 Water (gal)			16-20	20	110	011-111-	
	97. 8744458	10				20-24	20	10	11575	
			405		1528	24-24	20	01i	1530	

GROUNDWATER WELL DEVELOPMENT LOG

Site Name: 2nd & Kirby Remediation	Pump: Pegasus Athena Peristaltic	
City/State: Hutchinson, Kansas	Development Method: 5x Well Volume	
GSI Project Number: 148032	Tubing Material/Size: 3/8"x1/2" Tygon	
KDHE Project Number: C2-078-70770	CBC+ Trimble Cost Suplanes 2000	Deturne WICO (CO.)
KDHE Project Manager:M. Daily	Water Quality Meter (If Required):NA	Datum:WGS 1984
Date: August 2014	GSI Professionals J. Mellema, B. Ortega	

Location	Date/Time	TD	SWL	Well Volume	Purge Volume	Low-Flow Field Parameters (If Required)					
						Temp (°C)	pH	ORP (mV)	Cond (mS/cm)	Turbidity	DO (mg/L)
-	61	02									
TA	5/13/14	23,44	10.09	13.35×0.04	1		1				
TAW-1	1130			= 0.54	256AL					1.000	/
24			-	5x=2.74			\			/	
38.05374457			1			1	1		0.1114		
17. 47506457							/	1		/	
			-						1		
	12 State 1	1	1	1.1.1.1.1.1.1.1		1.5	1000		/		-
			1		1. The second se		1		/		
		-			5 million 1		-		1		
			1						X		1
		1							1		
TH 2 2			1						/		
TMW-2	6/15/14	23 57	10.417	13.10×0.04	11.11		-				
34.05210450	0930		1.1	= 0.54	- SGAL			1/			-
		1		5x=2.48				1 1			
17. 57140244							/	1 1			
							1	-			
T		-					1-				A
T T							_				1
Ē		1				/	-	1 1			
						/	-				

Page ____ of ____

.

PUELED (WHILE SUGLERA) TO SX WELL UDINNE, THEN FUELED UNTIL CLEAR.

GROUNDWATER SAMPLE COLLECTION LOG

Date: 7-14-14 10 **Low Flow Field Parameters** Sample Installation Depth Recorded Purge Location SWL TD 1 (pm -105 108 405 108 405 1110 1110 (feet bgs) Time Volume Sp Cond (NTU) ORP (mV) Other Temp (°C) pR (mS/CM) 19.21 10.66 17.63 5:40 1.455 1.58 17.39 5.88 1.444 1.49 17.36 6:03 1.429 1.38 1.58 204.8 192.1 1.38 178.9 1115 11 CMW-10D, 1120 62.92 11.02 18,43 0,74 6.93 1.464 61.6 1127 16.72 6.91 0:48 41.0 1-462 112 5 15.74 6.93 32.1 4:464 0.47 1130 1.658 18.64 697 6.63 18.4 18.43 6.94 1.453 9.8 0.40 1134 6.98 1.454 0.59 5.6 1138 16.4.4 1.448 6.52 Gua -0.4 1:40 19.47 6, Gg 1.647 0.51 -10.2 1141 15.45 6.99 1-447 0.29 -11.0 1145 6 GMW-10S 1253 1254 255 1.7-14 122.61 10-06 14.90 1.17 199.5 1.51 11.02 6.66 1.727 1.412 0.001 16.78 6.67 1.715 1.37 108.0 1300

Geotechnical Services, Inc.

06

Page 1 of 5

epth Recorded Sample Purge SWL	Low-Flow Field Parameters
21.83 1370 10.19 NO	cj pri (mS/CiVi) (DERO) CHEP (mV) Obhe
21.66 1330 9.05	
2 22.80 12.09 19.5 17.9 17.9 1355 1355	3 6.74 1.633 1.83 57.6 9 6.60 1.538 1.25 70.2 4 6.63 1.538 1.19 72.2 5 6.62 1.531 1.15 74.5
28,97 1405 10.21 1	I'vell, no low Flow
1355	I WW , no low

Page 2 of 5

GROUNDWATER SAMPLE COLLECTION LOG Date: 111-14 0 Low-Flow Field Page Installation Depth Recorded Sample Purge Location SWE Temp (°C) (feet bgs) Volume Sp Cond Restrictly (NTU) TD Time pH ORP (mV) Other (mS/CM) 1415 1 6 MW -31 10-65 9.79 flow: NO chell law 1 61 mw-55 1430 1435 1435 1490 1445 1445 1450 24.84 11.55 18.63 7.25 1.54 1.306 -6.6 7.17 17-76 1.786 9 1.2 16. 17.56 1.271 7.12 1.21-11.2 7.12 5 1.19 0 1455 Gmw 95 1505 22.13 12.04 16,14 7.00 1.240 1,47 104.0 6.91 1510 1-00 1,199 105.3 6.87 15.56 1,197 105.0 6.88 1,197 0,90 104.0 15,57 1515 1530 22.39 WGMW-72 11.58 14.77 6/17 .74 112.4 14.671 6.591 1,238 1.00 116.5 1540 14.57 6.54 1.235 8,95 1:91 120.5 550

Geotechnical Services, Inc.

Page 3 of 5

GROUNDWATER SAMPLE COLLECTION LOG Date: 7-15-14 DO Low-Flow Field Parameter Installation Depth Recorded Sample Purge Location SWL (feet bgs) TD Time Volume Sp Cond Testidaty (MRC) Temp (°C) PH ORP (mV) Other (mS/CM) 25:31 1310 12-55 15 MW-275 1323 1323 1326 14.80 6.89 1-166 102,5 15.00 1.141 83.1 6.48 02 14.97 6.50 1.110 9 6 1.103 80. '9 65 1330 1340 1345 1350 1355 11 how 65 MUST 22,30 11.25 14.80 1.90 1.112 1.10 73.0 6.91 1.119 72.8 1,07 14. 1,122 (,00 70.7 1400 +> 1410 31.81 10.83 51 MW-21 1415 15.19 6.51 1.378 1.14 133.6 133.6 15.18 1.51 1.372 1423 0.70 126.9 15.19 6.51 1.370 1426 6.50 15,191 369 69 D. 17.5, 1430 -> 1440 27.28 11.97 MW-15 14.80 6.54 1.159 14.76 6.47 1.133 1.85 156-0 1450 0.81 1455 14,79 6.48 1.126 0,80 156.9 1500

Geotechnical Services, Inc.

Page 4 of 5

Date: 7-15-14 Low-Flow Field Parameters Installation Depth Recorded Sample Purge Location SWA (feet bgs) TD Time Volume Sp Cond Tarbidity Temp (°C) pH ORP (mV) Other (mS/CM) (NTU) 12.32 11.07 CMW - 205 11 CMW-1351 NA NA LOCKED -> Padlock 10 1/ 6 MW 8 S 1510 1515 15.23 1.74 1.280 1.23 124.3 14.94 6.60 1.271 0.82 125.5 14.96 6.62 1.274 0.78 124.1 14.97 6.62 1.274 0.78 124.1 14.97 6.62 1.274 0.76 125.6 21.97 10.82 1530

Geotechnical Services, Inc. A 1995

10

Page 5 of 5

J.MELLEMA

GROUNDWATER SAMPLE COLLECTION LOG Quarterly Groundwater Monitoring - 2nd & Kirby GSI Project Number: 128032

Date: 10 - 28-14

1	Installation Depth	Recorded	Sample	Purge				Low-Flow Fig	eld Parameter	s	
Location	(feet bgs)	TD	Time	Volume	SWL	Temp (°C)	рН	Sp Cond (mS/CIVI)		ORP (mV)	Other
UMW-205		12:17	/		12.00						
NIJ. VO											
Clute											
-		18.51	~	-	13.93						
me BS											
NW											
U ^N							-				
1.4											
cm66-105	Start 1110 1115	19.07			11.71	19.33	6.71	1.503	0.86	148.2	
c mbd	1/20				11.75	19.62	6.69	1.516	0.46	142.4	
Ċ.	1130		1130	2.50 gal	11.75	19,68		1.523	0.42	143.2	
					-						
6mu-105	Start 1145	22.24			11.08	18:05	6.62	1.552	1.59	48.6	
(amu)	1150			-	11.15	18.17	6.59	1.428	0.56	81,9	
U*	1201	1			11.13	18.40	6.62	1.421	0,38	128.7	
	1205		1205	3541	11.19	18,41	6.62	1.417	0.38	131.1	

Mall

Page _____ of ____

Quarterly Groundwater Monitoring - 2nd & Kirby

GSI Project Number: 128032

Date: 10/28

	Installation Depth	Recorded	Sample	Purge				Low-Flow Fi	eld Parameters		45. 6 45. 1 44. 6 42.8 43.5 2.8 17.1 18.1 18.0 7.9 17.5
Location	(feet bgs)	TD	Time	Volume	SWL	Temp (°C)	рН	Sp Cond (mS/CM)	Turbidity	ORP (mV)	-Other
emw.4S	1730	21.98		Sgal	11,93	16,18	6.57	1.239	0.90	195.6	ATOP
50	1733			-	11.97	16,19	6.55	1,238	0.88		
NW	1736		-		11.97	16.21	6.55	1,238	0.81		
r	1742	-			11.97	16.19	6.2	1.236	0.87		
	1110		1745		11/11	16:11	6.01	1105	0,81	195,7	281
											2.0 %
	1750	23,52			10,92	16.32	6.75	1.219	0.80	-17.1	
	1753					16,25	6,74	1.218	0.75	-18,1	
N	1756		1	-	1.1.1	16.20	6.68	11216	0,81		
ww	1759			21		16.72	101	1:208	0.79	111	
nw.2	1802		1805	3 ga/		16.21	6.72	1.201	0.76	-17.5	2.2
			1805								3.3 mg
	1810	27.98			13,07	16.08	6.50	1.315	1:11	106,4	
6	1815			1	13,11	16.05	6,46	1.333	0.81	123,9	
12	1820	1			13,11	16+11	6.47	1.225	0.76	132,1	
1	1825	2	1825	3 gal	13.11	16.10	6.51	1.215	0.75	133,2	
)		3					1				0,52
								2			
w-95	1835	21.92			13,16	16.90	6.73	1.196	1.08	00 7	
1-42	1840	-				16.98	6.73	1,201	0,78	90,2	
1m	1845	3	1222			16.97	6.79	1.219	0.73	108.8	
	1850		1850	8 gal		16.95	6.75	1.222	- 0, 71	111.3	
		1 million (1)		0					1 S		

Page of S

Quarterly Groundwater Monitoring - 2nd & Kirby GSI Project Number: 128032

10728 Date:

Location	Installation Depth	Recorded	Sample	Purge				Low-Flow Fi	eld Parameter	s	
	(feet bgs)	TD	Time	Volume	SWL	Temp (°C)	pH	Sp Cond (mS/CM)		ORP (mV)	-Other-
6MW-6S	1015	22.31			12.33	16.73	6.97	1.144	1,71	65.0	Fron
16	1620				12.37	17.21	6.92	1,157	0,61	73.5	
MW	1628	1		4 april	12:37	17.30	6.91	1.159	0.60	73,5	
0.	10.0		1630	4 9921	12,37	17:28	6.28	1.157	0.58	73,4	-
			16,0			-			10		0.63 m
											0
by MU-67	1035	47.21			12.38	16,66	6.75	1.361	0,91	1/1 /	
mbron	1638					16:24	6.71	1.354	A.54	116.5	
(m)	16 41					16.22	6.71	1.354	DiSI	119.4	
•	1694					16.21	6.70	1,353	0.49	219.6	
			1650	-		16.23	6.69	1.353	0,48	120,2	
			1000								
.0	1653	22.40			12.77	1631	6.51	1.393	0.89	121 14	
N1 73	1655				12,80	16.33	6.45	1,381	8.91	121, 4	
pr MW-7S	1658				12,80	16.27	6.44	1.368	0.88	125.8	
J1.	1703		1710	20	12.80	16,26	6.44	1,361	0.85	132,6	C-21
			1705	2.59							
	1710	71-70									
have	1713	31,78			11.88	15.99	6.48	1.341	0.72	139.2	
NW-21	1716	-			11.91	16.84	6,48	1338	0.69	136.8	
	1719				11,92	16,01	6,47	1.335	0.70	136,6	
	1722			1	11 92	16,02	6.48	1,338	0,71	135.9	
			1725	3.5 gal	min	16106	6.0	11771	0,71	135,1	
				- Juli		C	1.5				

MS/L

Quarterly Groundwater Monitoring - 2nd & Kirby GSI Project Number: 128032

Date: 10/28

Location	Installation Depth	Recorded	Sample	Purge				Low-Flow Fi	eld Parameter		FE EFELD
Location	(feet bgs)	TD	Time	Volume	SWL	Temp (°C)	pH	Sp Cond (mS/CM)	Turbinlity (NTFO)	ORP (mV)	6000
		NA)	-	11, 91				100		
1mw-3		No	Samp	te -	- Ke	ets	in	we	11 @	11-2	1'
w-275	1445 1458 1455	25,22			13.54	18.21 18.21 17.45	6.68	1.365 1.405 1.269	2,53 1,20 0.45	138.6 146.5 144.0	
100	1500		1505	Ilgal		17,40	6.59	1.218	0.40	144.1 144.2	0 mgli
mu-1	1515 1520 1525	23.49			10.55	1714 16.99 17.01	6.74	1.357 1-361 1.369	2,44	-45.5 -36.6 -36.0	
Mus	1530		1530	2.5 ge	10.55	12,02	6.78	1.365	1.05	-35.3	3.30 mg
alle 5:	1545	24.65			13.00 13.03 13.04	17.70	7.20 7.16 7.16	1.237 1.237 1.242	3.89 0.95	-21.7 -8,5 2,0	
Olu.	1600		1610	2. Sgal	13,04	17.85 17:87	7,17 7,17	1,243	0.48	2,1 2,2	

NSIL

Page 4 of 5

Quarterly Groundwater Monitoring - 2nd & Kirby GSI Project Number: 128032

Date: 10/28/14

	Installation Depth	Recorded	Sample	Purge				Low-Flow Fie	eld Parameters	.	
Location	(feet bgs)	TD	Time	Volume	SWL	Temp (°C)	pH	Sp Cond (mS/CM)	Turbidity (NTU) 00	-ORP (mV)	Other
25	Start 1210	22.85			13,12	18,1	6.67	1.488	1,68	97.4	
MW-285	1215				13.16	17,25	6.58	1.473	0.75	78,1	
NW	1221				13.16	17.19	6.58	1.472	0.68	82.9	
	1225		1225	2.5 92/	13.16	17.28	6.59	1.474	0,61	83,8	
				- 19	11110	111 00	6.77		_0; 5.1	83.3	_
	2003	24.93			11.31						
1-4	1240	1			11.36	17.58	6.78	1.525	2.31	4.4	
GMW-4	1245				11.36	17.35	6.77	1.520	1.28	5.4	
U	1253				11.36	16.88	6.65	1.507	0.98	6.4	
	1255	1	1255	2.5 SA/	11.36	16.88	6.63	1.495	0.89	5.8	-
					11. 10	10/0/	0.0)	1.11)	0:81	3,2	
	305/305	21.81			10.22	17.38	6,69	1,433	1.89	109.6	
1-61	1310		Sec. 1997. 1		10.25	17.25	6.57	1.436	0.54	128.1	
nmw-1	1320		1320	2.500	10.25	17.27	6.57	1.442	0.49	136.2	
			1)00	2. Sgh	10.05	11.00	9,5/	11999	0.48	138.6	
	1225	2110		10	10 . 0	1: 0 0					
11.0	1325	21,65			10.07	16.98	6.83	1.573	7.50	156.8	
GMW-2	1335				10.10	16.63	6.63	1.584	0.60	149.3	-
U.	1340				10.10	16,55	6,62	1,579	0.57	148.9	
					A COLOR						
					1						

Mg/L

 $Page \leq of \leq$

	TEREA SISTEMS	MICHAEL FREE 484-889-22
	Land States The	(765) 294-8894
	MARY C	AJLY - KOHE
	KIM FOLBES F	DE CHERF 620-694-287
2NO + KIRBT		
REMEDIADON	DAY 1: 8/11/14	
145032		
Contra Dates a Mercan		2MAUEUT FIEZOMEIEES
DESLIFES: CORE- LEWIS, CHESS	1	
	SwL: 10.09 ft	Swe: 10.474
	TO: 23.44 ts	10: 23 57
	· TERRA GISTEMS DEL	LUGRED Foul (4) TAURS up En
	~ 330 SAL PRE TA	ως
	DAT 2 . \$1.21.4	
-	- 1002 Sw2 + 7D	50
- Ta.	- (J17 056115050	
	, <u> </u>	and a server s
	_	
		Rite in the R

5 30 LUSERDON SITE 1: 2:00 BM 5:00 pm NIJON ITME: 60mm 834 START DELL - PLOBE 1 437 STOP DIJU \$43 B PSJ) - 41 I-AI 100 MW 37 START INSECTIONS PURLE 920 38 VISITION JUSECISON 450 gr 5 GALL 112-2 942 JNJFCTJON 2 40 献 STOP INSECTION 34 1620 112-3 34 1055 STALT JUJECTON 19 551 - 2.3 - 10-- 1 STOP INJECTION 38 11 1115 START INSECTION 20 PSJ 150-4 43 1234 20 1308 364/2 238 MON : DAT 1 AN TIME STOD JNJECTON IL1-5 1326 (20 PSJ) START INDECTION STOP INSECTION x 1400 START JAUECTON (20 :55) 1411 JG1 h i. 1449 STOP INDERTIONS 1532 120Psr1 J1-7 START INDECTION 1615 11 STOP INJECTION'S SERVICE STATE (20 55 0745 START INDERTHONS II-8 11 0822 STOP WJECTIONS 18:57 0842 SINGL INDECTIONS 112-4 INSEC DOUS 5769 u 0923 the -10 0454 START INJECTIONS 10 35 1 SBP Rite in the Rain

4

Aller In

TIME	ACTOON	1	
1116	START INSECTIONS	IL2-2	O LEFT
149	STAP JNJECTSONS	1	
1322	START INSECTIONS	712-2	ANG FORD TIME. 35 MON
1400	STOP INJEGIJOUS	11	DEWNJOHE 25 may
1415	START INSECTION'S	JL2-3	35 mil Poz -su
1515	670 INJECTIONS	v	
1530	START INJERTIONS	312-4	- 1:00 il 2015 no 4:06
(62)	STOD INJECTIONS	- al	
0735	STAIT INJECTUUS	IL2-5	
0500	SHOLD JACKE GOR	3	5 704
1545	STACT JUSTERTBUS	122-6	» HIGHER CLAT CONTENT
0933	Stop Insterijous	11	
0945	STACT INDECTIONS	IL2-7	OTMW -2 PURE 5 GALLONS
10 30	SID JUSECTIONS	1 4	× 1
1225	START INDECTIONS	IL2-8	DEVELOPMENT:
1317	STOP IN JECTIONS	4	KOHE RFP SX WELL JOLUME
1338	START INSECTIONS	12-9	TMW==13.35 × (0.041×6) = 2.74 CALL
1422	במכהשברית הבדא	11	· JMW2=13.10 × (0.041 × 5) = 2.68 440
1442	STAZT SUSSETSONY	312-10	
1528	STOP JOUST CILUMS	=2	POLIED BOTH TO SPECIFIED VOLOME, THEN
			PURLED UNDE CLEAR (~ 5 GALLOW)

" WEEK O" INTERIA)

8 TMW-1 SAMPLE S/13/14 9 IMW-2 SAMPLE 8/5/14 00100 920 JEM.O OH COUDICT NEW 36m9 OH CONDUCT 00 029 03 61.4% 1211 92.4 17 49 4.75 140% 5 9.4% 6.45 15.53 -14 5 7:9% 14.54 35.1 6.57 4.6 -13.2 15.74 1206 io 6-49 iza 12 10 31% 45.2 6.57 15.79 1294 39 14.55 -11.5 6.65 1205 2.1 32.8 15 6.59 16.72 1287 18 21 30.7 2.0 16.55 6.60 1285 5302,0 29.9 16.61 6.61 1285 -SAMPLE @ 1202 - Sample @ 1500 GMW -275 SAMPLE 5/13/14 6MW - 85 SAMPLE 6115/14 MSN 05 020 TEMP CONDUCT TEMP eH Pit OOP 00 (ON DUCT MSU 0 1391 17.40 441 Solo 54.7 6.77 1197 0 25.1 50.1 6.70 5 6.59 14.0 64.3 16.43 140 39 1248 6.43 4D.a 17,54 5 66.5 16.53 10 6.59 1195 17,52 1246 10. D 4 3.8 6.61 60.3 7.91 66.7 16.54 1178 12 6.60 io 3.4 17.55 59.9 459 R42 7.7 66.1 16.52 15 6.62 1151 7.666.0 16.50 6.64 1123 SAMPLE @ 1235 - Sample @ 1530 Rite in the Rein

WEEK I INTERIM

10 G	MN -2	175		8 25	1) نے ا	GM	w .s	ŝ G	122]1	4
MSN	TEMP	CONDUCT	001	₽Ħ	020	MSU	TEMO	(UNDUT	1 00	1
0	14.21	1.517	7.7%	1.53	58.5	0	20.77	1.431	10.0	1 Ga

1	1 10 11	6.16	6.00	03.0	
17.20	1.471	10.2%	6.13	69.6	
12.00	1.452	9.2%	6.09	62.9	
17.03	1.434	6.3%	6.12	53.0	
14.53	1,4123	9.0%	6.15	49.1	
16.59	1.419	9.0%	6.18	45.7	
16.93	1.396	10.5%	624	41.9	
	17.20 17.00 17.03 14.53 14.53	17.20 1.471 17.00 1.452 17.03 1.434 14.53 1.434 14.53 1.434 14.53 1.434	17.20 1.4171 10.2% 17.00 1.4152 9.2% 17.03 1.4134 6.3% 14.53 1.4134 6.3% 14.53 1.4133 9.0% 14.59 1.419 9.0%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

MSU	TEMO	(UNDIT	1 20	1 917	1 020	1
Ó	20.72	1.431	10.0	4.72	753	1
5	13.51	1.342	4.4	6.68	50.9	
7	14.43	1.332	3.4	6.47	81.4	
9	14.48	1,337	2.2	6.68	51.3	
tl	14.44	1.334	2.3	6.68	80.4	
13	15.43	1.335	2.8	4-48	80.4	
15		100.000				

1	mw -1				c 1 3	Tmw	.2				
MIN	15mp	CONDUCT	Do	RH	(000001)	MSN	JEMP	LENDOCT	00	1 PH	6201
0	17.71	1.456	7.4	6.64	2).5	6	20-51	1-140	42.0	6.83	67.7
5	16.56	1.378	2.9	4.56	9.5	5	17.93	1.320	24	16.72	73.3
7	16.92	1.349	2.2%	6.54	2.7	2	15.04	1.324	2.3	6.72	73.3
9	17.15	1,345	2.2%	6.53	7.2	- 9	15.01	1.392	3.2	6.71	73.1
il	12.23	1.344	2.3	h.43	12.4	11	145.22	1.323	2.2	6.72	72.6
13	17.29	1.366	3.0%	6.46	9.9	12	17.00	1.37	2.0	6.71	73.0

Rite in the Rein.

11

12	WEE	K2 -	Labe-v	L	5/29	14
INJECTION COORDINATES:	6 MW	-375	Stul :	3.29	TD	25.0
	NON	TEMP	CONDUT	100	124	1 orf
162-5: 38.05419363 3 97,5749 1787 2	2	14 44	1493	12.1	6.39	
111 - 2: 38.03414505 N 97.8749 4146 W	4	15.04	1456	1). 4	6.30	29.2
112 - 3: 32.054 09769 N 97.874997 42°W	L	17.44	1474	11.3	6.38	32.
SL1 - 4: 35,05405185 N 17.4750 3564 W	4	17.73	1481	10.4	4.28	32.5
142-5. 35.0540,739 N 47,575=4547 W	10	17.64	1477	9.5	6.32	2 27.
JL2 - 6 35,05345506 N 97.47511462° w	12	17.55	1468	9.0	6.34	29.
JL1 - 7: 36.05390434W 17.57514504W	14	12.44	1461	5.6	6.34	330
JL2 - 8: 24.0538 318 W 17. 475 1876 W	16	17.58	1461	8.1	16.36	34.7
ILS - 9: 30 05350544 W 47.5752 3339 W						
JLS - 10: 5.05 3, 5073 W 97.8752733 W	Thu	2-1 5	WL 210	.27 -	tQ:	23.48
TMW-19 34.0537 4857 N 97 87506457 W	AJN	1	1	100	Pit	ORA
JL2 - 2: 38.05190460 -N 97.67232760-N	2	15.75	1497	1	6.59	19.4
112-2: 38 0514 4985°N 47.8722 9360°N	4	1	1451	6.4	1.55	14.7
12-3: 38.0514 4928°N 67.6722 5365 W	h	1	1415	5.8	6.51	14.0
JL2 - 4: 38 0520 45 85"N 97. 87 221413 J	6	15 00	1401	5.9	6.46	22.2
162-5: 38.0520 9358°N 97.8721 6835°W	10	1254	1393	6.2	140	28.2
162-6: 38. 05214417 N 92.87212670°W	12	17.46	1390	4.88	1	28.8
IL2 - 7: 3' 05214090 °N 47. 47207257°W	.4	17,44	1384		6.41	
142-8: 34.05223891 W 97.57203138 W	16	17.45	1374	4.5	6.42	27.9
IL2 - 9: 38.0522 8128" 47.8719 434 3-W						
IL2-10: 34 052324780 47, 5719 44500						
Mw-275: 38.05 39 2205 N 47 87527642 W						
TIMW-2: 38.65216950 47-571402480W	ione :	"L ions	wcr: 35	0		
CMW-83: 38.05215716"N 97.57221107"W		1	in	w h		

NIN	1 JEWP	CONDUT	100	124	LORP
2	14.46	1493	12.1	6.39	30.2
4	15.09	1456	1).4	6.30	29.2
6	17.66	1474	11.3	6.38	32.1
4	17.73	1491	10.4	4.28	32.0
10	17.64	1427	9.5	6.32	27.8
12	1 17.55	1468	9.0	4.34	29.3
14	12.44	1461	5.6	6.34	330
14	17.58	1441	8.1	6.36	34.7

NEA	TEAP	CONDUT	00	Pit	ORA	
2	15.75	1497	27.0	6.59	19.4	1
4	14.55	1451	16.4	1.55	14.7	1
h	15 13	1415	5.8	1.51	14.0	
6 '	15 00	1401	5.9	6.46	22.2	
10	1254	1393	6.2	C40	38.2	
12	17.56	1390	4.59	4.41	28.8	
4	17,44	1384	4.7	6.41	290	
6	17.45	1374	4.5	6.42	27.9	

would : my co it

Rite in the Rain .

14 WEEK2 Jub-10 5/29/14

min	TEMP	10.	DUCT	10	0	? }	t	62P		
2	15 67	13	1357		3.5	6.6	2	116.4	-1	
4	14.49	1	1342		1%	6.5	-	114.	7	
4	14.72	1	347	1	.3	6.5	1	117.5		-
8	14.56	13	1351		2	4.5	5	1160		-
10	14.45	13	47	4	9	4.5	4	117.		-
			(00000					-	920	
2	116 50		1354		1 100	1.1	16	65	026	1
34	14.54	-	134			-1	-	65	92.9	
2 4 4	19,5	1	134	5	i	?	6.	63	42.1	
4		1		8 57	is 16	?	6. 6	63 .61	42.1 92.4	
4 6	14.5	3	134	57 57	is 160 47	?	6. 6	63	42.1	

WEEK & Interim

www.	-275				
MIN	TEMP	(COND.JCT	1 Dc	34	1020
5	15.24	1427	19.9	4.41	15/1
5	15.28	1422	del 1	4.32	135.3
7	15.34	1423	3.5%	6.37	144.0
9	15.34	1423	2.9%	6.34	134.5
(1	15.33	1422	2.6%	4.34	119.0
13	15.35	1421	2.3%	6.34	100.5
15	15.35	1420	2.3%	4.34	90.2
17	15.37	1415	2.1%	4.32	79.5
19	15.33	1412	2.0%0	6.34	69.4
21	15.29	1408	2.0%	4.37	60.2
23	15.26	1404	2.0	4.37	53 8
25	15.27	1395	1.7%	4.37	44.4
27	15.25	1382	1 6%	4.32	43.1
29 /	15.20	1374	1.5%	6.37	49.1
31	15.24	1347	1.4%	6.32	48.5
33	15:29	1340	1.4	6.32	42.0

 $\frac{MW27552.34toc}{5wc=13.31}$ $\frac{70=25.21}{5wc=12.31}$

-2.93 DIFFERENCE

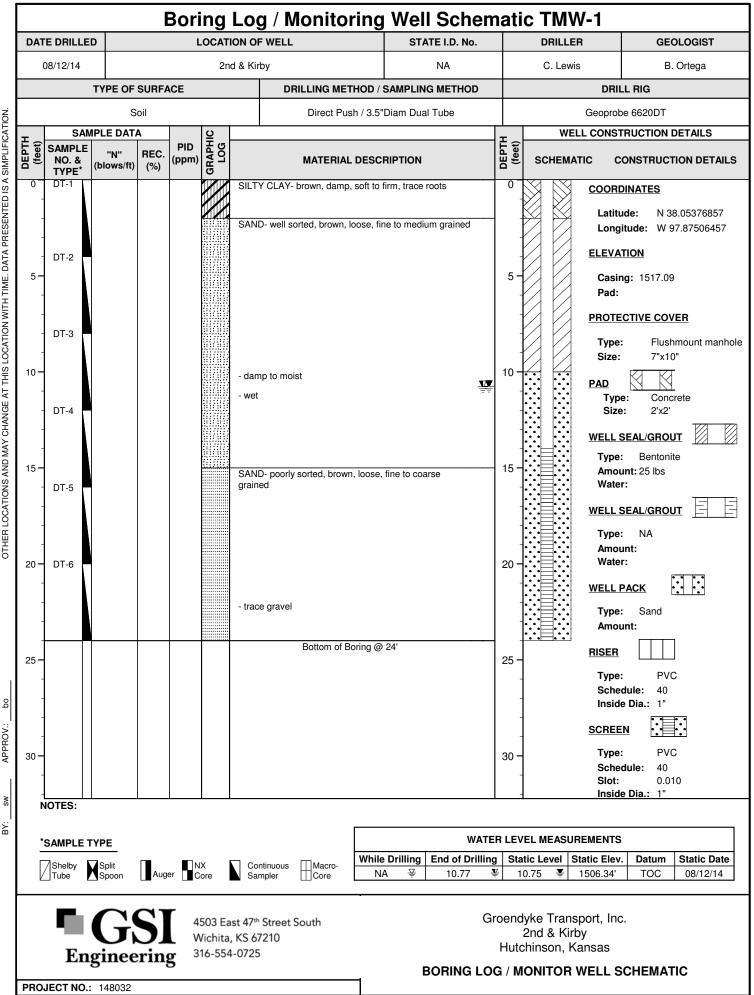
TREMBLE - GEO XT GPS

Rete in the Rain

16 WEEK U JAtom

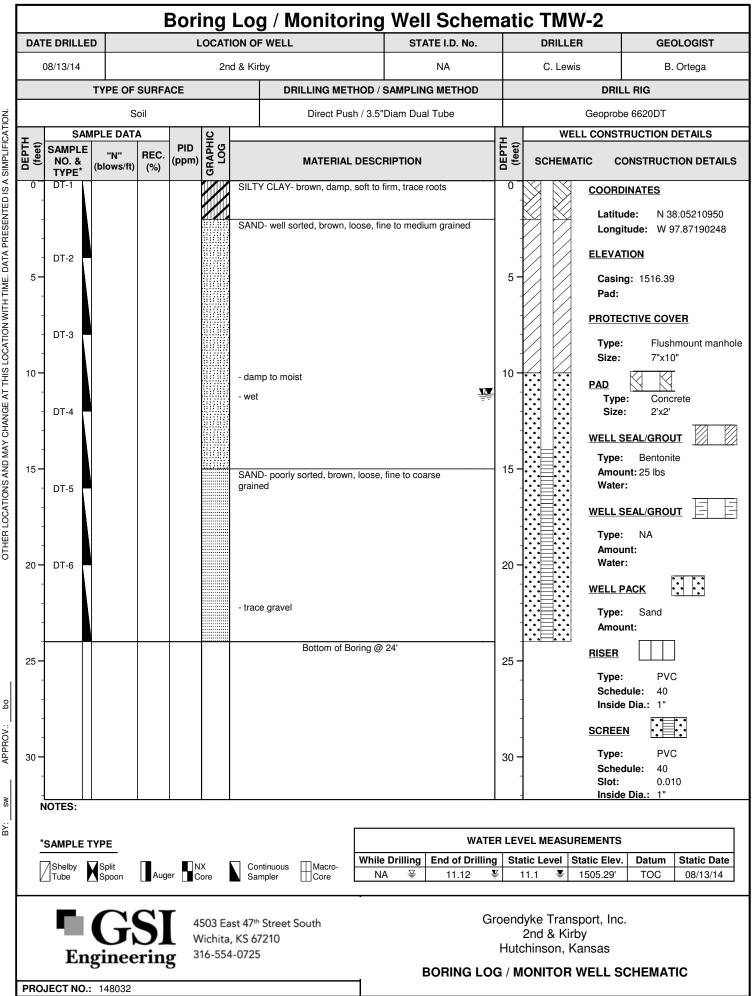
Min	1-2	SWL= 10	24	TP: 2	345	<u> </u>	nw- 35 -	Suc: 11.	73 T.D	21.99	
nin	15mP	LON DUCT	00	EH	62P	man	TEMP	CONDUCT	20	1 PH	logr
0	1603	1328	51.1	6.40	45.0	ð	15.15	1158	47.0	4.37	200
5	15.44	1328	14.7	16.34	7.7	5	15.07	1145	5.3	4.3 is	132.8
7	15.40	1324	17.5	4.34	7.5	7	15.0L	1144	4.5	4.34	124.5
6	15.37	1319	17.3	6.35	9.9	9	15 04	1143	3.5	4.34	113,2
11	15.37	13:3	15.0	6.34	11.2	-1	15.07	1192	2.9	4.34	101.6
3	15.35	1307	20.0	4.34	101	13	15.09	1142	3.3	4.34	91.0
5	15.34	1354	14.5	6.34	10.4	:5	15.00	1141	2.4	6.34	82.4
17	15,30	1301	19.5	4.34	10.5	17	15.11	1140	2.7	4.34	76.2
_						19	15.11	1140	2.9	434	20.4
						21	15.4	1139	2.3	4.34	46.0
(GMW - 4	\$5:3.2	8 +90	() () () () () () () () () ()		23	15.11	1137	1.9	4.34	40.7
	TM W-	2:4.3	9 to	DC		25	15.07	1134	2.1	1 4.34	54.5
				C DIFF	स्ट्रन	27	15.07	1135 .	2.0	6.34	154.5
						29	15,09	135	1.7	1 4.3%	31.9
						31	15.04	1133	1.1	4.3a	46.5
						33	15.07	1:33	1.4	1 6.34	453
						35	15.04	1133	1.4	l 4.34	34.8
						37	15.08	1132	1.5	6.32	24.4
						39	504	1131	1.4	637	29.8
						1-11	15.0h	1131	15	632	25.4
						43	15,04	1130	1-4	4.37	19.7
						45	5207	1130	1.4	6.37	17.9

WEEK U- Infirm (cont-)


un /	TEMP	CONDUCT	00	1:14	1 000	1
0	1492	1154	56.0	4.37	150.0	1
5	14.57	1127	7.3	6.33	97.7	
7	14.97	1145	4.4	6.38	\$3.4	
٩	14.55	1142	33	6.39	73.4	
n	14.44	1140	2.1	6.39	60.3	1
13	14.64	1134	2.1 1	ie.39	52.4	
15	14.83	1134	2.0	6.39	46.1	
i7	14.84	1136	2.2	6.39	40.6	
19	14.45	1135	1.7	6,37	32.8	
21	14.52	1133	1.5	6.39	24.7	
23	14.50	1631	1.4	6.39	20.7	
25	14.29	1129	1.3	6.39	15.5	
27	14.76	1128	1.2	6.39	15.4	
29	14.75	1127	1.1	6.34	14.0	
31	14.75	1124	1.1	6.39	12.0	
33	14.74	1125	1.1	6.37	9.0	
35	1472	1124	1.0	6.39	4.3	
37	14.77	1123	1.0	6.35	12-9	
34					1	
-11						

Rite in the Rain .

19



APPROV.:

Ъ

GSI Job	No. 1	148	032
---------	-------	-----	-----

1 LOCATIC	ON OF WATER	WELL:			ORD Form		on Number	Township Num	ber	Range Number
County:	_		NW ½	SW ½	NE	1/4	16	т 23	s	r 5 W
Distance and		nearest town		ddress of well if	located with	in city?				
WATER	WELL OWNER	Groend	yke Trans	port, V&M T	ranspor	t, Inc.				
 RR#. St. Ado	dress, Box #	2701 E	. 4 th Ave.		·			Board of Agricult	ure, Division	of Water Resources
		- Untohis	neon KC f	7501				Application Num	ber:	
3 LOCATE	WELL'S LOCA	ATON WITH	4		A / [**]				1517 09	(TOC) 1. (TOC)
	SECTION BC					10.7	7 A	2 10 N.	# 3	,, * _
T I			Depth(s) Groun		ered 1	75 4 5		. 4	^{11.} - har	n. 98/12/14
	NW	NE	WELL'S STATE	U WATER LEVI				it. after	hours num	ing anm
∳ w L			r un	iip toot data. V	Voil Water We					ing gpm
-			Bore Hole Dian	gpii. •	in to	24		ft and	in. to	
	sw	SE	WELL WATER	TO BE USED A	S: 5 Publ	ic water su	oply	8 Air conditionin	ig 11 lnj	ft. ection well ther (Specify below)
	i	1								
╵└─	s	╧╼╼┛								
	3							Yes No X		
			submitted					ater Well Disinfected?		
	BLANK CASI			5 Wrought						Clamped
1 Ste	el	3 RMP (8	SR)	6 Asbesto	s-Cement	9 Other (specify belo	(wo	Welded	
2 PV(0	4 ABS		7 Fibergla	5S _					Flush
Blank casing	diameter		in. to 1	4 ft., Dia		in. to		ft., Dia	in.	to ft. SCH. 40
Casing heig	ht above land s	urface	0	in., weight	0.7	703	lbs./ft.	Wall thickness or ga	luge No. 🔄	SCH. 40
TYPE OF SO	CREEN OR PE	REORATION	MATERIAL:			7	PVC	10 Asbest	os-cement	
1 Stee	el	3 Stainle	ss steel	5 Fibergla	SS	8 I	RMP (SR)	11 Other (specify)	ole)
2 Bra			ized steel	6 Concrete	e tile	9 /	ABS	12 None u	used (open h	ole)
	R PERFORATI		GS ARE:					8 Saw cut 9 Drilled holes	11	None (open noie)
			Mill slot		6 Wire wra 7 Torch cu	••			ň	
			Key punched				#	From	/ ft to	ft.
SCREEN-PE	ERFORATEDI	NIERVALS:	From		. to	47	^{l.} #	From	ft to	
0.01		TEDVALO	From	10 "	, to	24		From	ft to	π. ;
GRA	AVEL PACK IN	ERVALS:	From		to		^{n.} ff	From	ff to	ft.
		4 No 4 -								
			ement 10		L		onne	ft. From		ft to #
Grout Interva	als From		n. to	π. From		n. u	10 Live	stock pens	14 Aband	oned water well
	nearest source otic tank		4 Lateral lines		Pit privy			storage	15 Oil wel	
•	wer lines		5 Cess pool							specify below)
	tertight sewer l	ines	6 Seepage pi	it 9	Feedyard	3	13 Inse	lizer storage cticide storage		· · · · · · · · · · · · · · · · · · ·
Direction fro	-				-		How man			
FROM	то	CODE		DLOGIC LOG		FROM	то	PLUC	GGING INTE	RVALS
0	2			wn, trace root			<u> </u>	 		
2	15			ed, brown, find) to					
2	10	Sa	dium grained	orted, brown, f	ine to					
15	24		rse grained	, iou, brottin, i						
	┞							<u></u>		
							<u> </u>	GPS: (Datum	WGS84)	
	<u>├</u>							Latitude: N 38		7
								Longitude: W		
	<u> </u> †		·····							
		ANDOWNER	S CERTIFICA	TION: This wat	er well was	(1) construc	ted, (2) rec	onstructed, or (3) plug	ged under m	y jurisdiction and was
7 CONTRA	ACTOR'S OR L									
			00/	12/14	•	and thi	s record is	true to the best of my	y knowledge	and belief. Kansas
completed of	on (mo/day/yr)		08/	12/14		and thi	s record is	true to the best of my	knowledge	and belief. Kansas
completed o Water Well	on (mo/day/yr) Contractor's Lie	cense No.	08/ GSI En	12/14 531 aineering, l	LLC	and thi This W	s record is ater Well F	true to the best of my fecord was complete	y knowledge d on (mo/day	and belief. Kansas //yr) 11/12/14

GSI Job No. 148032

TMW-2

	WATER WELL RECORD Form	WWC-5 KSA 82a-12	212 ID No	
1 LOCATION OF WATER WELL:		Section Number	Township Number	
	NE ¼ SW ¼ NE	<u>¼</u> 16	T 23 S	R 5 W
Distance and direction from nearest to	wn or city street address of well if located with	nin city?		
2 nd & Kirby – Hutchinson	dates Transport VPM Transport	4 1	····	
2 WATER WELL OWNER: Groen	ndyke Transport, V&M Transpor	ί, INC.		
RR#, St. Address, Box # : 2701 I	L. 4 AVE.			ision of Water Resources
City, State, ZIP Code : Hutch			Application Number:	
³ AN "X" IN SECTION BOX:	DEPTH OF COMPLETED WELL	24 ft. ELEV	ATION: 1516	5.39 (TOC)
	Depth(s) Groundwater Encountered 1	11.12 ft.	2 ft.	3 ft.
	WELL'S STATIC WATER LEVEL 11	.1 ft. below TOC n	neasured on mo/day/yr	3ft. 08/12/14f
	Pump test data: Well water w	as fi	after hours	oumping gpm 🖕
👻 W 📴 İ 👘 E	Est, Yield gpm: Well water w	as fi	after hours	pumpinggpm 🗖
	Bore Hole Diameter 3.5 in. to WELL WATER TO BE USED AS: 5 Pub 1 Domestic 3 Feed lot 6 Oil f	24	ft. and in in	n. to ft. 1 Injection well
sw se	WELL WATER TO BE USED AS: 5 Pub	lic water supply	8 Air conditioning 1	1 Injection well
	1 Domestic 3 Feed lot 6 Oil f	ield water supply	9 Dewatering	2 Other (Specify Delow)
S			a) 10 Monitoring well	
5	Was a chemical/bacteriological sample sub			
	submitted	Wa	ter Well Disinfected? Yes	No X
5 TYPE OF BLANK CASING USED:	-		CASING JOINTS: Glue	
1 Steel 3 RMP	(SR) 6 Asbestos-Cement	9 Other (specify below	w) Weid	
2 PVC 4 ABS	7 Fiberglass		Threa	ded Flush
Blank casing diameter 1	in. to 14 ft., Dia	in. to	ft., Dia	in. to ft.
Casing height above land surface	U in weight U.	/U3 lbs./ft.	wall thickness or dauge No	3011.40
TYPE OF SCREEN OR PERFORATIO	ON MATERIAL:	7 PVC	10 Asbestos-cem	ent
1 Steel 3 Stain	less steel 5 Fiberglass	8 RMP (SR)	11 Other (specify)	
2 Brass 4 Galva	anized steel 6 Concrete tile NGS ARE: 5 Gauzed	9 ABS	12 None used (op	en hole)
		• •		11 None (open noie)
	Mill slot 6 Wire wr		9 Drilled holes	
2 Louvered shutter 4	Key punched 7 Torch c		10 Other (specify)	4. #
SCREEN-PERFORATED INTERVALS	S: From 14 ft. to	49 π. †	rom It.	LO
	From ft. to	Ω η η	·rom u.	10
GRAVEL PACK INTERVALS:		44	-rom #	to ft.
	From ft. to			
	t cement 2 Cement grout			
Grout Intervals From 2	ft. to 10 ft. From			π. το π.
What is the nearest source of possible	contamination:			bandoned water well
1 Septic tank	4 Lateral lines 7 Pit privy 5 Cess pool 8 Sewage la 6 Concernent 0 Ecodyard		· · · · · · · · · · · · · · · · · · ·	ther (specify below)
2 Sewer lines 3 Watertight sewer lines	6 Seepage pit 9 Feedvard		ticide storage	and (apeality below)
	o Seehage hit o Teedyard	How many		
Direction from well? FROM TO CODE	LITHOLOGIC LOG	FROM TO	PLUGGING	NTERVALS
0 2 S	ilty Clay, brown, trace roots			
	and, well sorted, brown, fine to			
	edium grained			
	and, poorly sorted, brown, fine to			
<u>15 24 cc</u>	barse grained			
			GPS: (Datum WGS	
		↓	Latitude: N 38.0521	
			Longitude: W 97.87	130240
	ER'S CERTIFICATION: This water well was	(1) constructed (2) room	Instructed or (3) plugged up	der my jurisdiction and was
CONTRACTOR'S OR LANDOWN	EKS CERTIFICATION: This water well was			
completed on (mo/day/yr)	08/13/14		rue to the best of my knowle	
Water Well Contractor's License No.	531 GSI Engineering, LLC nks and circle the correct answers. Send three co		ecord was completed on (m)
under the business name of	Inks and circle the correct answers. Send three co	by (signature)	nt of Health and Environment	/ Bureau of Water, 1000 S W
Jackson St., Ste. 420, Topeka, Kan	sas 66612-1367. Telephone: 913-296-5545. Se	nd one to WATER WELL	OWNER and retain one for you	ir records.

White CopyWhite Copy Form provided by Forms-On-A-Disk, Inc. • Dallas, Texas • (214) 340-9429

APPENDIX F

KDHE Underground Injection Control (UIC) Application

15012 W. 106th Street Lenexa, KS 66215 913.495.2360 tel 913.495.2360 fax www.gsinetwork.com

July 29, 2014

Ms. Ms. Cynthia Khan, P.G. Kansas Department of Health and Environment Bureau of Water – Geology Section Underground Injection Control Program 1000 SW Jackson Street, Suite 420 Topeka, Kansas 66612-1367

RE: CLASS V UNDERGROUND INJECTION CONTROL APPLICATION FOR AUTHORIZATION TO INJECT REMEDIAL COMPOUNDS IN CONJUNCTION WITH A GROUNDWATER REMEDIATION PROJECT

KDHE 2nd and Kirby Site, Hutchinson, Kansas Consent Order Number 99-E-0209 / BER Project Code C2-078-70770

Dear Ms. Khan:

GSI Engineering, LLC ("GSI") is pleased to submit this application for the underground injection of emulsified vegetable oil (EVO) in support of an ongoing KDHE, Bureau of Environmental Remediation (BER) remediation project. BER has approved our remedial design to enhance the chemical and biological degradation of chlorinated solvents in groundwater. Our responses to each required application item are detailed below:

1. KDHE 2nd & Kirby site – BER Project Code: C2-078-70770.

County Description of Injection Site:

Parcel ID:	0781351601001002020
Address:	00000 E 4TH AVE, Hutchinson, KS 67501
Legal:	EATON, S16, T23, R05W, LOT 1 BLK 1 EXC N 436.68 FT

Groendyke Transport, Inc. as the operator ("Groendyke") and V & M Transport, Inc ("V & M") as the property owner have entered into a Consent Order with KDHE (Case No. 99-E-0209). Proposed injection points are located downgradient of the Groendyke facility on property owned by the City of Hutchinson.

CITY OF HUTCHINSON (owner of injection site)
 P.O. Box 1567
 Hutchinson, KS 67505-1567
 City Utilities: (620) 694-2624 / City Fire Department: (620) 694-2871

V&M TRANSPORT, INC (owner of release site) P.O. Box 536 Hutchinson, KS 67504-0536 (620) 662-7281

3. Area 1 Injections: N 38.053906 W 97.875011

> Area 2 Injections: N 38.052111 W 97.872135

Attachment A provides site diagrams illustrating specific injection points.

- 4. BER correspondence documenting approval of remedial design is provided as Attachment B.
- 5. The 2nd and Kirby intersection is within a larger area of groundwater contamination known as 4th and Carey site. A potential source of trichloroethylene (TCE) in groundwater was identified near the Groendyke facility in 1998-1999 during investigation of the larger site. Groendyke and the property owner V & M Transport subsequently entered into a Consent Order with KDHE-BER to address the TCE source, which appeared to originate near the intersection of 2nd & Kirby. Site investigation and monitoring data over time continue to indicate persistent TCE impacts to groundwater above the applicable KDHE Tier 2 risk-based cleanup standards.

Groendyke has operated a truck transportation facility at the 2nd & Kirby intersection since 1955. Groendyke operations on site include parking, truck staging/dispatching areas, and light vehicle maintenance facilities. In conjunction with maintenance operations, various solvents have been used at the facility over time. These include benzene, methyl-ethyl ketone (MEK), tetrachloroethylene (PCE), and TCE. The spent solvent is contained on site and routinely recovered by Safety-Kleen Systems, Inc. for recycling. KDHE records do not document any known solvent releases; however, groundwater conditions are consistent with these historical operations and the documented use of chlorinated solvents at the facility.

6. The proposed underground injections will be performed using direct-push methods and Geoprobe® screen-point technology. <u>Attachment C</u> provides a schematic illustrating the proposed injection point design.

7. The proposed injections will occur in shallow groundwater and the unconsolidated deposits of the Equus Beds system. This system consists of alluvial deposits that underlie and border the Arkansas River. The water table in the Equus Beds aquifer varies from as little as 10 feet below ground surface (bgs) near the Arkansas River to 300 feet in areas downstream of Hutchinson. Its saturated thickness in the vicinity of south Hutchinson is approximately 40 to 50 feet, or in the general range of 10 to 60 feet bgs. The base of this shallow aquifer is predominantly the Ninnescah Shale, which serves as an aquitard separating shallow groundwater from deeper bedrock systems.

The Equus Beds system is generally characterized as a slow moving aquifer with a groundwater velocity of 300 to 500 feet per year (KGS, 1983). Variable pump test and hydraulic conductivity data for the area suggest high velocity conditions may exist in localized areas within and surrounding the subject site. Considering these data, groundwater velocity may approach or exceed 1,000 feet per year under high-flow conditions.

Site-specific groundwater flow is to the southeast parallel to the direction of the Arkansas River. Hydraulic gradients generally range from 0.0007 to 0.001 ft/ft; however, flow lines may be distorted directly south and southwest of the Groendyke facility. In these instances, the hydraulic gradient may be as high as 0.002 ft/ft.

- 8. Depth to shallow ground water over the site generally ranges from 8 to 14 feet bgs. The proposed injection interval at each location will extend from approximately 12 to 28 feet bgs to address the most concentrated areas of impact, as determined through ongoing monitoring. Injections beyond 28 feet bgs are not proposed due to the absence of TCE in the intermediate monitoring wells.
- 9. <u>Injection Procedures</u>. GSI will apply direct-push methods (Geoprobe® Model 6620 or equivalent) to hydraulically advance injection borings and introduce chemical amendments to groundwater. Injection borings will be advanced, retracted, and subsequently abandoned with bentonite following the baseline direct-push operations presented in KDHE-BER approved work plans. Proposed injection formations are illustrated in Attachment A. Both formations will comprise a total of 22 direct-push injection points.

The advancing tip of the Geoprobe® tool string will be equipped with a pressure-activated, 360 degree injection probe or screen-point to distribute the amendments in-situ at specific subsurface intervals. Each injection boring will be advanced to approximately 28 feet bgs, then retracted at intervals of approximately 2-4 feet for "bottom-up" injections. This process will continue upward to a depth of approximately 12 feet bgs (i.e. injection interval of 16 feet).

Groundwater amendments will be introduced as liquid water/product blends through a batch tank and feed line at the surface. A Geoprobe® model GP350 or GP800 Injection Machine, or technical equivalent will be used to inject the materials through positive pressure generated from a surface pump or auxiliary hydraulics on the drill rig. The material will be delivered through nylon tubing extending from the machine, through the tool string, and into

the injection probe for subsurface distribution. The tool string will be equipped with a pressure-activated check valve to prevent back-flow of the injection material.

Based on documented subsurface permeability and equipment specifications, the chemical amendment and water blend will be injected at a maximum surface pressure no greater than 50 psi, or approximately 10 gallons per minute (gpm) at each injection interval. GSI will maintain a surface injection pressure no greater than 50 psi based on KDHE requirements. These conditions should be readily achieved due to the high-permeability aquifer. In addition, the surface injection pressure will be continuously monitoring using surface pressure gauges on the proposed pump equipment. If injection pressures approaching 50 psi are observed, the estimated 10 gpm injection will be modified accordingly.

10. <u>Injection Compounds</u>. GSI proposes to inject proprietary, commercial-grade emulsified vegetable oil (EVO) as the chemical amendment to enhance the availability of hydrogen and electron donor in the aquifer. Each batch of EVO will contain 60 percent (by weight) food grade vegetable oil enhanced with sodium lactate, Vitamin B₁₂ and/or proprietary nutrients to further enhance biodegradation. GSI proposes a relatively larger mean droplet size of ~5 microns to better adhere to soil particles in high permeability conditions. Lecithin may be added to further increase adsorption and long-term availability of electron donor for up to five years. <u>Attachment D</u> provides the EVO product specifications.

Clean dilution water at a water to EVO ratio of approximately 10:1 will be added to each batch of chemical amendment. This approach will support the overall injection process and increase subsurface distribution. As added measures, additional dilution water and/or inert nitrogen gas may be introduced with or following the EVO amendment to further enhance subsurface distribution. This process effectively "stirs" the reducing agents within the aquifer allowing a more complete distribution. Dilution water will be obtained from a monitored municipal water source accessible on site.

If used, nitrogen gas injections would be performed consistent with the direct-push methods proposed for liquid amendments. Gas would be implemented through a sealed pressure line and a commercially-provided nitrogen gas tank at similar or slightly reduced injection pressures. Proprietary designs may used to supplement the delivery process.

11. <u>Injection Volume</u>. Considering the clean water dilution, the EVO-water blend will be injected at a rate of approximately 25 to 30 gallons per vertical foot within the treatment interval – i.e. 2.5 to 3 gallons of EVO product per vertical foot. This rate has been projected based on estimated subsurface resistance and dispersion, KDHE surface pressure requirements, known geochemical conditions, and related stoichiometric calculations for electron donor demand. The injection rate is also supported by commercial volume calculators available through the EVO providers.

A total of 22 injection points are proposed in two barrier formations as previously defined. Given the proposed vertical treatment interval of 16 feet per location, the following outlines the amount of remedial compound to be injected:

Description	<u>EVO Volume¹ (gallons)</u>	EVO-Water Dilution ² (gallons)	EVO by Weight ¹ (pounds)
Each Location	40-48	400-480	324-388
Each Barrier Formation (11 locations)	440-528	4400-5280	3560-4272
Total Injections (2 formations)	880-1056	8800-10560	7119-8543

NOTES:

¹ EVO product only before dilution; weight based on manufacturer's labeled density of 8.09 lb/gallon ² Total injection volume following water to EVO batch dilution of 10:1

12. <u>Injection Frequency</u>. The injection work is proposed as a single event. We anticipate completion of 3 to 5 injection points per day of field work. GSI has scheduled a tentative <u>start date of August 11, 2014</u>. All injection work will be completed within two weeks of the initial field mobilization.

If necessary based performance monitoring, additional injections may be performed using similar procedures. GSI will submit an amended application for BOW review prior to any expanded injection work.

- 13. <u>Plugging Procedures</u>. GSI will plug each injection point with bentonite following the one-time EVO injections. Excluding the expendable metal tip of the screen point, all equipment and supplies will be completely removed from each location. The screen-point borings will then backfilled to the surface with bentonite chips. Surface areas and pavements will be restored and patched accordingly. <u>Attachment C</u> provides a schematic illustrating the proposed injection points following plugging.
- 14. <u>Remediation Chemistry & Biological Processes</u>. Various species of naturally occurring bacteria derive energy from breaking the carbon to chlorine bond through a process known as reductive dehalogenation. This process reduces TCE (an electron acceptor) using electrons from an exogenous donor, resulting in the sequential removal of chlorine atoms. Intermediates of this sequential reaction are the compounds cis-1,2-dichloroethylene (cDCE), and vinyl chloride (VC), with non-toxic ethene as the end product. Inorganic chlorine is released as the byproduct.

In contact with groundwater, the emulsified oils are fermented produce molecular hydrogen (H₂) and acetate as electron donors. As the oxygen is depleted, the hydrogen and acetate become available as an energy source for reducing anaerobic bacteria. Reducing conditions generally progress through more efficient electron acceptors such as nitrate (reduced to nitrite) and ferric iron (reduced to ferrous) before significant dechlorination of TCE can occur.

EVO as a concentrated electron donor also stimulates abiotic processes which further accelerate intermediate reactions, particularly in the TCE to cDCE reduction.

The EVO injections are designed to produce localized groundwater conditions conducive to the chemical and biological processes outlined above. Specifically, the EVO amendments will manipulate groundwater chemistry through reduced oxidation-reduction potential (ORP) and depleted levels of dissolved oxygen, nitrate, sulfate, and other competing electron acceptors. Accordingly, the EVO injection volume has been predicted based on the stoichiometric demand exerted by the known quantities of these electron acceptors.

We appreciate the opportunity to support this project. Please contact me directly at (913) 495-2360 or at <u>bconrad@gsinetwork.com</u> if you have questions or wish to discuss our proposed remediation work in greater detail.

Sincerely, GSI ENGINEERING, LLC

Brian M. Conrad Manager, Kansas City Operations

Attachment A – Site Diagrams Attachment B – KDHE Approval (BER) Attachment C – Injection & Plugging Diagrams Attachment D – Product Specifications

60% SRS[®]-FRL Large Droplet Emulsified Vegetable Oil (EVO) Substrate for Maximum Retention United States Patent# RE40,448

The anaerobic bioremediation process uses native or introduced microorganisms (*Dehalococcoides*) to degrade chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE) to innocuous end products including ethene and ethane. Terra Systems patented **SRS®-FRL** Large Droplet Emulsified Vegetable Oil Substrate includes an anionic emulsifier, which sticks to soil particles and is specifically designed when adherence to the formation is key to making contact with the bacteria. It is particularly useful in high groundwater flow formations such as fractured bedrock formations and is added to the groundwater to rapidly generate reducing conditions and provide the necessary carbon and hydrogen to support biodegradation of the chlorinated solvents.

Ingredient	Percent	Description	Benefit
Food Grade U.S. Grown Soybean Oil	60%	Terra Systems operates its own state-of-the-art manufacturing facility.	Long lasting source of carbon and hydrogen, consistent product quality, uniform droplet size, neutral pH, QA/QC lab on floor to check product before shipment.
Food Grade Sodium or Potassium Lactate	4%	Rapidly biodegradable soluble substrate	Rapidly generate anaerobic conditions
Proprietary Food Grade Nutrients	<1%	Proprietary organic and inorganic nutrients such as yeast extract, nitrogen and phosphorus.	Nutrients have been demonstrated to support the growth of the anaerobic microbial population.
Proprietary Food Grade Emulsifiers and Preservatives	7.5%	Proprietary anionic emulsifier	Maximum retention in high groundwater flow- rate aquifers
Vitamin B ₁₂	<1%	At least 250 μg/L of Vitamin B ₁₂	He et al. 2007 demonstrated Vitamin B ₁₂ to be an important micronutrient to enhance dechlorination activity with 25 µg/L providing maximum stimulation
Median Oil Droplet Size (microns)	NA	5 µm	Maximum retention in high groundwater flow- rate aquifers
pН	6.5 - 7	6.5 - 7	Optimum microbial activity

Table I: SRS [®] -FRL Large	e Droplet Emulsified V	egetable Oil Substra	te Specifications
Tuble 1 and 1 ang	Di opice Lindishica (Gettable of Subbila	ve opeenieutions

<u>Application</u>: Terra Systems **patented**, nutrient enriched, proven slow release SRS[®]-FRL **large droplet** emulsified vegetable oil substrate with an **anionic emulsifier** is used when a long lasting carbon substrate is desired that provides maximum retention in high groundwater flow-rate aquifers. SRS[®]-FRL sticks to soil particles and is specifically designed when adherence to the formation is key to making contact with the bacteria.

130 Hickman Road – Suite 1 – Claymont – Delaware – 19703 For More Information Call Michael Free at 302-798-9553 or Email: <u>mfree@terrasystems.net</u>

<u>**Customers</u>**: SRS[®]-FRL is used extensively by consultants working with the Air Force, DOD, Navy, and EPA, current and former drycleaners, semiconductor plants and private firms to remediate chlorinated solvent sites and is designed for fractured rock formations, PRBs and high groundwater flow-rate aquifers. SRS[®]-FRL releases bio-available hydrogen over a period of 3 to 5 years thus enhancing the long-term anaerobic biodegradation of the chlorinated solvents and reducing the frequency of reinjection.</u>

Manufactured vs. Field Emulsion

In the early days of in-situ bioremediation when Terra Systems first patented the technology, it was common to bring the water, emulsifiers, oil, and other ingredients to the site and using trash or other pumps to mix the ingredients together to form an emulsion. It soon became apparent that poor emulsion consistency and a broad range of droplet sizes resulted in inadequate and uneven distribution when injected. This resulted in higher long-term costs due to higher reinjection frequency and higher substrate volumes to adequately make contact with the COC.

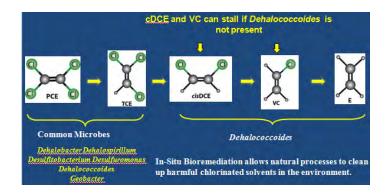
Don't be "penny wise and pound foolish".

Consider:

- \checkmark The labor and equipment time and cost of mixing in the field.
- ✓ The need to mix the nutrients and Vitamin B_{12} longer to achieve consistency.
- ✓ The cost of inadequate distribution due to droplet size and emulsion inconsistency
- ✓ The inability to accurately determine if you have 100% emulsification.
- ✓ The lack of QA/QC in the field
- Terra Systems owns and operates a state of the art US based manufacturing plant with an in-house quality control laboratory for strict quality assurance of the emulsion, droplet size and pH.
- SRS[®]-FRL arrives at the site "*injection ready*" with all the ingredients Vitamin B_{12} , proprietary nutrients, sodium or potassium lactate and anionic emulsifier(s) already blended together.
- At the PM's request Terra Systems will blend 2-8 g/L of sodium bicarbonate into the SRS[®]-FRL during manufacturing to counter the acids produced during the fermentation process in the aquifer. This is especially beneficial for marginal pH aquifers of pH 5 6.

A Digital Microscope is connected to a laptop computer with proprietary "Droplet Size Calculation Software"

130 Hickman Road – Suite 1 – Claymont – Delaware – 19703 For More Information Call Michael Free at 302-798-9553 or Email: <u>mfree@terrasystems.net</u>



- SRS[®]-FRL optimizes the naturally occurring biodegradation system by supplying the rate limiting factor (in this case hydrogen) in the degradation of CVOC's, certain pesticides/herbicides, perchlorate, and immobilization of certain metals (Chromium, Arsenic, and some radionucleides).
- The large droplet size of 5 µm combined with the negative surface charge on the droplets results in a higher retention in the subsurface.
- Terra Systems holds United States Patent#**RE40,448** for the use of emulsified vegetable oil for remediation of chlorinated solvents.
- The soy bean oil is grown in the United States and provides a **slow release** biodegradable carbon source, which promotes long-term biological activity.
- SRS[®]-FRL comes **standard** with **biostimulating vitamins** like Vitamin B₁₂, which He et al. 2007 demonstrated is an important micronutrient to enhance dechlorination activity.
- SRS[®]-FRL contains proprietary organic and inorganic nutrients such as yeast extract, nitrogen and phosphorus, which have been demonstrated to support the growth of the anaerobic microbial population.
- SRS[®]-FRL comes with **at least 4% sodium** or **potassium lactate** a quick release biodegradable substrate, which helps to "*jump start*" bacterial growth.
- SRS[®]-FRL emulsified vegetable oil substrate has been validated by the Florida DEP, California Water Board and others.
- SRS[®]-FRL contains only non-toxic food grade materials, which results in green, sustainable remediation.

<u>Packaging</u>: Terra Systems patented SRS[®]-FRL can be shipped in 5-gallon buckets, 55-gallon drums, 275-gallon IBC totes, 275-gallon cardboard totes or bulk tankers.

If the *Dehalococcoides* are not present or are in small numbers Terra Systems <u>**TSI DC**[®]</u> Bioaugmentation Culture can also be injected.

130 Hickman Road – Suite 1 – Claymont – Delaware – 19703 For More Information Call Michael Free at 302-798-9553 or Email: <u>mfree@terrasystems.net</u>

60% LARGE DROPLET SLOW RELEASE EMULSIFIED VEGETABLE OIL SUBSTRATE (SRS[®]-FRL) SAFETY DATA SHEET

1. Product Identification

Synonyms:	60% Large Droplet Slow Release Substrate (SRS [®] -FRL)
	Emulsified Vegetable Oil (EVO)
Recommended Use:	Treatment of groundwater contaminated with chlorinated
	solvents and other anaerobically degradable compounds.
Supplier:	Terra Systems, Inc.
	130 Hickman Road, Suite 1
	Claymont, Delaware 19703
	Telephone (302) 798-9553
	Fax (302) 798-9554
	www.terrasystems.net

2. Hazards Identification

Emergency Overview	
Caution:	May cause eye irritation.
Health Rating:	1 - Slight
Flammability Rating:	1 - Slight
Reactivity Rating:	1 - Slight
Contact Rating:	1 - Slight
Protective Equipment:	Goggles; Proper Gloves
Storage Color Code:	Green (General Storage)
Potential Health Effects	
Inhalation:	Not expected to be a health hazard. If heated, may produce vapors or mists that irritate the mucous membranes and cause irritation, dizziness, and nausea. Remove to fresh air.
Ingestion:	Not expected to be a health hazard via ingestion. Large doses may produce abdominal spasms, diarrhea.
Skin Contact:	No adverse effects expected. May cause irritation or sensitization in sensitive individuals.
Eye Contact:	May cause mild irritation, possible reddening.
Chronic Exposure:	No information found.
Aggravation of Pre-existing	
Conditions:	No information found.

3. Composition/Information on Ingredients

Ingredient	Synonyms	CAS #	Percent	Hazardous
Soy bean oil	Soya oil	8001-22-7	60%	No
Emulsifiers, lecithin, and proprietary nutrient package containing nitrogen, phosphorus and vitamin B ₁₂		Mixture	5 - 15%	No
Sodium lactate	2- hydroxpropionic acid sodium salt	72-17-3	<5%	Yes
Water		7732-18-5	20 - 30%	No

The emulsifiers, lecithin, and nutrient package mixture is a trade secret and consists of ingredients of unknown acute toxicity.

4. First Aid Measures

Inhalation:	Not expected to require first aid measures. Remove to fresh air. Get medical attention for any breathing difficulty.
Ingestion:	If large amounts were swallowed, give water to drink and get medical advice.
Skin Contact:	Not expected to require first aid measures. Wash exposed area with soap and water. Get medical advice if irritation develops.
Eye Contact:	Immediately flush eyes with plenty of water for at least 15 minutes, lifting upper and lower eyelids occasionally. Get medical attention if irritation persists.

5. Fire Fighting Measures

Fire:	Flash point: >200 C (>392 F). Not considered to be a fire
	hazard. Isolate from heat and open flame.
Explosion:	Not considered to be an explosion hazard. Closed containers
	may explode if exposed to extreme heat.
Fire Extinguishing Media:	Dry chemical, foam, or carbon dioxide. Water spray may be
	ineffective on fire, but can protect fire-fighters and cool closed
	containers. Use fog nozzles if water is used.
Special Information:	In the event of a fire, wear full protective clothing and NIOSH- approved self-contained breathing apparatus with full face piece operated in the pressure demand or other positive pressure mode.

6. Accidental Release Measures

Clean-up personnel may require protective clothing. Absorb in sand, paper towels, "Oil Dry", or other inert material. Scoop up and containerize for disposal. Flush trace residues to sewer with soap and water. Containerized waste may be sent to an approved waste disposal facility.

7. Handling and Storage

Keep in a tightly closed container, stored in a cool, dry, ventilated area. Protect against physical damage. Containers of this material are not hazardous when empty since they do vapors or harmful substances; observe all warnings and precautions listed for the product. Do not store above 49 C (120 F). Keep container tightly closed and upright when not in use to prevent leakage.

8. Exposure Controls/Personal Protection

L	
Airborne Exposure Limits:	None established.
Ventilation System:	Not expected to require any special ventilation.
Personal Respirators (NIOSH	
Approved):	Not expected to require personal respirator usage.
Skin Protection:	Wear protective gloves and clean body-covering clothing.
Eye Protection:	Use chemical safety goggles and/or a full face shield where
	splashing is possible. Provide readily accessible eye wash
	stations and safety showers.
Slips, Trips, and Falls:	Material is slippery when spilled. Clean up with sand, paper
	towels, "Oil Dry", or other inert material.

9. Physical and Chemical Properties

e e e e e e e e e e e e e e e e e e e	L
Appearance:	White liquid.
Odor:	Vegetable oil.
Solubility:	Miscible in water.
Specific Gravity (water=1):	0.95-0.98. 8.09 pounds per gallon.
pH:	6-7 (40% aqueous solution)
% Volatiles by volume	
@ 21C (70F):	Negligible.
Boiling Point:	\geq 100C (\geq 212F)
Melting Point:	No information found.
Flash Point (F):	No information found.
Autoignition Temperature:	No information found.
Decomposition Temperature:	No information found.
Vapor Density (Air=1):	No information found.
Vapor Pressure (mm Hg):	< 1.0 @ 20C (68F).
Evaporation Rate (BuAc=1):	No information found.
Viscosity @23 C (73 F):	213 centipoises (1.2 centipoises diluted 1:10)
Partition Coefficient	
(octanol/water):	No information found.

10. Stability and Reactivity

Stable under ordinary conditions of use and storage.
Not reactive under ordinary conditions.
Carbon dioxide and carbon monoxide may form when
heated to decomposition.
Will not occur.
Strong oxidizers, acids.
Incompatibles. Isolate from heat and open flame.

11. Toxicological Information

0	
Soybean Oil:	No information found on toxicology. It is not a carcinogen
e e e e e e e e e e e e e e e e e e e	
	listed by IARC, NTP, NIOSH, OSHA, or ACGIH.
Emulsifier/Nutrient Mixture:	No information found on toxicology. It is not a carcinogen
	listed by IARC, NTP, NIOSH, OSHA, or ACGIH.
Sodium Lactate:	Oral rat LD50: 2,000 mg/kg. 100 mg caused mild irritation to
	rabbit eye in Draize test. This compound is not listed as a
	carcinogen by IARC, NRP, NIOSH, OSHA, or ACGIM.
SRS-SD:	The toxicity of the mixture has not been measured.

12. Ecological Information

Environmental Fate:	No information found.
Environmental Toxicity:	No information found.
Degradability:	This product is completely biodegradable under both aerobic
	and anaerobic conditions.
Soil Mobility:	This compound will move with groundwater until the adsorbed
	onto the soil. Degradation products may be mobile.
Bioaccumulation Potential:	No information found.

13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste disposal facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

14. Transport Information

Not regulated.

15. Regulatory Information

OSHA STATUS: This product is not hazardous under the criteria of the Federal OSHA hazard Communication Standard 29 CFR 1910.1200. However, thermal processing and decomposition fumes from this product may be hazardous as noted in Section 10.

TSCA STATUS: No component of this product is listed on the TSCA inventory.

CERCLA (Comprehensive Response Compensation, and Liability Act): Not reportable.

SARA TITLE III (Superfund Amendments and Reauthorization Act) Section 312 Extremely Hazardous Substances: None Section 311/312 Hazard Categories: Non-hazardous Under Section 311/312 Section 313 Toxic Chemicals: None

RCRA STATUS: If discarded in its purchased form, this product would not be a hazardous waste either by listing or by characteristic. However, under RCRA, it is the responsibility of the product user to determine at the time of disposal, whether a material containing the product or derived from the product should be classified as a hazardous waste. (40 CFR 261.20-24)

CALIFORNIA PROPOSITION 65: The following statement is made in order to comply with the California safe Drinking Water and Toxic Enforcement Act of 1986. The product contains no chemicals known to the State of California to cause cancer.

16. Other Information

NFPA Ratings:	Health: 1 Flammability: 1 Reactivity: 1
Date Prepared:	June 19, 2014
Revision Information:	SDS Section(s) changed since last revision of document include: None.
Disclaimer:	Terra Systems, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. TERRA SYSTEMS, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, TERRA

SYSTEMS, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION. Terra Systems, Inc. (302) 798-9553 (U.S.A.)

Prepared by: Phone Number:

Cynthia Khan

From: Sent: To: Cc: Subject: Cynthia Khan Friday, August 08, 2014 4:32 PM 'Brian Conrad' Mary Daily; Terry Bobo (tbobo@emiok.com); Jo Peters RE: Underground Injection Control Application - 2nd & Kirby Site, Hutchinson, KS

Mr. Conrad:

The Kansas Department of Health & Environment's Geology Section KDHE administers the Underground Injection Control (UIC) program. The UIC program has oversight of Class V injection wells and has completed its review of this injection proposal submitted under your letter dated July 29, 2014, for compliance with the Underground Injection Control (UIC) Program Requirements. We have determined the proposal complies with the UIC Program requirements. This letter serves as the UIC Program authorization for the injection of a compound for groundwater remediation into approximately 22 injection points.

This proposal was only reviewed for compliance with the UIC Program requirements. The KDHE Bureau of Environmental Remediation (BER) has oversight authority for this project. You must obtain BER's approval to install and operate the injection wells (points).

The following conditions required by the UIC Program apply:

The injection wells (points) shall not endanger human health or the environment.

This authorization is valid only for this proposal.

This authorization is only for the injection of amended emulsified vegetable oil (EVO)

Proposed significant changes of the injection proposal must be submitted to KDHE in writing, with supportive information, and have the approval of both KDHE's Bureau of Environmental Remediation and the UIC program prior to implementation.

If you have any questions or need assistance, please contact me by e-mail at <u>ckhan@kdheks.gov</u> or by telephone at (785) 296-5554 or by fax at (785) 296-5509.

Regards,

CYNTHIA KHAN, P.G. KANSAS DEPT OF HEALTH AND EN√IRONMENT 1000 SW JACKSON, SUITE 420 TOPEKA, KANSAS 66612 785-296-5554 <u>CKHAN@KDHEKS.GOV</u>

From: Brian Conrad [mailto:bconrad@gsinetwork.com] Sent: Tuesday, July 29, 2014 6:08 PM To: Cynthia Khan

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

August 20, 2014

BRIAN CONRAD GSI 15012 W. 106th Street Lenexa, KS 66219

RE: Project: 2nd & Kirby Remediation Pace Project No.: 60175723

Dear BRIAN CONRAD:

Enclosed are the analytical results for sample(s) received by the laboratory on August 13, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

auge Pm

Angie Brown Angie.Brown@pacelabs.com Project Manager

Enclosures

cc: Josh Mellema, GSI Engineering, LLC

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alabama Certification #40770 Alabama Certification #40770 Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #: Pace Georgia Certification #: 959 Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116

Michigan DEPH Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nebraska Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 Wisconsin Certification #: 999407970 West Virginia Certification #: 382 West Virginia DHHR #:9952C

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

SAMPLE SUMMARY

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60175723001	MW-27	Water	08/13/14 15:30	08/13/14 16:30
60175723002	TMW-1	Water	08/13/14 15:00	08/13/14 16:30
60175723003	MW-27	Water	08/13/14 15:30	08/13/14 16:30
60175723004	TMW-1	Water	08/13/14 15:00	08/13/14 16:30

SAMPLE ANALYTE COUNT

Project:2nd & Kirby RemediationPace Project No.:60175723

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60175723001	 MW-27	EPA 200.7	JGP	2	PASI-K
		EPA 200.7	JGP	2	PASI-K
60175723002	TMW-1	EPA 200.7	JGP	2	PASI-K
		EPA 200.7	JGP	2	PASI-K
60175723003	MW-27	RSK 175	JRB	3	PASI-M
		EPA 5030B/8260	PRG	69	PASI-K
		SM 4500-S-2 D	JMC1	1	PASI-K
		EPA 300.0	OL	1	PASI-K
		EPA 353.2	AJM	3	PASI-K
60175723004	TMW-1	RSK 175	JRB	3	PASI-M
		EPA 5030B/8260	PRG	69	PASI-K
		SM 4500-S-2 D	JMC1	1	PASI-K
		EPA 300.0	OL	1	PASI-K
		EPA 353.2	AJM	3	PASI-K

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

Sample: MW-27	Lab ID: 60175723	3001 Collected: 08/13/	14 15:30) Received: 08	3/13/14 16:30 N	Aatrix: Water		
Parameters	ResultsU	Inits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
200.7 Metals, Total	Analytical Method: E	PA 200.7 Preparation Me	thod: EF	PA 200.7				
Iron	ND ug/L	50.0	1	08/14/14 08:03	08/14/14 10:38	7439-89-6		
Manganese	535 ug/L	5.0	1	08/14/14 08:03	08/14/14 10:38	7439-96-5		
200.7 Metals, Dissolved	Analytical Method: E	Analytical Method: EPA 200.7 Preparation Method: EPA 200.7						
Iron, Dissolved	ND ug/L	50.0	1	08/14/14 07:59	08/14/14 10:59	7439-89-6		
Manganese, Dissolved	556 ug/L	5.0	1	08/14/14 07:59	08/14/14 10:59	7439-96-5	D9	

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

Sample: TMW-1	Lab ID: 6017	5723002	Collected: 08/13/1	4 15:00	0 Received: 08	8/13/14 16:30 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Metho	od: EPA 200	0.7 Preparation Met	thod: EF	PA 200.7			
Iron	955 ug/L	_	50.0	1	08/14/14 08:03	08/14/14 10:49	7439-89-6	
Manganese	454 ug/L	-	5.0	1	08/14/14 08:03	08/14/14 10:49	7439-96-5	
200.7 Metals, Dissolved	Analytical Metho	Analytical Method: EPA 200.7 Preparation Method: EPA 200.7						
Iron, Dissolved	973 ug/L	_	50.0	1	08/14/14 07:59	08/14/14 11:16	7439-89-6	D9
Manganese, Dissolved	462 ug/L	-	5.0	1	08/14/14 07:59	08/14/14 11:16	7439-96-5	D9

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

Sample: MW-27	Lab ID: 6017572300	3 Collected: 08/13/14	15:30	Received: 08	3/13/14 16:30 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method: RSK	175					
Ethane	ND ug/L	6.2	1		08/15/14 17:25	74-84-0	
Ethene	ND ug/L	6.2	1		08/15/14 17:25	74-85-1	
Methane	ND ug/L	6.6	1		08/15/14 17:25	74-82-8	
8260 MSV	Analytical Method: EPA	5030B/8260					
Acetone	ND ug/L	10.0	1		08/14/14 19:42	67-64-1	
Benzene	ND ug/L	1.0	1		08/14/14 19:42	71-43-2	
Bromobenzene	ND ug/L	1.0	1		08/14/14 19:42	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		08/14/14 19:42	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		08/14/14 19:42	75-27-4	
Bromoform	ND ug/L	1.0	1		08/14/14 19:42	75-25-2	
Bromomethane	ND ug/L	5.0	1		08/14/14 19:42	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		08/14/14 19:42	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		08/14/14 19:42	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		08/14/14 19:42		
tert-Butylbenzene	ND ug/L	1.0	1		08/14/14 19:42		
Carbon disulfide	ND ug/L	5.0	1		08/14/14 19:42		
Carbon tetrachloride	ND ug/L	1.0	1		08/14/14 19:42		
Chlorobenzene	ND ug/L	1.0	1		08/14/14 19:42		
Chloroethane	ND ug/L	1.0	1		08/14/14 19:42		
	ND ug/L	1.0	1				
Chloroform	-				08/14/14 19:42		
Chloromethane	ND ug/L	1.0	1		08/14/14 19:42		
2-Chlorotoluene	ND ug/L	1.0	1		08/14/14 19:42		
4-Chlorotoluene	ND ug/L	1.0	1		08/14/14 19:42		
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		08/14/14 19:42		
Dibromochloromethane	ND ug/L	1.0	1		08/14/14 19:42		
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		08/14/14 19:42		
Dibromomethane	ND ug/L	1.0	1		08/14/14 19:42		
1,2-Dichlorobenzene	ND ug/L	1.0	1		08/14/14 19:42		
1,3-Dichlorobenzene	ND ug/L	1.0	1		08/14/14 19:42	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		08/14/14 19:42	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		08/14/14 19:42	75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1		08/14/14 19:42	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		08/14/14 19:42	107-06-2	
1,2-Dichloroethene (Total)	1.9 ug/L	1.0	1		08/14/14 19:42	540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	1		08/14/14 19:42	75-35-4	
cis-1,2-Dichloroethene	1.9 ug/L	1.0	1		08/14/14 19:42	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		08/14/14 19:42	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		08/14/14 19:42	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		08/14/14 19:42		
2,2-Dichloropropane	ND ug/L	1.0	1		08/14/14 19:42		
1,1-Dichloropropene	ND ug/L	1.0	1		08/14/14 19:42		
cis-1,3-Dichloropropene	ND ug/L	1.0	1		08/14/14 19:42		
trans-1,3-Dichloropropene	ND ug/L	1.0	1		08/14/14 19:42		
Ethylbenzene	ND ug/L	1.0	1		08/14/14 19:42		
-	ND ug/L	1.0	1		08/14/14 19:42		
Hexachloro-1,3-butadiene							

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

Sample: MW-27	Lab ID: 60175723003 C	ollected: 08/13/1	4 15:30	Received: 08/13/14 16:30	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
8260 MSV	Analytical Method: EPA 5030	B/8260				
Isopropylbenzene (Cumene)	ND ug/L	1.0	1	08/14/14 19	9:42 98-82-8	
p-lsopropyltoluene	ND ug/L	1.0	1	08/14/14 19	9:42 99-87-6	
Methylene chloride	ND ug/L	1.0	1	08/14/14 19	9:42 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	08/14/14 19	9:42 108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1	08/14/14 19	9:42 1634-04-4	
Naphthalene	ND ug/L	10.0	1	08/14/14 19	9:42 91-20-3	
n-Propylbenzene	ND ug/L	1.0	1	08/14/14 19	9:42 103-65-1	
Styrene	ND ug/L	1.0	1	08/14/14 19	9:42 100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	08/14/14 19	9:42 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	08/14/14 19	9:42 79-34-5	
Tetrachloroethene	1.2 ug/L	1.0	1	08/14/14 19	9:42 127-18-4	
Toluene	ND ug/L	1.0	1	08/14/14 19	9:42 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	08/14/14 19	9:42 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	08/14/14 19	9:42 120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1	08/14/14 19	9:42 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1	08/14/14 19	9:42 79-00-5	
Trichloroethene	33.1 ug/L	1.0	1	08/14/14 19	9:42 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	08/14/14 19	9:42 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1	08/14/14 19	9:42 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1	08/14/14 19	9:42 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	08/14/14 19	9:42 108-67-8	
Vinyl chloride	ND ug/L	1.0	1	08/14/14 19	9:42 75-01-4	
Xylene (Total)	ND ug/L	3.0	1	08/14/14 19	9:42 1330-20-7	
Surrogates	-					
4-Bromofluorobenzene (S)	99 %	80-120	1	08/14/14 19	9:42 460-00-4	
1,2-Dichloroethane-d4 (S)	99 %	80-120	1	08/14/14 19	9:42 17060-07-0	
Toluene-d8 (S)	100 %	80-120	1	08/14/14 19	9:42 2037-26-5	
Preservation pH	1.0	0.10	1	08/14/14 19	9:42	
4500S2D Sulfide, Total	Analytical Method: SM 4500-	S-2 D				
Sulfide, Total	ND mg/L	0.050	1	08/15/14 10):43 18496-25-8	
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0)				
Chloride	150 mg/L	10.0	10	08/19/14 16	6:20 16887-00-6	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.2	2				
Nitrogen, Nitrate	ND mg/L	0.10	1	08/14/14 10):38	
Nitrogen, Nitrite	ND mg/L	0.10	1	08/14/14 10		
Nitrogen, NO2 plus NO3	ND mg/L	0.10	1	08/14/14 10		
	ND mg/L	0.10		00,14,14,10		

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

Sample: TMW-1	Lab ID: 6017572300	04 Collected: 08/13/1	4 15:00	Received: 0	8/13/14 16:30 I	Matrix: Water	
Parameters	ResultsUnit	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method: RS	K 175					
Ethane	ND ug/L	6.2	1		08/15/14 17:36	74-84-0	
Ethene	ND ug/L	6.2	1		08/15/14 17:36	74-85-1	
Methane	ND ug/L	6.6	1		08/15/14 17:36	74-82-8	
8260 MSV	Analytical Method: EP	A 5030B/8260					
Acetone	ND ug/L	10.0	1		08/14/14 19:28	67-64-1	
Benzene	ND ug/L	1.0	1		08/14/14 19:28	71-43-2	
Bromobenzene	ND ug/L	1.0	1		08/14/14 19:28	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		08/14/14 19:28	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		08/14/14 19:28	75-27-4	
Bromoform	ND ug/L	1.0	1		08/14/14 19:28	75-25-2	
Bromomethane	ND ug/L	5.0	1		08/14/14 19:28	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		08/14/14 19:28		
n-Butylbenzene	ND ug/L	1.0	1		08/14/14 19:28	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		08/14/14 19:28		
tert-Butylbenzene	ND ug/L	1.0	1		08/14/14 19:28		
Carbon disulfide	ND ug/L	5.0	1		08/14/14 19:28		
Carbon tetrachloride	ND ug/L	1.0	1		08/14/14 19:28		
Chlorobenzene	ND ug/L	1.0	1		08/14/14 19:28		
Chloroethane	ND ug/L	1.0	1		08/14/14 19:28		
Chloroform	ND ug/L	1.0	1		08/14/14 19:28		
Chloromethane	ND ug/L	1.0	1				
	•				08/14/14 19:28		
2-Chlorotoluene	ND ug/L	1.0	1		08/14/14 19:28		
4-Chlorotoluene	ND ug/L	1.0	1		08/14/14 19:28		
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		08/14/14 19:28		
Dibromochloromethane	ND ug/L	1.0	1		08/14/14 19:28		
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		08/14/14 19:28		
Dibromomethane	ND ug/L	1.0	1		08/14/14 19:28		
1,2-Dichlorobenzene	ND ug/L	1.0	1		08/14/14 19:28		
1,3-Dichlorobenzene	ND ug/L	1.0	1		08/14/14 19:28		
1,4-Dichlorobenzene	ND ug/L	1.0	1		08/14/14 19:28		
Dichlorodifluoromethane	ND ug/L	1.0	1		08/14/14 19:28	5 75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1		08/14/14 19:28	5 75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		08/14/14 19:28	107-06-2	
1,2-Dichloroethene (Total)	2.0 ug/L	1.0	1		08/14/14 19:28	540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	1		08/14/14 19:28	75-35-4	
cis-1,2-Dichloroethene	2.0 ug/L	1.0	1		08/14/14 19:28	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		08/14/14 19:28	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		08/14/14 19:28	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		08/14/14 19:28		
2,2-Dichloropropane	ND ug/L	1.0	1		08/14/14 19:28		
1,1-Dichloropropene	ND ug/L	1.0	1		08/14/14 19:28		
cis-1,3-Dichloropropene	ND ug/L	1.0	1		08/14/14 19:28		
trans-1,3-Dichloropropene	ND ug/L	1.0	1		08/14/14 19:28		
Ethylbenzene	ND ug/L	1.0	1		08/14/14 19:28		
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		08/14/14 19:28		
		1.0	1		00/14/14 19.20	01-00-3	

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

Sample: TMW-1	Lab ID: 60175723004	Collected: 08/13/1	4 15:00	Received: 0	8/13/14 16:30	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 503	0B/8260					
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		08/14/14 19:2	3 98-82-8	
p-Isopropyltoluene	ND ug/L	1.0	1		08/14/14 19:2	8 99-87-6	
Methylene chloride	ND ug/L	1.0	1		08/14/14 19:2	3 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		08/14/14 19:2	3 108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		08/14/14 19:2	3 1634-04-4	
Naphthalene	ND ug/L	10.0	1		08/14/14 19:2	3 91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		08/14/14 19:2	3 103-65-1	
Styrene	ND ug/L	1.0	1		08/14/14 19:2	3 100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		08/14/14 19:2	3 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		08/14/14 19:2	3 79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		08/14/14 19:2	3 127-18-4	
Toluene	ND ug/L	1.0	1		08/14/14 19:2	3 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		08/14/14 19:2	8 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		08/14/14 19:2	3 120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		08/14/14 19:2	3 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		08/14/14 19:2	3 79-00-5	
Trichloroethene	26.7 ug/L	1.0	1		08/14/14 19:2		
Trichlorofluoromethane	ND ug/L	1.0	1		08/14/14 19:2	3 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		08/14/14 19:2	3 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		08/14/14 19:2		
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		08/14/14 19:2	3 108-67-8	
Vinyl chloride	ND ug/L	1.0	1		08/14/14 19:2	3 75-01-4	
Xylene (Total)	ND ug/L	3.0	1		08/14/14 19:2	3 1330-20-7	
Surrogates	Ũ						
4-Bromofluorobenzene (S)	103 %	80-120	1		08/14/14 19:2	3 460-00-4	
1,2-Dichloroethane-d4 (S)	103 %	80-120	1		08/14/14 19:2	3 17060-07-0	
Toluene-d8 (S)	96 %	80-120	1		08/14/14 19:2	3 2037-26-5	
Preservation pH	3.0	0.10	1		08/14/14 19:2	3	рН
4500S2D Sulfide, Total	Analytical Method: SM 4500	-S-2 D					
Sulfide, Total	ND mg/L	0.050	1		08/15/14 10:4	3 18496-25-8	
300.0 IC Anions 28 Days	Analytical Method: EPA 300	.0					
Chloride	184 mg/L	10.0	10		08/19/14 16:3	4 16887-00-6	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353	2					
Nitrogen, Nitrate	ND mg/L	0.10	1		08/14/14 10:4	้า	
Nitrogen, Nitrite	ND mg/L	0.10	1		08/14/14 10:4		
Nitrogen, NO2 plus NO3	ND mg/L	0.10	1		08/14/14 10:4		

Project:	2nd & Kirby Remediation

Pace Project No.: 60175723

QC Batch: AIR/2	1058	Analysis Method		R	SK 175					
QC Batch Method: RSK	175	Analysis	Descriptio	on: RS	SK 175 A	IR HEAD	SPACE			
Associated Lab Samples:	60175723003, 60175723004									
METHOD BLANK: 176211	8	Ма	trix: Wate	er						
Associated Lab Samples:	60175723003, 60175723004									
		Blank	Re	porting						
Parameter	Units	Result	l	_imit	Ana	lyzed	Qualifi	ers		
Ethane	ug/L		ND	6.2	08/15/	14 12:19				
Ethene	ug/L		ND	6.2	08/15/	14 12:19				
Methane	ug/L		ND	6.6	08/15/	14 12:19				
LABORATORY CONTROL	SAMPLE & LCSD: 1762119 Units	Spike Conc.	17 LCS Result	62120 LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
Ethane	ug/L		118	117	104	103	85-115	1	20	
Ethene	ug/L	106	110	109	104	103	85-115	1	20	
Methane	ug/L	60.7	62.5	61.6	103	102	85-115	1	20	
SAMPLE DUPLICATE: 17	62121									
		351499050	31	Dup			Max			
Parameter	Units	Result	R	esult	RF	D	RPD	Qu	alifiers	
	 ug/L	-	10							

3.1U Ethane ND 20 ug/L 3.1U Ethene ug/L ND 20 Methane ug/L 711 745 5 20

SAMPLE DUPLICATE: 1762491

		10277755002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Ethane	ug/L	ND	ND		20	
Ethene	ug/L	ND	ND		20	
Methane	ug/L	99.1	90.7	9	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

•	2nd & Kirby Reme 60175723	diation										
QC Batch:	MPRP/28503		Analvs	is Method:	E	PA 200.7						
QC Batch Method:	EPA 200.7			is Descript		00.7 Metals	Total					
Associated Lab Samp	oles: 60175723	001, 60175723002		·								
METHOD BLANK:	1425210		N	1atrix: Wa	ter							
Associated Lab Samp	oles: 60175723	001, 60175723002	2									
			Blank	R	eporting							
Parame	eter	Units	Result	t	Limit	Analyz	ed	Qualifiers				
Iron		ug/L		ND	50.0	08/14/14	10:31					
Manganese		ug/L		ND	5.0	08/14/14	10:31					
LABORATORY CON	TROL SAMPLE:	1425211										
_			Spike	LCS		LCS	% Rec					
Parame	eter	Units	Conc.	Resu	ilt	% Rec	Limits	Qu	alifiers	_		
Iron		ug/L	10000		10200	102		5-115				
Manganese		ug/L	1000		1020	102	85	5-115				
MATRIX SPIKE & MA	TRIX SPIKE DUP	PLICATE: 14252	:12		1425213							
			MS	MSD								
_		60175723001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Uni	ts Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron	ug/L	ND	10000	10000	10000		100	98	70-130		10	
Manganese	ug/L	535	1000	1000	1550	1500	101	97	70-130	3	9	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	2nd & Kirby Reme	ediation										
Pace Project No.:	60175723											
QC Batch:	MPRP/28502		Analys	is Method:		EPA 200.7						
QC Batch Method:	EPA 200.7		Analys	is Descript	tion:	200.7 Metals,	Dissolved					
Associated Lab Sam	ples: 60175723	3001, 60175723002										
METHOD BLANK:	1425206		N	latrix: Wa	ter							
Associated Lab Sam	ples: 60175723	3001, 60175723002										
Param	eter	Units	Blank Result		eporting Limit	Analyz	ed	Qualifiers				
Iron, Dissolved Manganese, Dissolv	ed	ug/L ug/L		ND ND	50 5	.0 08/14/14 .0 08/14/14						
LABORATORY CON	TROL SAMPLE:	1425207	Spike	LCS		LCS	% Rec					
Param	eter	Units	Conc.	Resu		% Rec	Limits		ualifiers			
Iron, Dissolved Manganese, Dissolv	ed	ug/L ug/L	10000 1000		10300 1040	103 104		-115 -115		-		
MATRIX SPIKE & M	ATRIX SPIKE DUI	PLICATE: 14252	08 MS	MSD	1425209	9						
		60175723001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	· Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Dissolved	ug/L	ND	10000	10000	1000	0 9900	100	99	70-130	1	10	
Manganese, Dissolve	ed ug/L	556	1000	1000	154	0 1550	99	99	70-130	0	9	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

EPA 5030B/8260

8260 MSV Water 10 mL Purge

Analysis Method:

Analysis Description:

Matrix: Water

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

QC Batch:	MSV/63569
QC Batch Method:	EPA 5030B/8260

Associated Lab Samples: 60175723003, 60175723004

METHOD BLANK: 1425556

Demonster	11-26	Blank	Reporting	A	0
Parameter	Units	Result	Limit	Analyzed	Qualifiers
,1,1,2-Tetrachloroethane	ug/L	ND	1.0	08/14/14 14:24	
,1,1-Trichloroethane	ug/L	ND	1.0	08/14/14 14:24	
,1,2,2-Tetrachloroethane	ug/L	ND	1.0	08/14/14 14:24	
,1,2-Trichloroethane	ug/L	ND	1.0	08/14/14 14:24	
,1-Dichloroethane	ug/L	ND	1.0	08/14/14 14:24	
,1-Dichloroethene	ug/L	ND	1.0	08/14/14 14:24	
,1-Dichloropropene	ug/L	ND	1.0	08/14/14 14:24	
,2,3-Trichlorobenzene	ug/L	ND	1.0	08/14/14 14:24	
,2,3-Trichloropropane	ug/L	ND	2.5	08/14/14 14:24	
,2,4-Trichlorobenzene	ug/L	ND	1.0	08/14/14 14:24	
,2,4-Trimethylbenzene	ug/L	ND	1.0	08/14/14 14:24	
,2-Dibromo-3-chloropropane	ug/L	ND	2.5	08/14/14 14:24	
,2-Dibromoethane (EDB)	ug/L	ND	1.0	08/14/14 14:24	
,2-Dichlorobenzene	ug/L	ND	1.0	08/14/14 14:24	
,2-Dichloroethane	ug/L	ND	1.0	08/14/14 14:24	
,2-Dichloroethene (Total)	ug/L	ND	1.0	08/14/14 14:24	
,2-Dichloropropane	ug/L	ND	1.0	08/14/14 14:24	
,3,5-Trimethylbenzene	ug/L	ND	1.0	08/14/14 14:24	
,3-Dichlorobenzene	ug/L	ND	1.0	08/14/14 14:24	
,3-Dichloropropane	ug/L	ND	1.0	08/14/14 14:24	
,4-Dichlorobenzene	ug/L	ND	1.0	08/14/14 14:24	
,2-Dichloropropane	ug/L	ND	1.0	08/14/14 14:24	
P-Butanone (MEK)	ug/L	ND	10.0	08/14/14 14:24	
2-Chlorotoluene	ug/L	ND	1.0	08/14/14 14:24	
2-Hexanone	ug/L	ND	10.0	08/14/14 14:24	
I-Chlorotoluene	ug/L	ND	1.0	08/14/14 14:24	
I-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	08/14/14 14:24	
Acetone	ug/L	ND	10.0	08/14/14 14:24	
Benzene	ug/L	ND	1.0	08/14/14 14:24	
Bromobenzene	ug/L	ND	1.0	08/14/14 14:24	
Bromochloromethane	ug/L	ND	1.0	08/14/14 14:24	
Bromodichloromethane	ug/L	ND	1.0	08/14/14 14:24	
Bromoform	ug/L	ND	1.0	08/14/14 14:24	
Bromomethane	ug/L	ND	5.0	08/14/14 14:24	
Carbon disulfide	ug/L	ND	5.0	08/14/14 14:24	
Carbon tetrachloride	ug/L	ND	1.0	08/14/14 14:24	
Chlorobenzene	ug/L	ND	1.0	08/14/14 14:24	
Chloroethane	ug/L	ND	1.0	08/14/14 14:24	
Chloroform	ug/L	ND	1.0	08/14/14 14:24	
Chloromethane	ug/L	ND	1.0	08/14/14 14:24	
sis-1,2-Dichloroethene	ug/L	ND	1.0	08/14/14 14:24	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

METHOD BLANK: 142555	6	Matrix:	Water		
Associated Lab Samples:	60175723003, 60175723004				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,3-Dichloropropene		ND	1.0	08/14/14 14:24	
Dibromochloromethane	ug/L	ND	1.0	08/14/14 14:24	
Dibromomethane	ug/L	ND	1.0	08/14/14 14:24	
Dichlorodifluoromethane	ug/L	ND	1.0	08/14/14 14:24	
Ethylbenzene	ug/L	ND	1.0	08/14/14 14:24	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	08/14/14 14:24	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	08/14/14 14:24	
Methyl-tert-butyl ether	ug/L	ND	1.0	08/14/14 14:24	
Methylene chloride	ug/L	ND	1.0	08/14/14 14:24	
n-Butylbenzene	ug/L	ND	1.0	08/14/14 14:24	
n-Propylbenzene	ug/L	ND	1.0	08/14/14 14:24	
Naphthalene	ug/L	ND	10.0	08/14/14 14:24	
p-Isopropyltoluene	ug/L	ND	1.0	08/14/14 14:24	
sec-Butylbenzene	ug/L	ND	1.0	08/14/14 14:24	
Styrene	ug/L	ND	1.0	08/14/14 14:24	
tert-Butylbenzene	ug/L	ND	1.0	08/14/14 14:24	
Tetrachloroethene	ug/L	ND	1.0	08/14/14 14:24	
Toluene	ug/L	ND	1.0	08/14/14 14:24	
trans-1,2-Dichloroethene	ug/L	ND	1.0	08/14/14 14:24	
trans-1,3-Dichloropropene	ug/L	ND	1.0	08/14/14 14:24	
Trichloroethene	ug/L	ND	1.0	08/14/14 14:24	
Trichlorofluoromethane	ug/L	ND	1.0	08/14/14 14:24	
Vinyl chloride	ug/L	ND	1.0	08/14/14 14:24	
Xylene (Total)	ug/L	ND	3.0	08/14/14 14:24	
1,2-Dichloroethane-d4 (S)	%	94	80-120	08/14/14 14:24	
4-Bromofluorobenzene (S)	%	104	80-120	08/14/14 14:24	
Toluene-d8 (S)	%	100	80-120	08/14/14 14:24	

LABORATORY CONTROL SAMPLE: 1425557

	1120001					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	19.8	99	80-124	
1,1,1-Trichloroethane	ug/L	20	20.4	102	80-121	
1,1,2,2-Tetrachloroethane	ug/L	20	19.8	99	73-124	
1,1,2-Trichloroethane	ug/L	20	19.2	96	80-120	
1,1-Dichloroethane	ug/L	20	20.4	102	77-120	
1,1-Dichloroethene	ug/L	20	18.9	94	78-126	
1,1-Dichloropropene	ug/L	20	19.9	99	80-120	
1,2,3-Trichlorobenzene	ug/L	20	18.8	94	75-130	
1,2,3-Trichloropropane	ug/L	20	20.5	103	76-127	
1,2,4-Trichlorobenzene	ug/L	20	18.6	93	79-124	
1,2,4-Trimethylbenzene	ug/L	20	19.9	99	80-122	
1,2-Dibromo-3-chloropropane	ug/L	20	20.4	102	68-131	
1,2-Dibromoethane (EDB)	ug/L	20	19.6	98	80-127	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

LABORATORY CONTROL SAMPLE: 1425557

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
,2-Dichlorobenzene	ug/L	20	21.1	105	80-122	
I,2-Dichloroethane	ug/L	20	19.9	100	77-123	
,2-Dichloroethene (Total)	ug/L	40	39.4	98	80-120	
,2-Dichloropropane	ug/L	20	19.6	98	80-121	
,3,5-Trimethylbenzene	ug/L	20	20.0	100	80-121	
,3-Dichlorobenzene	ug/L	20	20.7	100	80-120	
,3-Dichloropropane	ug/L	20	18.9	95	80-120	
,4-Dichlorobenzene	ug/L	20	19.6	98	80-120	
,2-Dichloropropane	ug/L	20	19.5	98	50-120	
Butanone (MEK)	ug/L	100	96.5	96	52-145	
-Chlorotoluene	ug/L	20	90.3 20.7	103	80-120	
Hexanone			93.9	94		
	ug/L	100			57-139	
Chlorotoluene	ug/L	20	21.6	108	80-121	
Methyl-2-pentanone (MIBK)	ug/L	100	100	100	71-131	
cetone	ug/L	100	93.5	94	32-155	
enzene	ug/L	20	19.4	97	80-120	
romobenzene	ug/L	20	20.5	103	80-120	
romochloromethane	ug/L	20	18.9	95	77-123	
romodichloromethane	ug/L	20	19.9	100	80-120	
omoform	ug/L	20	19.0	95	73-124	
omomethane	ug/L	20	21.9	109	31-144	
arbon disulfide	ug/L	20	20.5	102	65-125	
arbon tetrachloride	ug/L	20	20.0	100	78-128	
lorobenzene	ug/L	20	19.6	98	80-120	
loroethane	ug/L	20	19.4	97	55-137	
loroform	ug/L	20	19.0	95	79-120	
loromethane	ug/L	20	17.4	87	22-138	
s-1,2-Dichloroethene	ug/L	20	19.4	97	80-120	
s-1,3-Dichloropropene	ug/L	20	19.7	98	80-120	
bromochloromethane	ug/L	20	19.7	98	80-120	
promomethane	ug/L	20	20.5	102	80-122	
chlorodifluoromethane	ug/L	20	17.7	89	23-120	
hylbenzene	ug/L	20	19.8	99	80-121	
exachloro-1,3-butadiene	ug/L	20	20.5	103	77-129	
ppropylbenzene (Cumene)	ug/L	20	20.3	102	80-136	
ethyl-tert-butyl ether	ug/L	20	19.5	97	74-125	
ethylene chloride	ug/L	20	18.9	95	73-126	
Butylbenzene	ug/L	20	20.8	104	83-123	
Propylbenzene	ug/L	20	20.9	105	80-122	
aphthalene	ug/L	20	18.4	92	73-130	
sopropyltoluene	ug/L	20	19.6	98	80-124	
c-Butylbenzene	ug/L	20	19.5	97	80-129	
yrene	ug/L	20	20.4	102	80-120	
rt-Butylbenzene	ug/L	20	19.5	97	80-126	
etrachloroethene	ug/L	20	19.2	96	80-121	
oluene	ug/L	20	20.2	101	80-122	
oluelle	ug/L	20	20.2	101	00 122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

LABORATORY CONTROL SAMPLE: 1425557

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
trans-1,3-Dichloropropene	ug/L	20	19.9	99	80-127	
Trichloroethene	ug/L	20	19.5	97	80-120	
Trichlorofluoromethane	ug/L	20	21.6	108	67-120	
Vinyl chloride	ug/L	20	19.2	96	59-120	
Xylene (Total)	ug/L	60	58.9	98	80-121	
1,2-Dichloroethane-d4 (S)	%			97	80-120	
4-Bromofluorobenzene (S)	%			105	80-120	
Toluene-d8 (S)	%			100	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2nd & Kirby R Pace Project No.: 60175723	Remediation						
QC Batch: WET/49635		•	Analysis Method: S Analysis Description: 4				
QC Batch Method: SM 4500-S- Associated Lab Samples: 6017	-2 D 5723003, 60175723004	•	cription:	4500S2D Sulfide	e, Iotal		
METHOD BLANK: 1426074		Matrix:	Water				
Associated Lab Samples: 6017	5723003, 60175723004	Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifie	ers	
Sulfide, Total	mg/L	ND	0.05	0 08/15/14 10:	38		
LABORATORY CONTROL SAMPI	LE: 1426075						
Parameter	Units	•	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Sulfide, Total	mg/L	.5	0.51	101	80-120		
MATRIX SPIKE SAMPLE:	1426076						
_		60175554001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Sulfide, Total	mg/L	0.8	5 2.5	3.3	99	9 75-125	
SAMPLE DUPLICATE: 1426077							
Parameter	Units	60175554002 Result	Dup Result	RPD	Max RPD	Qualifiers	
Sulfide, Total	01115	ND	N				-

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	2nd & K	irby Remediat	ion										
Pace Project No.:	601757	23											
QC Batch:	WETA	/30650		Analy	sis Method	: E	PA 300.0						
QC Batch Method:	EPA 3	00.0		Analy	sis Descrip	tion: 3	800.0 IC Anic	ons					
Associated Lab San	nples:	60175723003	, 60175723004										
METHOD BLANK:	142715	0			Matrix: Wa	ter							
Associated Lab San	nples:	60175723003	, 60175723004										
				Blan		eporting							
Paran	neter		Units	Resu	ult	Limit	Analyz	zed	Qualifiers				
Chloride		mg	/L		ND	1.0	0 08/19/14	09:58					
LABORATORY COM	NTROL S	AMPLE: 14	27151										
Paran	neter		Units	Spike Conc.	LCS Resi		LCS % Rec	% Red Limits		ualifiers			
Chloride		mg	/L	:	5	4.8	97	90	0-110				
MATRIX SPIKE & M	IATRIX S		ATE: 14271	52		1427153							
				MS	MSD								
Paramete	er	Units	60175493004 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride		mg/L	6.2	5	5	10.8	10.8	91	91	80-120	0	15	
MATRIX SPIKE SAI	MPLE:	14	27154										
				601753		Spike	MS		1S	% Rec			
Paran	neter		Units	Res	sult	Conc.	Result	%	Rec	Limits		Qualif	fiers
1 2121			Office										

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

2nd & Kirby Remediation

Project:

QUALITY CONTROL DATA

QC Batch: WETA	\/30618	Analysis Me	thod:	EPA 353.2			
QC Batch Method: EPA 3	353.2	Analysis Des	scription:	353.2 Nitrate + N	Nitrite, Unpres.		
Associated Lab Samples:	60175723003, 60175723004						
METHOD BLANK: 142534	14	Matrix:	Water				
Associated Lab Samples:	60175723003, 60175723004						
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifie	ers	
Nitrogen, Nitrate	mg/L	ND	0.1	10 08/14/14 09:	:57		
Nitrogen, Nitrite	mg/L	ND	0.1	10 08/14/14 09:	:57		
Nitrogen, NO2 plus NO3	mg/L	ND	0.1	10 08/14/14 09:	:57		
LABORATORY CONTROL S	SAMPLE: 1425345						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Nitrogen, Nitrate	mg/L	1.6	1.8	110	85-115		
Nitrogen, Nitrite	mg/L	.4	0.39	98	90-110		
Nitrogen, NO2 plus NO3	mg/L	2	2.2	108	90-110		
MATRIX SPIKE SAMPLE:	1425346						
		60175635003	S Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Nitrate	mg/L	4	1.7 1.6	5.7	63	8 85-1	15 M1
Nitrogen, Nitrite	mg/L		ND .4		111	90-1	10 M1
Nitrogen, NO2 plus NO3	mg/L	4	.7 2	6.1	73	90-1	10 M1

SAMPLE DUPLICATE: 1425347

		60175696003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Nitrogen, Nitrate	mg/L	18.6	18.7	0	20	
Nitrogen, Nitrite	mg/L	ND	ND		20	
Nitrogen, NO2 plus NO3	mg/L	18.6	18.7	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALIFIERS

Project: 2nd & Kirby Remediation

Pace Project No.: 60175723

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

PASI-M Pace Analytical Services - Minneapolis

BATCH QUALIFIERS

Batch: MSV/63569

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- D9 Dissolved result is greater than the total. Data is within laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- pH Post-analysis pH measurement indicates insufficient VOA sample preservation.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:2nd & Kirby RemediationPace Project No.:60175723

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60175723003	MW-27	RSK 175	AIR/21058		
60175723004	TMW-1	RSK 175	AIR/21058		
60175723001	MW-27	EPA 200.7	MPRP/28503	EPA 200.7	ICP/21494
60175723002	TMW-1	EPA 200.7	MPRP/28503	EPA 200.7	ICP/21494
60175723001	MW-27	EPA 200.7	MPRP/28502	EPA 200.7	ICP/21493
60175723002	TMW-1	EPA 200.7	MPRP/28502	EPA 200.7	ICP/21493
60175723003	MW-27	EPA 5030B/8260	MSV/63569		
60175723004	TMW-1	EPA 5030B/8260	MSV/63569		
60175723003	MW-27	SM 4500-S-2 D	WET/49635		
60175723004	TMW-1	SM 4500-S-2 D	WET/49635		
60175723003	MW-27	EPA 300.0	WETA/30650		
60175723004	TMW-1	EPA 300.0	WETA/30650		
60175723003	MW-27	EPA 353.2	WETA/30618		
60175723004	TMW-1	EPA 353.2	WETA/30618		

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:	Section Required		ect Info	rmation:						ion C												ŀ	Page:			of	
Company: CASE Engineering	Report To	01	1	_	Pasir	no til	rk.	0.0	Atten	tion:	P	Ta	2	1	1	nr	2	7				1			173	3142	26
Address: SO12 W 106Rd	Copy To:		<u>N</u>	a create	Com	CIUDO	· Art	UP4	Comp	pany Na	_	12			0.	~/	ne	-	EGUI	ATO	RY A	GEN	СҮ	-			
Hnera, KS									Addre	ess:		>	-	n g	C		-	17	-	PDES	Γ.	_		D WA	rer (~	DRINKI	NG WATER
Email To:	Purchase	Orde	r No _s :						Pace (Refere									T	- 08	ST	Г	RCF	RA		Г	OTHER	
Phone: Fax:	Project Na	ame:	29	Ki	-by	Kene	Lint	2	Pace F Manag	Project ger:								S	ite Lo	ocatio	n						
Requested Due Date/TAT:	Project Nu	umber	r /	48	032				Pace F	Profile #:									s	TATE			_	_			
1		-	-					_	_	-		_				Req	ueste	d An	alysi	s Filte	ered	(Y/N)		1			
	ix Codes	left)	(H)		COLLE	CTED					Prese	rvativ	les		TN/A		0	4	-	2							
Drinking V Water Waste Wa Product	Vater DW WT	/alid codes to left)	AB C=COMP)	COMF	POSITE	COMPC END/G		COLLECTION							-	200	NOS, et		Ma	EL.				(N	60	1757	723
SAMPLE ID Soil/Solid	SL OL	(see valid	(G=GRAB		-	-	1		RS						₽	1	N	4	2	-S				e (Y			
(A-Z, 0-9 / ,-) Wipe (A-Z, 0-9 / ,-) Air Sample IDs MUST BE UNIQUE Tissue Other	WP AR TS OT	CODE	LYPE	-				TEMP AT	NTAINE	rved					sis Tes	200	le No			AN				Chlorin			
## 2 2 2 2	2.5 12	MATRIX	SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE	# OF CONTAINERS	Unpreserved H ₂ SO ₄	HNO	NaOH	Na ₂ S ₂ O ₃ Methanol	Other	I Analysis Test	Sult	4 101	the	704	mutha				Residual Chlorine (Y/N)	Pace	Project	No./ Lab I.D.
1 MW-27 BIZU A655 (2) B		W1			1530	Britz	TIME		11	XX	X			X		1.	tit	in	1	2	T	(3)0	MH	-	VEau	1. 00	1 -
2 TMW - 1 V		WT	6	V	1500				11	XX	XX			X	t	UL	1	iti	r	V	1	1	Ĩ	M	2	10	1
3					-	_			1																		,
4	_	-				_			-		+	+	-	\square	+	-		_		-	-		+	\square			
6		-	-			-	-		-		++	+	-	+	ŀ	-		-	$\left \right $	-		-	+	+			
7				-								$^{++}$		H	ł	-		-		-			+	+	-		
B							1				\square	T		T	t			1						П			
0												\square										1					_
2									-			+	-	\square		_		-		-		-	-	\square	_		
ADDITIONAL COMMENTS	-	DEI		ICUID BY	/ AFFILIATIO		DATE	-		ME	11			DYED	DY	AFFILI/		1		475		-	+				
TIT IN TO	57	INC.	LINGU	Ionido B1	APPILIATIO	~	8/13/		_	_	-	_	-		ытл			-	8	ATE	-	71ME	1		SAMP	LE CONDIT	
Mr Long Jag he	F	-	24	4				14	17	130	1	1/2	k	-		Pa	e.		0	D	10		6.	0	7	N	7
metars				0																							
Pa							1												1	_	1					(nem)	
0 e 2	1.				SAMPLER			TURE													-		1	ç	on (oler	tact
Page 24 of 24	ORIGINA	AL.			-		e of SAMPL		1	51	an-	0	0-	te	1	DATE	Signed	5	21	13	17	4	-	Temp in °	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)
*Important Note: By signing this form you are acc							_ e, erunt k		P	5	K	1	-	-		(MM/D	D/YY):	0	/1	11	11		1.1		-	Ó	ŏ

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

August 27, 2014

BRIAN CONRAD GSI 15012 W. 106th Street Lenexa, KS 66219

RE: Project: 2nd & Kirby Remediation Pace Project No.: 60175918

Dear BRIAN CONRAD:

Enclosed are the analytical results for sample(s) received by the laboratory on August 15, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Actures m. Wilson

Heather Wilson heather.wilson@pacelabs.com Project Manager

Enclosures

cc: Josh Mellema, GSI Engineering, LLC

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: 2nd & Kirby Remediation

Pace Project No.: 60175918

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alabama Certification #40770 Alabama Certification #40770 Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #: Pace Georgia Certification #: 959 Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116

Michigan DEPH Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nebraska Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 Wisconsin Certification #: 999407970 West Virginia Certification #: 382 West Virginia DHHR #:9952C

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

SAMPLE SUMMARY

Project: 2nd & Kirby Remediation

Pace Project No.: 60175918

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60175918001	TMW-2	Water	08/15/14 12:03	08/15/14 17:20
60175918002	GMW-8S	Water	08/15/14 13:03	08/15/14 17:20

SAMPLE ANALYTE COUNT

Project: 2nd & Kirby Remediation

Pace Project No.: 60175918

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60175918001	TMW-2	RSK 175	JRB	3	PASI-M
		EPA 200.7	NDJ	1	PASI-K
		EPA 200.7	NDJ	2	PASI-K
		EPA 5030B/8260	PRG	69	PASI-K
		SM 4500-S-2 D	JMC1	1	PASI-K
		EPA 300.0	OL	1	PASI-K
		EPA 353.2	AJM	3	PASI-K
		SM 5310C	JMC1	1	PASI-K
60175918002	GMW-8S	RSK 175	JRB	3	PASI-M
		EPA 200.7	NDJ	1	PASI-K
		EPA 200.7	NDJ	2	PASI-K
		EPA 5030B/8260	PRG	69	PASI-K
		SM 4500-S-2 D	JMC1	1	PASI-K
		EPA 300.0	OL	1	PASI-K
		EPA 353.2	AJM	3	PASI-K
		SM 5310C	JMC1	1	PASI-K

Project: 2nd & Kirby Remediation

Pace Project No.: 60175918

zna	ā	KIRDY	Reme	diation

Sample: TMW-2	Lab ID: 6017591800	1 Collected: 08/15/1	4 12:03	8 Received: 08	8/15/14 17:20 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 AIR Headspace	Analytical Method: RSk	(175					
Ethane	ND ug/L	6.2	1		08/20/14 16:16	74-84-0	
Ethene	ND ug/L	6.2	1		08/20/14 16:16	74-85-1	
Methane	13.5 ug/L	6.6	1		08/20/14 16:16	74-82-8	
200.7 Metals, Total	Analytical Method: EPA	200.7 Preparation Met	hod: EF	PA 200.7			
Iron	4590 ug/L	50.0	1	08/20/14 17:25	08/21/14 11:21	7439-89-6	
200.7 Metals, Dissolved (LF)	Analytical Method: EPA	200.7 Preparation Met	hod: EF	PA 200.7			
Iron, Dissolved	ND ug/L	50.0	1	08/24/14 09:07	08/25/14 13:18	7439-89-6	
Manganese, Dissolved	321 ug/L	5.0	1	08/24/14 09:07	08/25/14 13:18	7439-96-5	
8260 MSV	Analytical Method: EPA	5030B/8260					
Acetone	ND ug/L	10.0	1		08/19/14 17:27	67-64-1	
Benzene	ND ug/L	1.0	1		08/19/14 17:27	71-43-2	
Bromobenzene	ND ug/L	1.0	1		08/19/14 17:27	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		08/19/14 17:27	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		08/19/14 17:27		
Bromoform	ND ug/L	1.0	1		08/19/14 17:27		
Bromomethane	ND ug/L	5.0	1		08/19/14 17:27		
2-Butanone (MEK)	ND ug/L	10.0	1		08/19/14 17:27		
n-Butylbenzene	ND ug/L	1.0	1		08/19/14 17:27		
sec-Butylbenzene	ND ug/L	1.0	1		08/19/14 17:27		
tert-Butylbenzene	ND ug/L	1.0	1		08/19/14 17:27		
Carbon disulfide	ND ug/L	5.0	1		08/19/14 17:27		
Carbon tetrachloride	ND ug/L	1.0	1		08/19/14 17:27		
Chlorobenzene	ND ug/L	1.0	1		08/19/14 17:27		
Chloroethane	ND ug/L	1.0	1		08/19/14 17:27		
Chloroform	ND ug/L	1.0	1		08/19/14 17:27		
Chloromethane	ND ug/L	1.0	1		08/19/14 17:27		
2-Chlorotoluene	ND ug/L	1.0	1		08/19/14 17:27		
4-Chlorotoluene	ND ug/L	1.0	1		08/19/14 17:27		
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		08/19/14 17:27		
Dibromochloromethane	Ũ		1		08/19/14 17:27		
	ND ug/L	1.0 1.0	1		08/19/14 17:27		
1,2-Dibromoethane (EDB)	ND ug/L						
Dibromomethane	ND ug/L	1.0	1		08/19/14 17:27		
1,2-Dichlorobenzene	ND ug/L	1.0	1		08/19/14 17:27		
1,3-Dichlorobenzene	ND ug/L	1.0	1		08/19/14 17:27		
1,4-Dichlorobenzene	ND ug/L	1.0	1		08/19/14 17:27		
Dichlorodifluoromethane	ND ug/L	1.0	1		08/19/14 17:27		
1,1-Dichloroethane	ND ug/L	1.0	1		08/19/14 17:27		
1,2-Dichloroethane	ND ug/L	1.0	1		08/19/14 17:27		
1,2-Dichloroethene (Total)	48.2 ug/L	1.0	1		08/19/14 17:27		
1,1-Dichloroethene	ND ug/L	1.0	1		08/19/14 17:27		
cis-1,2-Dichloroethene	47.5 ug/L	1.0	1		08/19/14 17:27		
trans-1,2-Dichloroethene	ND ug/L	1.0	1		08/19/14 17:27		
1,2-Dichloropropane	ND ug/L	1.0	1		08/19/14 17:27	78-87-5	

Project: 2nd & Kirby Remediation

Pace Project No.: 60175918

Sample: TMW-2	Lab ID: 60175918001	Collected: 08/15/14	12:03	Received: 0	8/15/14 17:20 N	Aatrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
1,3-Dichloropropane	ND ug/L	1.0	1		08/19/14 17:27	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		08/19/14 17:27	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		08/19/14 17:27	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1		08/19/14 17:27	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		08/19/14 17:27	10061-02-6	
Ethylbenzene	ND ug/L	1.0	1		08/19/14 17:27	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		08/19/14 17:27	87-68-3	
2-Hexanone	ND ug/L	10.0	1		08/19/14 17:27	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		08/19/14 17:27	98-82-8	
p-lsopropyltoluene	ND ug/L	1.0	1		08/19/14 17:27	99-87-6	
Methylene chloride	ND ug/L	1.0	1		08/19/14 17:27	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		08/19/14 17:27	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		08/19/14 17:27	1634-04-4	
Naphthalene	ND ug/L	10.0	1		08/19/14 17:27	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		08/19/14 17:27	103-65-1	
Styrene	ND ug/L	1.0	1		08/19/14 17:27		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		08/19/14 17:27	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		08/19/14 17:27		
Tetrachloroethene	7.6 ug/L	1.0	1		08/19/14 17:27		
Toluene	ND ug/L	1.0	1		08/19/14 17:27		
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		08/19/14 17:27		
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		08/19/14 17:27		
1,1,1-Trichloroethane	ND ug/L	1.0	1		08/19/14 17:27		
1,1,2-Trichloroethane	ND ug/L	1.0	1		08/19/14 17:27		
Trichloroethene	65.1 ug/L	1.0	1		08/19/14 17:27		
Trichlorofluoromethane	ND ug/L	1.0	1		08/19/14 17:27		
1,2,3-Trichloropropane	ND ug/L	2.5	1		08/19/14 17:27		
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		08/19/14 17:27		
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		08/19/14 17:27		
Vinyl chloride	ND ug/L	1.0	1		08/19/14 17:27		
Xylene (Total)	ND ug/L	3.0	1		08/19/14 17:27		
Surrogates	ND ug/L	5.0	1		00/19/14 17.27	1330-20-7	
4-Bromofluorobenzene (S)	101 %	80-120	1		08/19/14 17:27	460-00-4	
1,2-Dichloroethane-d4 (S)	99 %	80-120	1		08/19/14 17:27		
Toluene-d8 (S)	100 %	80-120	1		08/19/14 17:27		
Preservation pH	1.0	0.10	1		08/19/14 17:27		
4500S2D Sulfide, Total	Analytical Method: SM 4	4500-S-2 D					
Sulfide, Total	ND mg/L	0.050	1		08/21/14 09:14	18496-25-8	
300.0 IC Anions 28 Days	Analytical Method: EPA	300.0					
Chloride	171 mg/L	10.0	10		08/21/14 21:13	16887-00-6	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2					
Nitrogen, Nitrate	0.91 mg/L	0.10	1		08/16/14 11:17		
Nitrogen, Nitrite	ND mg/L	0.10	1		08/16/14 11:17		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 2nd & Kirby Remediation

Pace Project No.: 60175918

Sample: TMW-2	Lab ID: 6	0175918001 C	Collected: 08/15/	14 12:03	Received: 08	B/15/14 17:20 M	atrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical N	lethod: EPA 353.2	2					
Nitrogen, NO2 plus NO3	0.91	mg/L	0.10	1		08/16/14 11:17		
5310C TOC	Analytical N	lethod: SM 53100	2					
Total Organic Carbon	1.0	mg/L	1.0	1		08/20/14 20:29	7440-44-0	

Project: 2nd & Kirby Remediation

Pace Project No.: 60175918

Sample: GMW-8S	Lab ID: 6017	5918002	Collected: 08/15/2	14 13:03	B Received: 08	3/15/14 17:20 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Metho	od: RSK 17	5					
Ethane	ND ug/l	_	6.2	1		08/20/14 16:28	74-84-0	
Ethene	ND ug/l	-	6.2	1		08/20/14 16:28	74-85-1	
Methane	ND ug/l	-	6.6	1		08/20/14 16:28	74-82-8	
200.7 Metals, Total	Analytical Metho	od: EPA 200	0.7 Preparation Me	thod: EF	PA 200.7			
Iron	2150 ug/l	-	50.0	1	08/20/14 17:25	08/21/14 11:23	7439-89-6	
200.7 Metals, Dissolved (LF)	Analytical Metho	od: EPA 200	0.7 Preparation Me	thod: EF	PA 200.7			
Iron, Dissolved	ND ug/l	-	50.0	1	08/24/14 09:07	08/25/14 13:25	7439-89-6	
Manganese, Dissolved	260 ug/l	-	5.0	1	08/24/14 09:07	08/25/14 13:25	7439-96-5	
8260 MSV	Analytical Metho	od: EPA 503	0B/8260					
Acetone	ND ug/l	-	10.0	1		08/19/14 17:41	67-64-1	
Benzene	ND ug/l	_	1.0	1		08/19/14 17:41	71-43-2	
Bromobenzene	ND ug/l	_	1.0	1		08/19/14 17:41	108-86-1	
Bromochloromethane	ND ug/l	_	1.0	1		08/19/14 17:41	74-97-5	
Bromodichloromethane	ND ug/l	_	1.0	1		08/19/14 17:41	75-27-4	
Bromoform	ND ug/l	_	1.0	1		08/19/14 17:41	75-25-2	
Bromomethane	ND ug/l	_	5.0	1		08/19/14 17:41	74-83-9	
2-Butanone (MEK)	ND ug/l	_	10.0	1		08/19/14 17:41	78-93-3	
n-Butylbenzene	ND ug/l	_	1.0	1		08/19/14 17:41	104-51-8	
sec-Butylbenzene	ND ug/l	_	1.0	1		08/19/14 17:41	135-98-8	
tert-Butylbenzene	ND ug/l	_	1.0	1		08/19/14 17:41	98-06-6	
Carbon disulfide	ND ug/l	_	5.0	1		08/19/14 17:41	75-15-0	
Carbon tetrachloride	ND ug/l	_	1.0	1		08/19/14 17:41	56-23-5	
Chlorobenzene	ND ug/l	_	1.0	1		08/19/14 17:41	108-90-7	
Chloroethane	ND ug/l	_	1.0	1		08/19/14 17:41	75-00-3	
Chloroform	ND ug/l	_	1.0	1		08/19/14 17:41	67-66-3	
Chloromethane	ND ug/l	_	1.0	1		08/19/14 17:41	74-87-3	
2-Chlorotoluene	ND ug/l	_	1.0	1		08/19/14 17:41	95-49-8	
4-Chlorotoluene	ND ug/l	_	1.0	1		08/19/14 17:41	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/l	_	2.5	1		08/19/14 17:41	96-12-8	
Dibromochloromethane	ND ug/l		1.0	1		08/19/14 17:41	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/l	_	1.0	1		08/19/14 17:41	106-93-4	
Dibromomethane	ND ug/l		1.0	1		08/19/14 17:41	74-95-3	
1,2-Dichlorobenzene	ND ug/l	_	1.0	1		08/19/14 17:41	95-50-1	
1,3-Dichlorobenzene	ND ug/l		1.0	1		08/19/14 17:41	541-73-1	
1,4-Dichlorobenzene	ND ug/l		1.0	1		08/19/14 17:41	106-46-7	
Dichlorodifluoromethane	ND ug/l		1.0	1		08/19/14 17:41	75-71-8	
1,1-Dichloroethane	4.9 ug/l	-	1.0	1		08/19/14 17:41	75-34-3	
1,2-Dichloroethane	ND ug/l	-	1.0	1		08/19/14 17:41	107-06-2	
1,2-Dichloroethene (Total)	109 ug/l		1.0	1		08/19/14 17:41		
1,1-Dichloroethene	ND ug/l		1.0	1		08/19/14 17:41		
cis-1,2-Dichloroethene	107 ug/l		1.0	1		08/19/14 17:41		
trans-1,2-Dichloroethene	1.7 ug/l		1.0	1		08/19/14 17:41	156-60-5	
1,2-Dichloropropane	ND ug/l		1.0	1		08/19/14 17:41		

Project: 2nd & Kirby Remediation

Pace Project No.: 601759

Sample: GMW-8S	Lab ID: 60175918	Collected: 08/15/1	4 13:03	Received: 08/15/14 17	:20 N	Aatrix: Water	
Parameters	Results U	nits Report Limit	DF	Prepared Analy	/zed	CAS No.	Qual
8260 MSV	Analytical Method: E	PA 5030B/8260					
1,3-Dichloropropane	ND ug/L	1.0	1	08/19/14	17:41	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1	08/19/14	17:41	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1	08/19/14	17:41	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1	08/19/14	17:41	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1	08/19/14	17:41	10061-02-6	
Ethylbenzene	ND ug/L	1.0	1	08/19/14	17:41	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1	08/19/14	17:41	87-68-3	
2-Hexanone	ND ug/L	10.0	1	08/19/14	17:41	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1	08/19/14	17:41	98-82-8	
p-lsopropyltoluene	ND ug/L	1.0	1	08/19/14	17:41	99-87-6	
Methylene chloride	ND ug/L	1.0	1	08/19/14	17:41	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	08/19/14	17:41	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1	08/19/14	17:41	1634-04-4	
Naphthalene	ND ug/L	10.0	1	08/19/14	17:41	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1	08/19/14	17:41	103-65-1	
Styrene	ND ug/L	1.0	1	08/19/14	17:41	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	08/19/14	17:41	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	08/19/14	17:41	79-34-5	
Tetrachloroethene	8.8 ug/L	1.0	1	08/19/14	17:41	127-18-4	
Toluene	ND ug/L	1.0	1			108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1			87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1			120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1	08/19/14	17:41	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1	08/19/14	17:41	79-00-5	
Trichloroethene	159 ug/L	1.0	1			79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1			75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1			96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1			95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1			108-67-8	
Vinyl chloride	ND ug/L	1.0	1			75-01-4	
Xylene (Total)	ND ug/L	3.0	1			1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	98 %	80-120	1	08/19/14	17:41	460-00-4	
1,2-Dichloroethane-d4 (S)	104 %	80-120	1	08/19/14	17:41	17060-07-0	
Toluene-d8 (S)	96 %	80-120	1	08/19/14	17:41	2037-26-5	
Preservation pH	3.0	0.10	1	08/19/14	17:41		рН
4500S2D Sulfide, Total	Analytical Method: S	M 4500-S-2 D					
Sulfide, Total	ND mg/L	0.050	1	08/21/14	09:15	18496-25-8	
300.0 IC Anions 28 Days	Analytical Method: E	PA 300.0					
Chloride	169 mg/L	20.0	20	08/26/14	10:25	16887-00-6	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: E	PA 353.2					
Nitrogen, Nitrate	ND mg/L	0.10	1	08/16/14	11:19		
Nitrogen, Nitrite	ND mg/L	0.10	1	08/16/14	11:19		
	·· ···	5110					

REPORT OF LABORATORY ANALYSIS

Project: 2nd & Kirby Remediation

Pace Project No.: 60175918

Sample: GMW-8S	Lab ID: 6	0175918002	Collected: 08/15/	14 13:03	Received: 08	B/15/14 17:20 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical M	ethod: EPA 353.	2					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	1		08/16/14 11:19)	
5310C TOC	Analytical M	ethod: SM 5310	С					
Total Organic Carbon	1.0	mg/L	1.0	1		08/20/14 20:48	3 7440-44-0	

Project:

QUALITY CONTROL DATA

RSK 175

RSK 175 AIR HEADSPACE

60175918	
AIR/21111	Analysis Method:
RSK 175	Analysis Description:
nples: 60175918001, 60175918	002
1766711	Matrix: Water
nples: 60175918001, 60175918	002 Diante Dance
	AIR/21111 RSK 175 mples: 60175918001, 60175918 1766711

2nd & Kirby Remediation

Parameter Units Result Limit Analyzed Qualifier
Ethane ND 6.2 08/20/14 12:13
Ethene ug/L ND 6.2 08/20/14 12:13
Methane ug/L ND 6.6 08/20/14 12:13

LABORATORY CONTROL SAMPLE	& LCSD: 1766712		17	766713						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Ethane	ug/L	114	115	118	101	104	85-115	2	20	
Ethene	ug/L	106	107	110	101	103	85-115	2	20	
Methane	ug/L	60.7	60.6	62.1	100	102	85-115	2	20	

SAMPLE DUPLICATE: 1766714

		208082001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Ethane	ug/L	ND	ND		20)
Ethene	ug/L	ND	ND		20)
Methane	ug/L	ND	4.8J		20)

SAMPLE DUPLICATE: 1766715

		208098002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Ethane	ug/L	ND	ND		20	
Ethene	ug/L	ND	ND		20	
Methane	ug/L	ND	3.4J		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	2nd & Kirby Rem	ediation										
Pace Project No.:	60175918											
QC Batch:	MPRP/28603		Analys	is Method	: E	PA 200.7						
QC Batch Method:	EPA 200.7		Analys	is Descrip	tion: 2	00.7 Metals,	Total					
Associated Lab Samp	oles: 6017591	8001, 60175918002	2									
METHOD BLANK:	1429248		Ν	Aatrix: Wa	ter							
Associated Lab Samp	oles: 6017591	8001, 60175918002	2									
			Blank		leporting							
Parame	eter	Units	Resul	t	Limit	Analyz	ed	Qualifier	S			
Iron		ug/L		ND	50.0	08/21/14	11:14					
LABORATORY CON	TROL SAMPLE:	1429249										
Parame	eter	Units	Spike Conc.	LCS Resu		LCS % Rec	% Rec Limits		Qualifiers			
Iron		ug/L	10000		9960	100	85	5-115		-		
MATRIX SPIKE SAM	PLE:	1429250										
			601760	23002	Spike	MS	N	IS	% Rec			
Parame	eter	Units	Res	ult	Conc.	Result	% I	Rec	Limits		Qualif	iers
Iron		ug/L		291	10000	1040	00	101	70-	130		
MATRIX SPIKE & MA		IPLICATE: 14292	251		1429252							
		14232	MS	MSD	1720202							
		60175988002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Ur	nits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron	ug/L	138	10000	10000	9910	9810	98	9	7 70-130	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

•	2nd & Kirby Reme 60175918	ediatio	n											
QC Batch:	MPRP/28637			Analys	is Method	:	EP	A 200.7						
QC Batch Method:	EPA 200.7			Analys	is Descrip	tion:	200	0.7 Metals,	Dissolved					
Associated Lab Sam	ples: 60175918	3001, 6	0175918002											
METHOD BLANK:	1430733			Ν	latrix: Wa	ter								
Associated Lab Sam	ples: 60175918	3001, 6	0175918002											
_				Blank		eporting	I							
Param	eter	·	Units	Result	t 	Limit		Analyz	ed	Qualifiers				
Iron, Dissolved		ug/L			ND	-	0.0	08/25/14						
Manganese, Dissolve	ed	ug/L			ND	ł	5.0	08/25/14	13:16					
LABORATORY CON	TROL SAMPLE:	1430	1734											
Param	eter		Units	Spike Conc.	LCS Resu			LCS 6 Rec	% Rec Limits		ualifiers			
Iron, Dissolved		ug/L		10000		10100		101	85	-115		-		
Manganese, Dissolve	ed	ug/L		10000		1020		102		-115				
MATRIX SPIKE & M/	ATRIX SPIKE DUI	PLICA	ГЕ: 143073	35		143073	36							
				MS	MSD									
			175918001	Spike	Spike	MS		MSD	MS	MSD	% Rec		Max	<u> </u>
Parameter	Un	Its	Result	Conc.	Conc.	Result	t	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Dissolved	ug/L		ND	10000	10000	101		10100	101	101	70-130	-	-	
Manganese, Dissolve	ed ug/L		321	1000	1000	13	30	1330	101	101	70-130	0	9	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2nd & Kirby Remediation

60175918 Pace Project No .:

QC Batch:	MSV/63706
QC Batch Method:	EPA 5030B/8260

Analysis Method:

Analysis Description:

EPA 5030B/8260 8260 MSV Water 10 mL Purge

Associated Lab Samples: 60175918001, 60175918002

METHOD BLANK: 1428121 Matrix: Water Associated Lab Samples: 60175918001, 60175918002 Blank Reporting Limit Qualifiers Parameter Units Result Analyzed 1,1,1,2-Tetrachloroethane ND 08/19/14 15:04 ug/L 1.0 08/19/14 15:04 1,1,1-Trichloroethane ug/L ND 1.0 1,1,2,2-Tetrachloroethane ug/L ND 1.0 08/19/14 15:04 ND 1,1,2-Trichloroethane ug/L 1.0 08/19/14 15:04 1,1-Dichloroethane ug/L ND 1.0 08/19/14 15:04 1,1-Dichloroethene ug/L ND 1.0 08/19/14 15:04 1,1-Dichloropropene ug/L ND 1.0 08/19/14 15:04 ug/L ND 08/19/14 15:04 1,2,3-Trichlorobenzene 1.0 1,2,3-Trichloropropane ug/L ND 2.5 08/19/14 15:04 1.2.4-Trichlorobenzene ug/L ND 1.0 08/19/14 15:04 1,2,4-Trimethylbenzene ND ug/L 1.0 08/19/14 15:04 ND 1,2-Dibromo-3-chloropropane ug/L 2.5 08/19/14 15:04 ug/L ND 08/19/14 15:04 1,2-Dibromoethane (EDB) 1.0 1.0 08/19/14 15:04 1,2-Dichlorobenzene ND ug/L ND 1,2-Dichloroethane ug/L 1.0 08/19/14 15:04 1,2-Dichloroethene (Total) ug/L ND 1.0 08/19/14 15:04 1,2-Dichloropropane ug/L ND 1.0 08/19/14 15:04 1,3,5-Trimethylbenzene ug/L ND 1.0 08/19/14 15:04 ND 08/19/14 15:04 1,3-Dichlorobenzene ug/L 1.0 08/19/14 15:04 1,3-Dichloropropane ug/L ND 1.0 1,4-Dichlorobenzene ND 1.0 08/19/14 15:04 ug/L 2,2-Dichloropropane ND 1.0 08/19/14 15:04 ug/L ND 10.0 08/19/14 15:04 2-Butanone (MEK) ug/L 2-Chlorotoluene ND 08/19/14 15:04 ug/L 1.0 2-Hexanone ug/L ND 10.0 08/19/14 15:04 4-Chlorotoluene ug/L ND 1.0 08/19/14 15:04 4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 08/19/14 15:04 Acetone ug/L ND 10.0 08/19/14 15:04 Benzene ND 08/19/14 15:04 ug/L 1.0 ND 08/19/14 15:04 Bromobenzene ug/L 1.0 Bromochloromethane ug/L ND 10 08/19/14 15:04 Bromodichloromethane ug/L ND 1.0 08/19/14 15:04 Bromoform ug/L ND 1.0 08/19/14 15:04 Bromomethane ug/L ND 50 08/19/14 15:04 Carbon disulfide ug/L ND 5.0 08/19/14 15:04 Carbon tetrachloride ug/L ND 1.0 08/19/14 15:04 Chlorobenzene ND ug/L 1.0 08/19/14 15:04 Chloroethane ug/L ND 1.0 08/19/14 15:04 Chloroform ug/L ND 1.0 08/19/14 15:04 Chloromethane ug/L ND 08/19/14 15:04 1.0 cis-1,2-Dichloroethene ug/L ND 1.0 08/19/14 15:04

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 2nd & Kirby Remediation

Pace Project No.: 60175918

Associated Lab Samples: 60175918001, 60175918002 Parameter Units Blank Result Reporting Limit Analyzed Qualifie cis-1,3-Dichloropropene ug/L ND 1.0 08/19/14 15:04 Qualifie Dibromochloromethane ug/L ND 1.0 08/19/14 15:04 Qualifie Dibromochloromethane ug/L ND 1.0 08/19/14 15:04 Qualifie Dichlorodifluoromethane ug/L ND 1.0 08/19/14 15:04 Qualifie Ethylbenzene ug/L ND 1.0 08/19/14 15:04 Qualifie Hexachloro-1,3-butadiene ug/L ND 1.0 08/19/14 15:04 Qualifie
ParameterUnitsResultLimitAnalyzedQualifierscis-1,3-Dichloropropeneug/LND1.008/19/14 15:04Dibromochloromethaneug/LND1.008/19/14 15:04Dibromomethaneug/LND1.008/19/14 15:04Dichlorodifluoromethaneug/LND1.008/19/14 15:04Ethylbenzeneug/LND1.008/19/14 15:04
cis-1,3-Dichloropropene ug/L ND 1.0 08/19/14 15:04 Dibromochloromethane ug/L ND 1.0 08/19/14 15:04 Dibromomethane ug/L ND 1.0 08/19/14 15:04 Dibromomethane ug/L ND 1.0 08/19/14 15:04 Dichlorodifluoromethane ug/L ND 1.0 08/19/14 15:04 Ethylbenzene ug/L ND 1.0 08/19/14 15:04
Dibromochloromethane ug/L ND 1.0 08/19/14 15:04 Dibromomethane ug/L ND 1.0 08/19/14 15:04 Dichlorodifluoromethane ug/L ND 1.0 08/19/14 15:04 Ethylbenzene ug/L ND 1.0 08/19/14 15:04
Dibromomethane ug/L ND 1.0 08/19/14 15:04 Dichlorodifluoromethane ug/L ND 1.0 08/19/14 15:04 Ethylbenzene ug/L ND 1.0 08/19/14 15:04
Dichlorodifluoromethane ug/L ND 1.0 08/19/14 15:04 Ethylbenzene ug/L ND 1.0 08/19/14 15:04
Ethylbenzene ug/L ND 1.0 08/19/14 15:04
Hexachloro-1,3-butadiene ug/L ND 1.0 08/19/14 15:04
Isopropylbenzene (Cumene) ug/L ND 1.0 08/19/14 15:04
Methyl-tert-butyl ether ug/L ND 1.0 08/19/14 15:04
Methylene chloride ug/L ND 1.0 08/19/14 15:04
n-Butylbenzene ug/L ND 1.0 08/19/14 15:04
n-Propylbenzene ug/L ND 1.0 08/19/14 15:04
Naphthalene ug/L ND 10.0 08/19/14 15:04
p-lsopropyltoluene ug/L ND 1.0 08/19/14 15:04
sec-Butylbenzene ug/L ND 1.0 08/19/14 15:04
Styrene ug/L ND 1.0 08/19/14 15:04
tert-Butylbenzene ug/L ND 1.0 08/19/14 15:04
Tetrachloroethene ug/L ND 1.0 08/19/14 15:04
Toluene ug/L ND 1.0 08/19/14 15:04
trans-1,2-Dichloroethene ug/L ND 1.0 08/19/14 15:04
trans-1,3-Dichloropropene ug/L ND 1.0 08/19/14 15:04
Trichloroethene ug/L ND 1.0 08/19/14 15:04
Trichlorofluoromethane ug/L ND 1.0 08/19/14 15:04
Vinyl chloride ug/L ND 1.0 08/19/14 15:04
Xylene (Total) ug/L ND 3.0 08/19/14 15:04
1,2-Dichloroethane-d4 (S) % 99 80-120 08/19/14 15:04
4-Bromofluorobenzene (S) % 102 80-120 08/19/14 15:04
Toluene-d8 (S) % 99 80-120 08/19/14 15:04

LABORATORY CONTROL SAMPLE: 1428122

	TILOTLL					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	19.3	97	80-124	
1,1,1-Trichloroethane	ug/L	20	20.1	100	80-121	
1,1,2,2-Tetrachloroethane	ug/L	20	19.5	97	73-124	
1,1,2-Trichloroethane	ug/L	20	20.5	102	80-120	
1,1-Dichloroethane	ug/L	20	19.8	99	77-120	
1,1-Dichloroethene	ug/L	20	19.1	96	78-126	
1,1-Dichloropropene	ug/L	20	19.0	95	80-120	
1,2,3-Trichlorobenzene	ug/L	20	19.7	98	75-130	
1,2,3-Trichloropropane	ug/L	20	20.1	101	76-127	
1,2,4-Trichlorobenzene	ug/L	20	19.7	98	79-124	
1,2,4-Trimethylbenzene	ug/L	20	19.9	99	80-122	
1,2-Dibromo-3-chloropropane	ug/L	20	20.8	104	68-131	
1,2-Dibromoethane (EDB)	ug/L	20	20.1	100	80-127	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 2nd & Kirby Remediation

Pace Project No.: 60175918

LABORATORY CONTROL SAMPLE: 1428122

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichlorobenzene	ug/L	20	20.8	104	80-122	
1,2-Dichloroethane	ug/L	20	21.0	105	77-123	
1,2-Dichloroethene (Total)	ug/L	40	38.8	97	80-120	
1,2-Dichloropropane	ug/L	20	19.4	97	80-121	
1,3,5-Trimethylbenzene	ug/L	20	19.5	98	80-121	
1,3-Dichlorobenzene	ug/L	20	21.2	106	80-120	
, ,3-Dichloropropane	ug/L	20	19.7	98	80-120	
1,4-Dichlorobenzene	ug/L	20	20.0	100	80-120	
2,2-Dichloropropane	ug/L	20	18.4	92	50-137	
P-Butanone (MEK)	ug/L	100	100	100	52-145	
2-Chlorotoluene	ug/L	20	20.8	104	80-120	
-Hexanone	ug/L	100	97.5	97	57-139	
-Chlorotoluene	ug/L	20	19.6	98	80-121	
-Methyl-2-pentanone (MIBK)	ug/L	100	103	103	71-131	
Acetone	ug/L	100	105	105	32-155	
Benzene	ug/L	20	19.4	97	80-120	
romobenzene	ug/L	20	21.6	108	80-120	
romochloromethane	ug/L	20	21.0	105	77-123	
romodichloromethane	ug/L	20	21.5	108	80-120	
romoform	ug/L	20	20.3	102	73-124	
omomethane	ug/L	20	13.4	67	31-144	
arbon disulfide	ug/L	20	20.0	100	65-125	
arbon tetrachloride	ug/L	20	19.9	99	78-128	
nlorobenzene	ug/L	20	21.0	105	80-120	
hloroethane	ug/L	20	20.6	103	55-137	
nloroform	ug/L	20	19.9	100	79-120	
nloromethane	ug/L	20	15.7	79	22-138	
s-1,2-Dichloroethene	ug/L	20	19.6	98	80-120	
s-1,3-Dichloropropene	ug/L	20	20.0	100	80-120	
bromochloromethane	ug/L	20	20.0	100	80-120	
bromomethane	ug/L	20	19.8	99	80-122	
chlorodifluoromethane	ug/L	20	15.1	76	23-120	
hylbenzene	ug/L	20	20.9	104	80-121	
exachloro-1,3-butadiene	ug/L	20	19.9	104	77-129	
opropylbenzene (Cumene)	ug/L	20	20.9	100	80-136	
ethyl-tert-butyl ether	ug/L	20	19.7	98	74-125	
ethylene chloride	ug/L	20	20.2	101	73-126	
Butylbenzene	ug/L	20	20.2	101	83-123	
Propylbenzene	ug/L	20	20.0	102	80-123	
aphthalene	ug/L	20	19.0	95	73-130	
Isopropyltoluene	ug/L	20	20.0	100	80-124	
ec-Butylbenzene	ug/L	20 20	20.0	95	80-124 80-129	
	-	20 20	21.7	95 108	80-129	
tyrene ert-Butylbenzene	ug/L	20 20	19.7	98	80-120 80-126	
err-Butylbenzene etrachloroethene	ug/L	20 20	20.4	98 102	80-126 80-121	
oluene	ug/L				80-121 80-122	
	ug/L	20	19.7 10.2	98		
rans-1,2-Dichloroethene	ug/L	20	19.2	96	79-121	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 2nd & Kirby Remediation

Pace Project No.: 60175918

LABORATORY CONTROL SAMPLE: 1428122

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
trans-1,3-Dichloropropene	ug/L	20	19.9	99	80-127	
Trichloroethene	ug/L	20	20.3	101	80-120	
Trichlorofluoromethane	ug/L	20	21.4	107	67-120	
Vinyl chloride	ug/L	20	16.5	83	59-120	
Xylene (Total)	ug/L	60	61.4	102	80-121	
1,2-Dichloroethane-d4 (S)	%			104	80-120	
4-Bromofluorobenzene (S)	%			102	80-120	
Toluene-d8 (S)	%			98	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	2nd & Kirby Rer	nediation								
Pace Project No.:	60175918									
QC Batch:	WET/49760		Analysis N	/letho	d: S	SM 4500-S-2 D				
QC Batch Method:	SM 4500-S-2 I	D	Analysis D	Descri	ption: 4	500S2D Sulfide	e, Total			
Associated Lab San	nples: 601759	18001, 60175918002								
METHOD BLANK:	1429396		Matr	ix: W	ater					
Associated Lab San	nples: 601759	18001, 60175918002								
			Blank	l	Reporting					
Paran	neter	Units	Result		Limit	Analyzed	Qualit	fiers		
Sulfide, Total		mg/L	Ν	D	0.050	0 08/21/14 09	:11			
LABORATORY CON	NTROL SAMPLE	: 1429397	0.1			1.00	04 B			
Paran	neter	Units	Spike Conc.	LC Res	-	LCS % Rec	% Rec Limits	Qualif	iers	
Sulfide, Total		mg/L	.5		0.50	99	80-120			
MATRIX SPIKE SAN	MPLE:	1429398								
			601758310	02	Spike	MS	MS	%	Rec	
Paran	neter	Units	Result		Conc.	Result	% Rec	L	imits	Qualifiers
Sulfide, Total		mg/L		ND	.5	0.23	2	45	75-125	M1
SAMPLE DUPLICA	FE: 1429399									
			6017587000	1	Dup		Max			
Paran	neter	Units	Result		Result	RPD	RPD	C	Qualifiers	
Sulfide, Total		mg/L	N		NE			20		_

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2nd & K	irby Remediation										
Pace Project No.: 601759	18										
QC Batch: WETA	/30711	Analys	sis Method	: E	PA 300.0						
QC Batch Method: EPA 3	00.0		sis Descrip		00.0 IC Anio	ons					
Associated Lab Samples:	60175918001, 60175918002										
METHOD BLANK: 142977	9	Ν	Matrix: Wa	ter							
Associated Lab Samples:	60175918001										
Parameter	Units	Blank Resu		leporting Limit	Analyz	red	Qualifiers				
Chloride	mg/L		ND	1.(
METHOD BLANK: 143251	7	Ν	Matrix: Wa	ter							
Associated Lab Samples:	60175918002	Diam		a na antina a							
Parameter	Units	Blank Resul		leporting Limit	Analyz	ed	Qualifiers				
Chloride	mg/L	·	ND	1.(_			
LABORATORY CONTROL S	AMPLE: 1429780	Spike	LCS		LCS	% Rec					
Parameter	Units	Conc.	Resi		% Rec	% Rec		ualifiers			
Chloride	mg/L	5	;	4.8	95	90	-110		_		
LABORATORY CONTROL S	AMPLE: 1432518										
_		Spike	LCS		LCS	% Rec					
Parameter	Units	Conc.	Resu		% Rec	Limits	Qı	ualifiers	_		
Chloride	mg/L	5	5	4.8	97	90	-110				
MATRIX SPIKE & MATRIX S	PIKE DUPLICATE: 142978	81		1429782							
	60176275001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L 143	100	100	238	238	95	95	80-120	0	15	
MATRIX SPIKE SAMPLE:	1429783										
_		601756		Spike	MS	М		% Rec		.	
Parameter	Units	Res		Conc.	Result	% F		Limits		Qualif	iers
Chloride	mg/L		37.8	25	61	.3	94	80-	120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch: WET	A/30648	Analysis M	ethod:	EPA	A 353.2			
QC Batch Method: EPA	353.2	Analysis De	escription:	353	.2 Nitrate + N	litrite, Unpres.		
Associated Lab Samples:	60175918001, 60175918002							
METHOD BLANK: 14268	31	Matrix	x: Water					
Associated Lab Samples:	60175918001, 60175918002							
Devenenter	Linite	Blank	Reportir	ıg	Analysiaal	Qualifie		
Parameter	Units	Result	Limit		Analyzed	Qualifie	ers	
Nitrogen, Nitrate	mg/L	NE			08/16/14 11:0			
Nitrogen, Nitrite Nitrogen, NO2 plus NO3	mg/L mg/L	NE NE			08/16/14 11:0			
	iiig/L		,	0.10	00/10/14 11.0	51		
LABORATORY CONTROL	SAMPLE: 1426832							
		Spike	LCS		CS	% Rec		
Parameter	Units	Conc.	Result	%	Rec	Limits	Qualifiers	
Nitrogen, Nitrate	mg/L	1.6	1.7		108	85-115		
Nitrogen, Nitrite	mg/L	.4	0.40		100	90-110		
Nitrogen, NO2 plus NO3	mg/L	2	2.1		107	90-110		
MATRIX SPIKE SAMPLE:	1426833							
		6017584100)1 Spike		MS	MS	% Rec	
Parameter	Units	Result	Conc.		Result	% Rec	Limits	Qualifiers
Nitrogen, Nitrate	mg/L		ND 1	.6	1.7	107	85-115	
Nitrogen, Nitrite	mg/L		ND	.4	0.41	103		
Nitrogen, NO2 plus NO3	mg/L		ND	2	2.1	106	90-110	
MATRIX SPIKE SAMPLE:	1426834							
		6017591800)1 Spike		MS	MS	% Rec	
Parameter	Units	Result	Conc.		Result	% Rec	Limits	Qualifiers
Nitrogen, Nitrate	 mg/L	().91 1	.6	2.5	97	85-115	
Nitrogen, Nitrite	mg/L		ND	.4	0.40	101	90-110	
Nitrogen, NO2 plus NO3	mg/L	().91	2	2.9	98	90-110	
SAMPLE DUPLICATE: 14	126835							
		60175923001	Dup			Max		
Parameter	Units	Result	Result		RPD	RPD	Qualifiers	
Nitrogen, Nitrate	mg/L	NE)	ND			20	-
Nitrogen, Nitrite Nitrogen, NO2 plus NO3	mg/L	NE NE		ND			20	
	mg/L			ND			20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 2nd & Kirby Rem	nediation						
Pace Project No.: 60175918							
QC Batch: WETA/30679		Analysis M	ethod:	SM 5310C			
QC Batch Method: SM 5310C		Analysis D	escription:	5310C Total Org	ganic Carbon		
Associated Lab Samples: 6017591	8001, 60175918002						
METHOD BLANK: 1428480		Matri	x: Water				
Associated Lab Samples: 6017591	8001, 60175918002						
		Blank	Reportin	g			
Parameter	Units	Result	Limit	Analyzec	l Qualifi	ers	
Total Organic Carbon	mg/L	NE	0	1.0 08/20/14 14	:39		
_ABORATORY CONTROL SAMPLE:	1428481	A "					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Total Organic Carbon	mg/L	5	5.3	105	80-120		
MATRIX SPIKE SAMPLE:	1428482						
		6017575400	01 Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Total Organic Carbon	mg/L		1.1	5 6.3	105	5 80-120	
SAMPLE DUPLICATE: 1428483							
		60175407001	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2nd & Kirby Remediation

Pace Project No.: 60175918

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

PASI-M Pace Analytical Services - Minneapolis

BATCH QUALIFIERS

Batch: MSV/63706

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- pH Post-analysis pH measurement indicates insufficient VOA sample preservation.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:2nd & Kirby RemediationPace Project No.:60175918

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60175918001 60175918002	TMW-2 GMW-8S	RSK 175 RSK 175	AIR/21111 AIR/21111	-	
60175918001 60175918002	TMW-2 GMW-8S	EPA 200.7 EPA 200.7	MPRP/28603 MPRP/28603	EPA 200.7 EPA 200.7	ICP/21569 ICP/21569
60175918001 60175918002	TMW-2 GMW-8S	EPA 200.7 EPA 200.7	MPRP/28637 MPRP/28637	EPA 200.7 EPA 200.7	ICP/21595 ICP/21595
60175918001 60175918002	TMW-2 GMW-8S	EPA 5030B/8260 EPA 5030B/8260	MSV/63706 MSV/63706		
60175918001 60175918002	TMW-2 GMW-8S	SM 4500-S-2 D SM 4500-S-2 D	WET/49760 WET/49760		
60175918001 60175918002	TMW-2 GMW-8S	EPA 300.0 EPA 300.0	WETA/30711 WETA/30711		
60175918001 60175918002	TMW-2 GMW-8S	EPA 353.2 EPA 353.2	WETA/30648 WETA/30648		
60175918001 60175918002	TMW-2 GMW-8S	SM 5310C SM 5310C	WETA/30679 WETA/30679		

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately.

equired Client Information:	Section B Required Proje								tion C ce Infor	mation	n:										Page:	4		of	1
OMPANY: GST ENCLUEERSAG LLC		514	MEUL	mA			-	Atten	ntion: R	25A	4 N	CON	ers	>									17	774	02
ddress: 15012 W. 10675 STREST	Copy To: BQ	544	CONS	240				Com	pany Na	ame:	55 1	EUKS	USE	52.33	UR	uc	R	EGU	LATOR	RY AGE	NCY				
LENEVA KS 16215								Addr	0SS(N	PDES	Γ GI	ROUN	ID WAT	TER _	DRINKIN	IG WATER
LENEXA, KS 66217 noil To mellena gsinetwolking	Purchase Orde	r No.:						Paca Refer	Quote	-					-	_	1	- U	ST	T R	CRA		Г	OTHER	
none: 54-217-6413	Project Name:	20	+ 4-00	4 054	POTAT	(see)		Pace	Project	-	-			-	-			Site L	ocation						
equested Due Date/TAT:	Project Numbe	E VE	1020	01 254	ELOS			Mana Pace	ger. Profile #		-				-				STATE:	<u>k</u>	-5		1.0		
l.		1.5	9032					-	_		-	-	-	-	Re	auest	ed Ar			red (Y/I	N)	T			
Section D Matrix Co	dag	T	1			-	TT		1	-	-	-		=	T	TT	T				ŤΤ	1			
Required Client Information MATRIX / C	CODE 2	C=COMP)		COLL	ECTED	_				Pres	serva	tives	_	X/N			N							_	
Drinking Water Water	DW Sa	C=C	0.01/	CONTE	COMPC	PITE	TION												SCHWTO						
Waste Water Product	A MM B	SAB		POSITE ART	END/G		COLLECTION								Neg				WV.			(Ŷ	6	01759	18
SAMPLE ID Oil	SL 005	(G=GRAB	-				- Ö	SS							1		WN					Chlorine (Y/N)			
(A-Z, 0-9 / ,-) Wipe	1A/D						P AT	INE	-					Tes	20%		1		141			lorin			
Sample IDs MUST BE UNIQUE Tissue Other	TS O	TYPE					TEMP /	NTA	Ivec				_	Sis	305	32	E		32			5			
	NXX N							8	ese	4 5	Г	203		aly	520	11	1 3	23	100			dual			
	MATRIX	SAMPLE	DATE	TIME	DATE	TIME	SAMPLE	# OF CONTAINERS	Unpreserved	INC	고 오	Na ₂ S ₂ O ₃	Other	Analysis Test	(HLO230E	15K-175	035.	TOC	FULL GAULE			Residual	Pace	Project	lo./ Lab I.D.
TMW-2		56	(Changelow)	1203	DATE			n		-	+ 2			-		-	1	1			2/10				(\$132) (ALS
6mw-45		6		1303				11					-		H	+ +			- 3	une gr /		12	6(017)*	I	
		1	01.0				11		$\uparrow \uparrow$			11										+		•	
									T													+			
5													T	1											
3														1								\square			
			-											1											
					-																				
D																									
1																									
2	h	1																							
ADDITIONAL COMMENTS	RE	LINQI	JISHED BY	/ AFFILIATI	ION	DATE		1	TIME			ACCE	PTE	D BY	/ AFFI	LIATION	N	1	DATE	TIME	E		SAM	PLE CONDIT	IONS
	XIA	11	1.0			4 15	5	17	20		5	IMI/	1		1	k		8/	5/3	172	0	2.2	Y	N	Ý
	1 1	-04	~	-						1	-1	IN	044		- (*			- 11	1.4		-		1		1
	1	-	-					-	_	-	_	-			-	-	-	-							d
7	-						_	_	_	-	-	-						-	_	-					
Page																	_								
25				SAMPLE	R NAME A	ND SIGNA	TURE			_		_			_	_					-	ပ	u on N	dy ooler	Samples Intact (Y/N)
25 of ORI0 25	GINAL				PRINT Nar	ne of SAMF	PLER:									-						Temp in °C	Received or Ice (Y/N)	Custody Sealed Coole (Y/N)	oles (Y/N)
ப்					SIGNATU	RE of SAMP	LER:									E Signe						Ter	Rec	Seal	Saml

F-ALL-Q-020rev.07, 15-May-2007

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

November 11, 2014

BRIAN CONRAD GSI 15012 W. 106th Street Lenexa, KS 66219

RE: Project: 2ND & KIRBY REMEDIATION Pace Project No.: 60181402

Dear BRIAN CONRAD:

Enclosed are the analytical results for sample(s) received by the laboratory on October 29, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Actures m. Wilson

Heather Wilson heather.wilson@pacelabs.com Project Manager

Enclosures

cc: Josh Mellema, GSI Engineering, LLC

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

SAMPLE SUMMARY

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60181402001	TMW-1	Water	10/28/14 15:30	10/29/14 10:10
60181402002	TMW-2	Water	10/28/14 18:05	10/29/14 10:10
60181402003	GMW-8S	Water	10/28/14 17:45	10/29/14 10:10
60181402004	MW-27S	Water	10/28/14 15:05	10/29/14 10:10
60181402005	GMW-6S	Water	10/28/14 16:30	10/29/14 10:10
60181402006	MW-15	Water	10/28/14 18:25	10/29/14 10:10
60181402007	MW-21	Water	10/28/14 17:25	10/29/14 10:10
60181402008	GMW-5S	Water	10/28/14 16:10	10/29/14 10:10
60181402009	GMW-7S	Water	10/28/14 17:05	10/29/14 10:10
60181402010	GMW-9S	Water	10/28/14 18:50	10/29/14 10:10
60181402011	GMW-10S	Water	10/28/14 11:30	10/29/14 10:10
60181402012	GMW-1	Water	10/28/14 13:20	10/29/14 10:10
60181402013	GMW-2	Water	10/28/14 13:40	10/29/14 10:10
60181402014	GMW-4	Water	10/28/14 12:55	10/29/14 10:10
60181402015	GMW-6I	Water	10/28/14 16:50	10/29/14 10:10
60181402016	GMW-10S	Water	10/28/14 12:05	10/29/14 10:10
60181402017	MW-28S	Water	10/28/14 12:25	10/29/14 10:10
60181402018	DUP-1	Water	10/28/14 18:50	10/29/14 10:10
60181402019	TRIP BLANK	Water		10/29/14 10:10

SAMPLE ANALYTE COUNT

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60181402001	TMW-1	RSK 175	 DL1	3	PASI-M
		EPA 200.7	NDJ	2	PASI-K
		EPA 200.7	NDJ	2	PASI-K
		EPA 5030B/8260	PRG	69	PASI-K
		SM 2320B	CRT	1	PASI-K
		SM 3500-Fe B#4	AJM	1	PASI-K
		SM 4500-S-2 D	JMC1	1	PASI-K
		EPA 300.0	OL	2	PASI-K
		EPA 353.2	JMC1	3	PASI-K
		SM 5310C	CRT	1	PASI-K
60181402002	TMW-2	RSK 175	DL1	3	PASI-M
		EPA 200.7	NDJ	2	PASI-K
		EPA 200.7	NDJ	2	PASI-K
		EPA 5030B/8260	PRG	69	PASI-K
		SM 2320B	CRT	1	PASI-K
		SM 3500-Fe B#4	AJM	1	PASI-K
		SM 4500-S-2 D	JMC1	1	PASI-K
		EPA 300.0	OL	2	PASI-K
		EPA 353.2	JMC1	3	PASI-K
		SM 5310C	CRT	1	PASI-K
60181402003	GMW-8S	RSK 175	DL1	3	PASI-M
		EPA 200.7	NDJ	2	PASI-K
		EPA 200.7	NDJ	2	PASI-K
		EPA 5030B/8260	PRG	69	PASI-K
		SM 2320B	CRT	1	PASI-K
		SM 3500-Fe B#4	AJM	1	PASI-K
		SM 4500-S-2 D	JMC1	1	PASI-K
		EPA 300.0	OL	2	PASI-K
		EPA 353.2	JMC1	3	PASI-K
		SM 5310C	JMC1	1	PASI-K
0181402004	MW-27S	RSK 175	DL1	3	PASI-M
		EPA 200.7	NDJ	2	PASI-K
		EPA 200.7	NDJ	2	PASI-K
		EPA 5030B/8260	PRG	69	PASI-K
		SM 2320B	CRT	1	PASI-K
		SM 3500-Fe B#4	AJM	1	PASI-K
		SM 4500-S-2 D	JMC1	1	PASI-K

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 300.0	OL	2	PASI-K
		EPA 353.2	JMC1	3	PASI-K
		SM 5310C	JMC1	1	PASI-K
60181402005	GMW-6S	RSK 175	DL1	3	PASI-M
		EPA 200.7	NDJ	2	PASI-K
		EPA 200.7	NDJ	2	PASI-K
		EPA 5030B/8260	PRG	69	PASI-K
		SM 2320B	CRT	1	PASI-K
		SM 3500-Fe B#4	AJM	1	PASI-K
		SM 4500-S-2 D	JMC1	1	PASI-K
		EPA 300.0	OL	2	PASI-K
		EPA 353.2	JMC1	3	PASI-K
		SM 5310C	JMC1	1	PASI-K
0181402006	MW-15	RSK 175	DL1	3	PASI-M
		EPA 200.7	NDJ	2	PASI-K
		EPA 200.7	NDJ	2	PASI-K
		EPA 5030B/8260	PRG	69	PASI-K
		SM 2320B	CRT	1	PASI-K
		SM 3500-Fe B#4	AJM	1	PASI-K
		SM 4500-S-2 D	JMC1	1	PASI-K
		EPA 300.0	OL	2	PASI-K
		EPA 353.2	JMC1	3	PASI-K
		SM 5310C	JMC1	1	PASI-K
0181402007	MW-21	RSK 175	DL1	3	PASI-M
		EPA 200.7	NDJ	2	PASI-K
		EPA 200.7	NDJ	2	PASI-K
		EPA 5030B/8260	PRG	69	PASI-K
		SM 2320B	CRT	1	PASI-K
		SM 3500-Fe B#4	AJM	1	PASI-K
		SM 4500-S-2 D	JMC1	1	PASI-K
		EPA 300.0	OL	2	PASI-K
		EPA 353.2	JMC1	3	PASI-K
		SM 5310C	JMC1	1	PASI-K
0181402008	GMW-5S	EPA 5030B/8260	PRG	69	PASI-K
0181402009	GMW-7S	EPA 5030B/8260	PRG	69	PASI-K
0181402010	GMW-9S	EPA 5030B/8260	PRG	69	PASI-K
60181402011	GMW-10S	EPA 5030B/8260	PRG	69	PASI-K

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project:2ND & KIRBY REMEDIATIONPace Project No.:60181402

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60181402012	GMW-1	EPA 5030B/8260	PRG	69	PASI-K
60181402013	GMW-2	EPA 5030B/8260	PRG	69	PASI-K
60181402014	GMW-4	EPA 5030B/8260	PRG	69	PASI-K
60181402015	GMW-6I	EPA 5030B/8260	PRG	69	PASI-K
60181402016	GMW-10S	EPA 5030B/8260	PRG	69	PASI-K
60181402017	MW-28S	EPA 5030B/8260	PRG	69	PASI-K
60181402018	DUP-1	EPA 5030B/8260	PRG	69	PASI-K
60181402019	TRIP BLANK	EPA 5030B/8260	PRG	69	PASI-K

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: TMW-1	Lab ID: 60181402	2001 Collected: 10/28/*	14 15:30	Received: 10	/29/14 10:10 N	Matrix: Water		
Parameters	Results U	nits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
RSK 175 AIR Headspace	Analytical Method: R	SK 175						
Ethane	ND ug/L	6.2	1		11/02/14 14:00	74-84-0		
Ethene	ND ug/L	6.2	1		11/02/14 14:00	74-85-1		
Methane	8.3 ug/L	6.6	1		11/02/14 14:00	74-82-8		
200.7 Metals, Total	Analytical Method: E	PA 200.7 Preparation Me	thod: EP	A 200.7				
Iron	7600 ug/L	50.0	1	10/30/14 14:30	11/05/14 14:47	7439-89-6		
Manganese	1150 ug/L	5.0	1	10/30/14 14:30	11/05/14 14:47	7439-96-5		
200.7 Metals, Dissolved	Analytical Method: E	PA 200.7 Preparation Me	thod: EP	A 200.7				
Iron, Dissolved	7460 ug/L	50.0	1	10/29/14 15:00	11/05/14 14:13	7439-89-6		
Manganese, Dissolved	1130 ug/L	5.0	1	10/29/14 15:00	11/05/14 14:13	7439-96-5		
8260 MSV	Analytical Method: E	PA 5030B/8260						
Acetone	ND ug/L	10.0	1		10/30/14 14:41	67-64-1		
Benzene	ND ug/L	1.0	1		10/30/14 14:41	71-43-2		
Bromobenzene	ND ug/L	1.0	1		10/30/14 14:41	108-86-1		
Bromochloromethane	ND ug/L	1.0	1		10/30/14 14:41	74-97-5		
Bromodichloromethane	ND ug/L	1.0	1		10/30/14 14:41	75-27-4		
Bromoform	ND ug/L	1.0	1		10/30/14 14:41	75-25-2		
Bromomethane	ND ug/L	5.0	1		10/30/14 14:41	74-83-9		
2-Butanone (MEK)	ND ug/L	10.0	1		10/30/14 14:41	78-93-3		
n-Butylbenzene	ND ug/L	1.0	1		10/30/14 14:41	104-51-8		
sec-Butylbenzene	ND ug/L	1.0	1		10/30/14 14:41	135-98-8		
tert-Butylbenzene	ND ug/L	1.0	1		10/30/14 14:41	98-06-6		
Carbon disulfide	ND ug/L	5.0	1		10/30/14 14:41	75-15-0		
Carbon tetrachloride	ND ug/L	1.0	1		10/30/14 14:41	56-23-5	L3	
Chlorobenzene	ND ug/L	1.0	1		10/30/14 14:41	108-90-7		
Chloroethane	ND ug/L	1.0	1		10/30/14 14:41	75-00-3		
Chloroform	ND ug/L	1.0	1		10/30/14 14:41	67-66-3		
Chloromethane	ND ug/L	1.0	1		10/30/14 14:41	74-87-3		
2-Chlorotoluene	ND ug/L	1.0	1		10/30/14 14:41	95-49-8		
4-Chlorotoluene	ND ug/L	1.0	1		10/30/14 14:41	106-43-4		
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		10/30/14 14:41	96-12-8		
Dibromochloromethane	ND ug/L	1.0	1		10/30/14 14:41			
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		10/30/14 14:41	106-93-4		
Dibromomethane	ND ug/L	1.0	1		10/30/14 14:41	74-95-3		
1,2-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 14:41	95-50-1		
1,3-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 14:41	541-73-1		
1,4-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 14:41			
Dichlorodifluoromethane	ND ug/L	1.0	1		10/30/14 14:41	75-71-8		
1,1-Dichloroethane	ND ug/L	1.0	1		10/30/14 14:41	75-34-3		
1,2-Dichloroethane	ND ug/L	1.0	1		10/30/14 14:41			
1,2-Dichloroethene (Total)	3.0 ug/L	1.0	1		10/30/14 14:41			
1,1-Dichloroethene	ND ug/L	1.0	1		10/30/14 14:41			
cis-1,2-Dichloroethene	3.0 ug/L	1.0	1		10/30/14 14:41	156-59-2		
trans-1,2-Dichloroethene	ND ug/L	1.0	1		10/30/14 14:41			

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: TMW-1 Lab ID: 60181402001 Received: 10/29/14 10:10 Collected: 10/28/14 15:30 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260 MSV Analytical Method: EPA 5030B/8260 1,2-Dichloropropane ND ug/L 1.0 1 10/30/14 14:41 78-87-5 10/30/14 14:41 142-28-9 ND ug/L 1.0 1,3-Dichloropropane 1 ND ug/L 2,2-Dichloropropane 1.0 10/30/14 14:41 594-20-7 1 ND ug/L 1,1-Dichloropropene 10/30/14 14:41 563-58-6 1.0 1 10/30/14 14:41 10061-01-5 ND ug/L cis-1,3-Dichloropropene 1.0 1 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/30/14 14:41 10061-02-6 Ethylbenzene ND ug/L 1.0 1 10/30/14 14:41 100-41-4 Hexachloro-1,3-butadiene ND ug/L 1.0 10/30/14 14:41 87-68-3 1 2-Hexanone ND ug/L 10.0 1 10/30/14 14:41 591-78-6 Isopropylbenzene (Cumene) ND ug/L 1.0 1 10/30/14 14:41 98-82-8 p-lsopropyltoluene ND ug/L 1.0 10/30/14 14:41 99-87-6 1 Methylene chloride ND ug/L 1.0 10/30/14 14:41 75-09-2 1 4-Methyl-2-pentanone (MIBK) ND ug/L 10.0 10/30/14 14:41 108-10-1 1 Methyl-tert-butyl ether ND ug/L 10/30/14 14:41 1634-04-4 1.0 1 10.0 Naphthalene ND ug/L 10/30/14 14:41 91-20-3 1 ND ug/L n-Propylbenzene 1.0 1 10/30/14 14:41 103-65-1 Styrene ND ug/L 1.0 1 10/30/14 14:41 100-42-5 1,1,1,2-Tetrachloroethane ND ug/L 1.0 1 10/30/14 14:41 630-20-6 1,1,2,2-Tetrachloroethane ND ug/L 1.0 10/30/14 14:41 79-34-5 1 Tetrachloroethene ND ug/L 1.0 1 10/30/14 14:41 127-18-4 Toluene ND ug/L 1.0 1 10/30/14 14:41 108-88-3 1,2,3-Trichlorobenzene ND ug/L 1.0 1 10/30/14 14:41 87-61-6 1.2.4-Trichlorobenzene ND ug/L 1.0 10/30/14 14:41 120-82-1 1 1,1,1-Trichloroethane ND ug/L 10 10/30/14 14:41 71-55-6 1 1,1,2-Trichloroethane ND ug/L 1.0 10/30/14 14:41 79-00-5 1 Trichloroethene 21.3 ug/L 1.0 1 10/30/14 14:41 79-01-6 10/30/14 14:41 75-69-4 Trichlorofluoromethane ND ug/L 1.0 1 1,2,3-Trichloropropane ND ug/L 2.5 1 10/30/14 14:41 96-18-4 1,2,4-Trimethylbenzene ND ug/L 1.0 1 10/30/14 14:41 95-63-6 1,3,5-Trimethylbenzene ND ug/L 1.0 10/30/14 14:41 108-67-8 1 Vinyl chloride ND ug/L 1.0 1 10/30/14 14:41 75-01-4 ND ug/L 10/30/14 14:41 1330-20-7 Xylene (Total) 3.0 1 Surrogates 80-120 4-Bromofluorobenzene (S) 100 % 1 10/30/14 14:41 460-00-4 1,2-Dichloroethane-d4 (S) 99 % 80-120 1 10/30/14 14:41 17060-07-0 Toluene-d8 (S) 96 % 80-120 1 10/30/14 14:41 2037-26-5 Preservation pH 1.0 0.10 10/30/14 14:41 1 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 469 mg/L 20.0 1 11/03/14 10:49 Analytical Method: SM 3500-Fe B#4 Iron, Ferrous Iron, Ferrous ND mg/L 0.20 1 10/31/14 14:53 H6 4500S2D Sulfide, Total Analytical Method: SM 4500-S-2 D Sulfide, Total 0.059 mg/L 0.050 1 11/04/14 12:36 18496-25-8

REPORT OF LABORATORY ANALYSIS

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: TMW-1	Lab ID: 60181402001	Collected: 10/28/14 15:	30 Received: 10/29/14 10:10	Matrix: Water
Parameters	Results Units	Report Limit DF	Prepared Analyzed	CAS No. Qual
300.0 IC Anions 28 Days	Analytical Method: EPA 300.	0		
Chloride	187 mg/L	10.0 10	11/09/14 18:26	6 16887-00-6
Sulfate	100 mg/L	10.0 10	11/09/14 18:26	6 14808-79-8
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.	2		
Nitrogen, Nitrate	ND mg/L	0.10 1	10/30/14 07:55	5
Nitrogen, Nitrite	ND mg/L	0.10 1	10/30/14 07:55	5
Nitrogen, NO2 plus NO3	ND mg/L	0.10 1	10/30/14 07:55	5
5310C TOC	Analytical Method: SM 5310	C		
Total Organic Carbon	4.1 mg/L	1.0 1	10/31/14 17:05	5 7440-44-0

Project: 2ND & KIRBY REMEDIATION

Pace Project No .: 60181402

Sample: TMW-2	Lab ID: 601814	02002	Collected: 10/28/1	14 18:05	Received: 10)/29/14 10:10 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method	: RSK 17	5					
Ethane	ND ug/L		6.2	1		11/02/14 14:11	74-84-0	
Ethene	ND ug/L		6.2	1		11/02/14 14:11	74-85-1	
Methane	19.8 ug/L		6.6	1		11/02/14 14:11	74-82-8	
200.7 Metals, Total	Analytical Method	: EPA 200	0.7 Preparation Met	thod: EF	PA 200.7			
Iron	4200 ug/L		50.0	1	10/30/14 14:30	11/05/14 14:49	7439-89-6	
Manganese	2630 ug/L		5.0	1	10/30/14 14:30	11/05/14 14:49	7439-96-5	
200.7 Metals, Dissolved	Analytical Method	: EPA 200	0.7 Preparation Met	thod: EF	PA 200.7			
Iron, Dissolved	4350 ug/L		50.0	1	10/29/14 15:00	11/05/14 14:20	7439-89-6	D9
Manganese, Dissolved	2730 ug/L		5.0	1	10/29/14 15:00	11/05/14 14:20	7439-96-5	D9
8260 MSV	Analytical Method	: EPA 503	30B/8260					
Acetone	ND ug/L		10.0	1		10/30/14 14:56	67-64-1	
Benzene	ND ug/L		1.0	1		10/30/14 14:56	71-43-2	
Bromobenzene	ND ug/L		1.0	1		10/30/14 14:56	108-86-1	
Bromochloromethane	ND ug/L		1.0	1		10/30/14 14:56	74-97-5	
Bromodichloromethane	ND ug/L		1.0	1		10/30/14 14:56	75-27-4	
Bromoform	ND ug/L		1.0	1		10/30/14 14:56	75-25-2	
Bromomethane	ND ug/L		5.0	1		10/30/14 14:56	74-83-9	
2-Butanone (MEK)	ND ug/L		10.0	1		10/30/14 14:56	78-93-3	
n-Butylbenzene	ND ug/L		1.0	1		10/30/14 14:56	104-51-8	
sec-Butylbenzene	ND ug/L		1.0	1		10/30/14 14:56	135-98-8	
tert-Butylbenzene	ND ug/L		1.0	1		10/30/14 14:56	98-06-6	
Carbon disulfide	ND ug/L		5.0	1		10/30/14 14:56	75-15-0	
Carbon tetrachloride	ND ug/L		1.0	1		10/30/14 14:56	56-23-5	L3
Chlorobenzene	ND ug/L		1.0	1		10/30/14 14:56	108-90-7	
Chloroethane	ND ug/L		1.0	1		10/30/14 14:56	75-00-3	
Chloroform	ND ug/L		1.0	1		10/30/14 14:56	67-66-3	
Chloromethane	ND ug/L		1.0	1		10/30/14 14:56	74-87-3	
2-Chlorotoluene	ND ug/L		1.0	1		10/30/14 14:56	95-49-8	
4-Chlorotoluene	ND ug/L		1.0	1		10/30/14 14:56	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L		2.5	1		10/30/14 14:56	96-12-8	
Dibromochloromethane	ND ug/L		1.0	1		10/30/14 14:56	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L		1.0	1		10/30/14 14:56	106-93-4	
Dibromomethane	ND ug/L		1.0	1		10/30/14 14:56	74-95-3	
1,2-Dichlorobenzene	ND ug/L		1.0	1		10/30/14 14:56		
1,3-Dichlorobenzene	ND ug/L		1.0	1		10/30/14 14:56		
1,4-Dichlorobenzene	ND ug/L		1.0	1		10/30/14 14:56		
Dichlorodifluoromethane	ND ug/L		1.0	1		10/30/14 14:56		
1,1-Dichloroethane	1.1 ug/L		1.0	1		10/30/14 14:56		
1,2-Dichloroethane	ND ug/L		1.0	1		10/30/14 14:56		
1,2-Dichloroethene (Total)	60.1 ug/L		1.0	1		10/30/14 14:56		
1,1-Dichloroethene	ND ug/L		1.0	1		10/30/14 14:56		
cis-1,2-Dichloroethene	59.7 ug/L		1.0	1		10/30/14 14:56		
trans-1,2-Dichloroethene	ND ug/L		1.0	1		10/30/14 14:56	156-60-5	

Project: 2ND & KIRBY REMEDIATION

Pace Project No.:

60181402

Sample: TMW-2	Lab ID: 60181402002	Collected: 10/28/14	18:05	Received: 10/29/14 10:10	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qua
8260 MSV	Analytical Method: EPA 50)30B/8260				
1,2-Dichloropropane	ND ug/L	1.0	1	10/30/14 14	:56 78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1	10/30/14 14	:56 142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1	10/30/14 14	:56 594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1	10/30/14 14	:56 563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1	10/30/14 14	:56 10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1	10/30/14 14	:56 10061-02-6	
Ethylbenzene	ND ug/L	1.0	1	10/30/14 14	:56 100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1	10/30/14 14	:56 87-68-3	
2-Hexanone	ND ug/L	10.0	1	10/30/14 14	:56 591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1	10/30/14 14	:56 98-82-8	
p-lsopropyltoluene	ND ug/L	1.0	1		:56 99-87-6	
Methylene chloride	ND ug/L	1.0	1		:56 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		:56 108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		:56 1634-04-4	
Naphthalene	ND ug/L	10.0	1		:56 91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		:56 103-65-1	
Styrene	ND ug/L	1.0	1		:56 100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		:56 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		:56 79-34-5	
Tetrachloroethene	-	1.0	1		:56 127-18-4	
	7.7 ug/L	1.0				
Toluene	ND ug/L		1 1		:56 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0			:56 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		:56 120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		:56 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		:56 79-00-5	
Trichloroethene	67.2 ug/L	1.0	1		:56 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		:56 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		:56 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		:56 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		:56 108-67-8	
Vinyl chloride	ND ug/L	1.0	1		:56 75-01-4	
Xylene (Total)	ND ug/L	3.0	1	10/30/14 14	:56 1330-20-7	
Surrogates	05.04	00,400			50 400 00 4	
4-Bromofluorobenzene (S)	95 %	80-120	1		:56 460-00-4	
1,2-Dichloroethane-d4 (S)	103 %	80-120	1		:56 17060-07-0	
Toluene-d8 (S)	101 %	80-120	1		:56 2037-26-5	
Preservation pH	1.0	0.10	1	10/30/14 14	:56	
2320B Alkalinity	Analytical Method: SM 232	20B				
Alkalinity, Total as CaCO3	405 mg/L	20.0	1	11/03/14 11	:01	
Iron, Ferrous	Analytical Method: SM 350	00-Fe B#4				
Iron, Ferrous	ND mg/L	0.20	1	10/31/14 14	:53	H6
4500S2D Sulfide, Total	Analytical Method: SM 450	00-S-2 D				
Sulfide, Total	ND mg/L	0.050	1	11/04/14 12	:36 18496-25-8	

REPORT OF LABORATORY ANALYSIS

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: TMW-2	Lab ID: 60181402002 C	ollected: 10/28/14	18:05	Received: 1	0/29/14 10:10 N	Aatrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0						
Chloride	157 mg/L	20.0	20		11/10/14 07:29	16887-00-6	
Sulfate	136 mg/L	20.0	20		11/10/14 07:29	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.2						
Nitrogen, Nitrate	ND mg/L	0.10	1		10/30/14 08:00		M1
Nitrogen, Nitrite	ND mg/L	0.10	1		10/30/14 08:00		
Nitrogen, NO2 plus NO3	ND mg/L	0.10	1		10/30/14 08:00		M1
5310C TOC	Analytical Method: SM 5310C						
Total Organic Carbon	2.1 mg/L	1.0	1		10/31/14 17:18	7440-44-0	

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-8S	Lab ID: 601814020	003 Collected: 10/28/	14 17:45	Received: 10)/29/14 10:10 N	Aatrix: Water	
Parameters	Results Ur	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method: R	SK 175					
Ethane	ND ug/L	6.2	1		11/02/14 14:22	74-84-0	
Ethene	ND ug/L	6.2	1		11/02/14 14:22	74-85-1	
Methane	16.7 ug/L	6.6	1		11/02/14 14:22	74-82-8	
200.7 Metals, Total	Analytical Method: EF	PA 200.7 Preparation Me	thod: EP	A 200.7			
Iron	ND ug/L	50.0	1	10/30/14 14:30	11/05/14 14:51	7439-89-6	
Manganese	249 ug/L	5.0	1	10/30/14 14:30	11/05/14 14:51	7439-96-5	
200.7 Metals, Dissolved	Analytical Method: EF	PA 200.7 Preparation Me	thod: EP	A 200.7			
Iron, Dissolved	ND ug/L	50.0	1	10/29/14 15:00	11/05/14 14:22	7439-89-6	
Manganese, Dissolved	249 ug/L	5.0	1	10/29/14 15:00	11/05/14 14:22	7439-96-5	
8260 MSV	Analytical Method: EF	PA 5030B/8260					
Acetone	ND ug/L	20.0	2		10/30/14 15:40	67-64-1	
Benzene	ND ug/L	2.0	2		10/30/14 15:40	71-43-2	
Bromobenzene	ND ug/L	2.0	2		10/30/14 15:40	108-86-1	
Bromochloromethane	ND ug/L	2.0	2		10/30/14 15:40	74-97-5	
Bromodichloromethane	ND ug/L	2.0	2		10/30/14 15:40	75-27-4	
Bromoform	ND ug/L	2.0	2		10/30/14 15:40	75-25-2	
Bromomethane	ND ug/L	10.0	2		10/30/14 15:40	74-83-9	
2-Butanone (MEK)	ND ug/L	20.0	2		10/30/14 15:40	78-93-3	
n-Butylbenzene	ND ug/L	2.0	2		10/30/14 15:40	104-51-8	
sec-Butylbenzene	ND ug/L	2.0	2		10/30/14 15:40	135-98-8	
tert-Butylbenzene	ND ug/L	2.0	2		10/30/14 15:40	98-06-6	
Carbon disulfide	ND ug/L	10.0	2		10/30/14 15:40	75-15-0	
Carbon tetrachloride	ND ug/L	2.0	2		10/30/14 15:40	56-23-5	L3
Chlorobenzene	ND ug/L	2.0	2		10/30/14 15:40	108-90-7	
Chloroethane	ND ug/L	2.0	2		10/30/14 15:40	75-00-3	
Chloroform	ND ug/L	2.0	2		10/30/14 15:40	67-66-3	
Chloromethane	ND ug/L	2.0	2		10/30/14 15:40	74-87-3	
2-Chlorotoluene	ND ug/L	2.0	2		10/30/14 15:40	95-49-8	
4-Chlorotoluene	ND ug/L	2.0	2		10/30/14 15:40	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	5.0	2		10/30/14 15:40	96-12-8	
Dibromochloromethane	ND ug/L	2.0	2		10/30/14 15:40	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	2.0	2		10/30/14 15:40	106-93-4	
Dibromomethane	ND ug/L	2.0	2		10/30/14 15:40	74-95-3	
1,2-Dichlorobenzene	ND ug/L	2.0	2		10/30/14 15:40	95-50-1	
1,3-Dichlorobenzene	ND ug/L	2.0	2		10/30/14 15:40	541-73-1	
1,4-Dichlorobenzene	ND ug/L	2.0	2		10/30/14 15:40	106-46-7	
Dichlorodifluoromethane	ND ug/L	2.0	2		10/30/14 15:40	75-71-8	
1,1-Dichloroethane	4.6 ug/L	2.0	2		10/30/14 15:40	75-34-3	
1,2-Dichloroethane	ND ug/L	2.0	2		10/30/14 15:40	107-06-2	
1,2-Dichloroethene (Total)	100 ug/L	2.0	2		10/30/14 15:40	540-59-0	
1,1-Dichloroethene	ND ug/L	2.0	2		10/30/14 15:40	75-35-4	
cis-1,2-Dichloroethene	99.8 ug/L	2.0	2		10/30/14 15:40	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	2.0	2		10/30/14 15:40	156-60-5	

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-8S	Lab ID: 6018140200	03 Collected: 10/28/14	4 17:45	Received: 10	D/29/14 10:10 M	Matrix: Water	
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
1,2-Dichloropropane	ND ug/L	2.0	2		10/30/14 15:40	78-87-5	
1,3-Dichloropropane	ND ug/L	2.0	2		10/30/14 15:40	142-28-9	
2,2-Dichloropropane	ND ug/L	2.0	2		10/30/14 15:40	594-20-7	
1,1-Dichloropropene	ND ug/L	2.0	2		10/30/14 15:40	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	2.0	2		10/30/14 15:40	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	2.0	2		10/30/14 15:40	10061-02-6	
Ethylbenzene	ND ug/L	2.0	2		10/30/14 15:40	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	2.0	2		10/30/14 15:40	87-68-3	
2-Hexanone	ND ug/L	20.0	2		10/30/14 15:40	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	2.0	2		10/30/14 15:40	98-82-8	
p-Isopropyltoluene	ND ug/L	2.0	2		10/30/14 15:40	99-87-6	
Methylene chloride	ND ug/L	2.0	2		10/30/14 15:40	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	20.0	2		10/30/14 15:40	108-10-1	
Methyl-tert-butyl ether	ND ug/L	2.0	2		10/30/14 15:40	1634-04-4	
Naphthalene	ND ug/L	20.0	2		10/30/14 15:40	91-20-3	
n-Propylbenzene	ND ug/L	2.0	2		10/30/14 15:40	103-65-1	
Styrene	ND ug/L	2.0	2		10/30/14 15:40	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	2.0	2		10/30/14 15:40	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	2.0	2		10/30/14 15:40	79-34-5	
Tetrachloroethene	8.1 ug/L	2.0	2		10/30/14 15:40		
Toluene	ND ug/L	2.0	2		10/30/14 15:40		
1,2,3-Trichlorobenzene	ND ug/L	2.0	2		10/30/14 15:40		
1,2,4-Trichlorobenzene	ND ug/L	2.0	2		10/30/14 15:40		
1,1,1-Trichloroethane	ND ug/L	2.0	2		10/30/14 15:40		
1,1,2-Trichloroethane	ND ug/L	2.0	2		10/30/14 15:40		
Trichloroethene	150 ug/L	2.0	2		10/30/14 15:40		
Trichlorofluoromethane	ND ug/L	2.0	2		10/30/14 15:40		
1,2,3-Trichloropropane	ND ug/L	5.0	2		10/30/14 15:40		
1,2,4-Trimethylbenzene	ND ug/L	2.0	2		10/30/14 15:40		
1,3,5-Trimethylbenzene	ND ug/L	2.0	2		10/30/14 15:40		
Vinyl chloride	ND ug/L	2.0	2		10/30/14 15:40		
Xylene (Total)	ND ug/L	6.0	2		10/30/14 15:40		
Surrogates		0.0	2		10/00/14 10:40	1000 20 1	
4-Bromofluorobenzene (S)	102 %	80-120	2		10/30/14 15:40	460-00-4	
1,2-Dichloroethane-d4 (S)	105 %	80-120	2		10/30/14 15:40		
Toluene-d8 (S)	95 %	80-120	2		10/30/14 15:40		
Preservation pH	1.0	0.10	2		10/30/14 15:40		
2320B Alkalinity	Analytical Method: SM		-				
Alkalinity, Total as CaCO3	311 mg/L	20.0	1		11/03/14 11:07		
	5				1700/14 11.07		
Iron, Ferrous	Analytical Method: SM		4		40/04/4444		
Iron, Ferrous	ND mg/L	0.20	1		10/31/14 14:53		H6
4500S2D Sulfide, Total	Analytical Method: SM						
Sulfide, Total	ND mg/L	0.050	1		11/04/14 12:38	18496-25-8	

REPORT OF LABORATORY ANALYSIS

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-8S	Lab ID: 60181402003	Collected: 10/28/14	7:45	Received: 10/29/	14 10:10 N	Aatrix: Water	
Parameters	Results Units	Report Limit)F	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Method: EPA 300.	0					
Chloride	156 mg/L	20.0	20	11/	10/14 07:43	16887-00-6	
Sulfate	244 mg/L	20.0	20	11/	10/14 07:43	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.	2					
Nitrogen, Nitrate	ND mg/L	0.10	1	10/	/30/14 07:57		
Nitrogen, Nitrite	ND mg/L	0.10	1	10/	/30/14 07:57		
Nitrogen, NO2 plus NO3	ND mg/L	0.10	1	10/	/30/14 07:57		
5310C TOC	Analytical Method: SM 5310	с					
Total Organic Carbon	1.5 mg/L	1.0	1	11/	06/14 11:41	7440-44-0	

Project: 2ND & KIRBY REMEDIATION

Pace Project No.:

: 60181402

Sample: MW-27S	Lab ID: 601814)2004 C	ollected: 10/28/1	4 15:05	Received: 10)/29/14 10:10	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method:	RSK 175						
Ethane	ND ug/L		6.2	1		11/02/14 14:34	74-84-0	
Ethene	ND ug/L		6.2	1		11/02/14 14:34	74-85-1	
Methane	ND ug/L		6.6	1		11/02/14 14:34	74-82-8	
200.7 Metals, Total	Analytical Method:	EPA 200.7	Preparation Met	thod: EP	A 200.7			
Iron	ND ug/L		50.0	1	10/30/14 14:30	11/05/14 15:02	7439-89-6	
Manganese	553 ug/L		5.0	1	10/30/14 14:30	11/05/14 15:02	7439-96-5	
200.7 Metals, Dissolved	Analytical Method:	EPA 200.7	Preparation Met	thod: EP	A 200.7			
Iron, Dissolved	ND ug/L		50.0	1	10/29/14 15:00	11/05/14 14:25	7439-89-6	
Manganese, Dissolved	545 ug/L		5.0	1	10/29/14 15:00	11/05/14 14:25	7439-96-5	
8260 MSV	Analytical Method:	EPA 5030	B/8260					
Acetone	ND ug/L		10.0	1		10/30/14 15:11	67-64-1	
Benzene	ND ug/L		1.0	1		10/30/14 15:11	71-43-2	
Bromobenzene	ND ug/L		1.0	1		10/30/14 15:11	108-86-1	
Bromochloromethane	ND ug/L		1.0	1		10/30/14 15:11	74-97-5	
Bromodichloromethane	ND ug/L		1.0	1		10/30/14 15:11	75-27-4	
Bromoform	ND ug/L		1.0	1		10/30/14 15:11	75-25-2	
Bromomethane	ND ug/L		5.0	1		10/30/14 15:11	74-83-9	
2-Butanone (MEK)	ND ug/L		10.0	1		10/30/14 15:11	78-93-3	
n-Butylbenzene	ND ug/L		1.0	1		10/30/14 15:11	104-51-8	
sec-Butylbenzene	ND ug/L		1.0	1		10/30/14 15:11	135-98-8	
tert-Butylbenzene	ND ug/L		1.0	1		10/30/14 15:11	98-06-6	
Carbon disulfide	ND ug/L		5.0	1		10/30/14 15:11	75-15-0	
Carbon tetrachloride	ND ug/L		1.0	1		10/30/14 15:11	56-23-5	L3
Chlorobenzene	ND ug/L		1.0	1		10/30/14 15:11	108-90-7	
Chloroethane	ND ug/L		1.0	1		10/30/14 15:11	75-00-3	
Chloroform	ND ug/L		1.0	1		10/30/14 15:11	67-66-3	
Chloromethane	ND ug/L		1.0	1		10/30/14 15:11	74-87-3	
2-Chlorotoluene	ND ug/L		1.0	1		10/30/14 15:11	95-49-8	
4-Chlorotoluene	ND ug/L		1.0	1		10/30/14 15:11	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L		2.5	1		10/30/14 15:11	96-12-8	
Dibromochloromethane	ND ug/L		1.0	1		10/30/14 15:11	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L		1.0	1		10/30/14 15:11	106-93-4	
Dibromomethane	ND ug/L		1.0	1		10/30/14 15:11	74-95-3	
1,2-Dichlorobenzene	ND ug/L		1.0	1		10/30/14 15:11	95-50-1	
1,3-Dichlorobenzene	ND ug/L		1.0	1		10/30/14 15:11	541-73-1	
1,4-Dichlorobenzene	ND ug/L		1.0	1		10/30/14 15:11	106-46-7	
Dichlorodifluoromethane	ND ug/L		1.0	1		10/30/14 15:11	75-71-8	
1,1-Dichloroethane	ND ug/L		1.0	1		10/30/14 15:11	75-34-3	
1,2-Dichloroethane	ND ug/L		1.0	1		10/30/14 15:11	107-06-2	
1,2-Dichloroethene (Total)	2.1 ug/L		1.0	1		10/30/14 15:11		
1,1-Dichloroethene	ND ug/L		1.0	1		10/30/14 15:11		
-	•							
cis-1,2-Dichloroethene	2.1 ug/L		1.0	1		10/30/14 15:11	156-59-2	

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: MW-27S	Lab ID: 60181402	2004 Collected: 10/28/	14 15:05	Received: 1	0/29/14 10:10 N	Aatrix: Water	
Parameters	Results L	Inits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: E	EPA 5030B/8260					
1,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 15:11	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		10/30/14 15:11	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 15:11	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		10/30/14 15:11	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 15:11	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 15:11	10061-02-6	
Ethylbenzene	ND ug/L	1.0	1		10/30/14 15:11	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/30/14 15:11	87-68-3	
2-Hexanone	ND ug/L	10.0	1		10/30/14 15:11	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/30/14 15:11	98-82-8	
p-Isopropyltoluene	ND ug/L	1.0	1		10/30/14 15:11	99-87-6	
Methylene chloride	ND ug/L	1.0	1		10/30/14 15:11	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		10/30/14 15:11	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		10/30/14 15:11	1634-04-4	
Naphthalene	ND ug/L	10.0	1		10/30/14 15:11	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 15:11	103-65-1	
Styrene	ND ug/L	1.0	1		10/30/14 15:11	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 15:11	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 15:11	79-34-5	
Tetrachloroethene	2.4 ug/L	1.0	1		10/30/14 15:11	127-18-4	
Toluene	ND ug/L	1.0	1		10/30/14 15:11	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 15:11	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 15:11		
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/30/14 15:11	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 15:11		
Trichloroethene	64.2 ug/L	1.0	1		10/30/14 15:11		
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 15:11	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 15:11		
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 15:11		
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 15:11		
Vinyl chloride	ND ug/L	1.0	1		10/30/14 15:11		
Xylene (Total)	ND ug/L	3.0	1		10/30/14 15:11		
Surrogates							
4-Bromofluorobenzene (S)	92 %	80-120	1		10/30/14 15:11	460-00-4	
1,2-Dichloroethane-d4 (S)	101 %	80-120	1		10/30/14 15:11	17060-07-0	
Toluene-d8 (S)	98 %	80-120	1		10/30/14 15:11	2037-26-5	
Preservation pH	1.0	0.10	1		10/30/14 15:11		
2320B Alkalinity	Analytical Method: S	SM 2320B					
Alkalinity, Total as CaCO3	294 mg/L	20.0	1		11/03/14 11:11		
Iron, Ferrous	Analytical Method: S	SM 3500-Fe B#4					
Iron, Ferrous	ND mg/L	0.20	1		10/31/14 14:54		H6
4500S2D Sulfide, Total	Analytical Method: S						
Sulfide, Total	ND mg/L	0.050	1		11/04/14 12:39	18496-25-8	
	·· ···						

REPORT OF LABORATORY ANALYSIS

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: MW-27S	Lab ID: 60181402004	Collected: 10/28/14 1	5:05 R	eceived: 10/29/14 10:10	Matrix: Water
Parameters	Results Units	Report Limit D	F	Prepared Analyzed	CAS No. Qual
300.0 IC Anions 28 Days	Analytical Method: EPA 300	.0			
Chloride	142 mg/L	20.0 2	0	11/10/14 07:5	7 16887-00-6
Sulfate	229 mg/L	20.0 2	0	11/10/14 07:5	7 14808-79-8
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353	.2			
Nitrogen, Nitrate	ND mg/L	0.10	l	10/30/14 07:5	1
Nitrogen, Nitrite	ND mg/L	0.10	l	10/30/14 07:5	1
Nitrogen, NO2 plus NO3	ND mg/L	0.10	l	10/30/14 07:5	1
5310C TOC	Analytical Method: SM 5310	C			
Total Organic Carbon	ND mg/L	1.0	l	11/06/14 14:0	1 7440-44-0

Project: 2ND & KIRBY REMEDIATION

Pace Project No .: 60181402

Sample: GMW-6S	Lab ID: 60181402005 Collected: 10/28/14 16:30 Received: 10/29/14 10:10 Matrix: Water						
Parameters	Results Un	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method: RS	SK 175					
Ethane	ND ug/L	6.2	1		11/02/14 14:45	74-84-0	
Ethene	ND ug/L	6.2	1		11/02/14 14:45	74-85-1	
Methane	406 ug/L	6.6	1		11/02/14 14:45	74-82-8	
200.7 Metals, Total	Analytical Method: EF	PA 200.7 Preparation Me	thod: EP	PA 200.7			
Iron	ND ug/L	50.0	1	10/30/14 14:30	11/05/14 15:05	7439-89-6	
Manganese	199 ug/L	5.0	1	10/30/14 14:30	11/05/14 15:05	7439-96-5	
200.7 Metals, Dissolved	Analytical Method: EF	PA 200.7 Preparation Me	thod: EP	PA 200.7			
Iron, Dissolved	ND ug/L	50.0	1	10/29/14 15:00	11/05/14 14:27	7439-89-6	
Manganese, Dissolved	194 ug/L	5.0	1	10/29/14 15:00	11/05/14 14:27	7439-96-5	
8260 MSV	Analytical Method: EF	PA 5030B/8260					
Acetone	ND ug/L	10.0	1		10/30/14 15:26	67-64-1	
Benzene	ND ug/L	1.0	1		10/30/14 15:26	71-43-2	
Bromobenzene	ND ug/L	1.0	1		10/30/14 15:26	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		10/30/14 15:26	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		10/30/14 15:26	75-27-4	
Bromoform	ND ug/L	1.0	1		10/30/14 15:26	75-25-2	
Bromomethane	ND ug/L	5.0	1		10/30/14 15:26	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		10/30/14 15:26	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		10/30/14 15:26	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		10/30/14 15:26	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		10/30/14 15:26	98-06-6	
Carbon disulfide	ND ug/L	5.0	1		10/30/14 15:26	75-15-0	
Carbon tetrachloride	ND ug/L	1.0	1		10/30/14 15:26	56-23-5	L3
Chlorobenzene	ND ug/L	1.0	1		10/30/14 15:26	108-90-7	
Chloroethane	ND ug/L	1.0	1		10/30/14 15:26	75-00-3	
Chloroform	ND ug/L	1.0	1		10/30/14 15:26	67-66-3	
Chloromethane	ND ug/L	1.0	1		10/30/14 15:26	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		10/30/14 15:26	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		10/30/14 15:26	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		10/30/14 15:26	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		10/30/14 15:26	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		10/30/14 15:26	106-93-4	
Dibromomethane	ND ug/L	1.0	1		10/30/14 15:26	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 15:26		
1,3-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 15:26	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 15:26	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		10/30/14 15:26	75-71-8	
1,1-Dichloroethane	1.5 ug/L	1.0	1		10/30/14 15:26	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		10/30/14 15:26	107-06-2	
1,2-Dichloroethene (Total)	48.9 ug/L	1.0	1		10/30/14 15:26	540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	1		10/30/14 15:26		
cis-1,2-Dichloroethene	48.6 ug/L	1.0	1		10/30/14 15:26		
trans-1.2-Dichloroethene	ND ug/L	1.0	1		10/30/14 15:26		

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-6S Parameters	Lab ID: 60181402005 Collected: 10/28/14 16:30 Received: 10/29/14 10:10 Matrix: Water							
	Results Unit	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytical Method: EPA 5030B/8260							
1,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 15:26	78-87-5		
1,3-Dichloropropane	ND ug/L	1.0	1		10/30/14 15:26	142-28-9		
2,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 15:26	594-20-7		
1,1-Dichloropropene	ND ug/L	1.0	1		10/30/14 15:26	563-58-6		
cis-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 15:26	10061-01-5		
trans-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 15:26	10061-02-6		
Ethylbenzene	ND ug/L	1.0	1		10/30/14 15:26	100-41-4		
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/30/14 15:26	87-68-3		
2-Hexanone	ND ug/L	10.0	1		10/30/14 15:26	591-78-6		
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/30/14 15:26	98-82-8		
p-Isopropyltoluene	ND ug/L	1.0	1		10/30/14 15:26	99-87-6		
Methylene chloride	ND ug/L	1.0	1		10/30/14 15:26	75-09-2		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		10/30/14 15:26	108-10-1		
Methyl-tert-butyl ether	ND ug/L	1.0	1		10/30/14 15:26	1634-04-4		
Naphthalene	ND ug/L	10.0	1		10/30/14 15:26	91-20-3		
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 15:26	103-65-1		
Styrene	ND ug/L	1.0	1		10/30/14 15:26	100-42-5		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 15:26	630-20-6		
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 15:26			
Tetrachloroethene	1.6 ug/L	1.0	1		10/30/14 15:26	127-18-4		
Toluene	ND ug/L	1.0	1		10/30/14 15:26			
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 15:26			
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 15:26			
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/30/14 15:26			
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 15:26			
Trichloroethene	17.3 ug/L	1.0	1		10/30/14 15:26			
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 15:26			
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 15:26			
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 15:26			
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 15:26			
Vinyl chloride	ND ug/L	1.0	1		10/30/14 15:26			
Xylene (Total)	ND ug/L	3.0	1		10/30/14 15:26			
Surrogates		0.0	•		10,00,11,10120			
4-Bromofluorobenzene (S)	104 %	80-120	1		10/30/14 15:26	460-00-4		
1,2-Dichloroethane-d4 (S)	107 %	80-120	1		10/30/14 15:26	17060-07-0		
Toluene-d8 (S)	97 %	80-120	1		10/30/14 15:26			
Preservation pH	1.0	0.10	1		10/30/14 15:26			
2320B Alkalinity	Analytical Method: SM	2320B						
Alkalinity, Total as CaCO3	424 mg/L	20.0	1		11/03/14 11:18			
Iron, Ferrous	Analytical Method: SM	3500-Fe B#4						
Iron, Ferrous	ND mg/L	0.20	1		10/31/14 14:54		H6	
4500S2D Sulfide, Total	Analytical Method: SM	4500-S-2 D						
Sulfide, Total	ND mg/L	0.050	1		11/04/14 12:42	18496-25-8		

REPORT OF LABORATORY ANALYSIS

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-6S	Lab ID: 60181402005	Collected: 10/28/14 16	3:30 Receive	d: 10/29/14 10:10	Matrix: Water
Parameters	Results Units	Report Limit D	F Prepa	red Analyzed	CAS No. Qual
300.0 IC Anions 28 Days	Analytical Method: EPA 300	.0			
Chloride	148 mg/L	10.0 10)	11/10/14 08:51	16887-00-6
Sulfate	75.7 mg/L	10.0 10)	11/10/14 08:51	14808-79-8
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353	.2			
Nitrogen, Nitrate	ND mg/L	0.10 1		10/30/14 07:56	;
Nitrogen, Nitrite	ND mg/L	0.10 1		10/30/14 07:56	;
Nitrogen, NO2 plus NO3	ND mg/L	0.10 1		10/30/14 07:56	i
5310C TOC	Analytical Method: SM 5310	C			
Total Organic Carbon	1.0 mg/L	1.0 1		11/06/14 14:40	7440-44-0

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Pace Project No.: 60181402								
Sample: MW-15	Lab ID: 60181402	006 Collected:	10/28/1	4 18:25	Received: 10)/29/14 10:10 N	latrix: Water	
Parameters	ResultsU	nits Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method: R	SK 175						
Ethane	ND ug/L		6.2	1		11/02/14 14:59	74-84-0	
Ethene	ND ug/L		6.2	1		11/02/14 14:59	74-85-1	
Methane	ND ug/L		6.6	1		11/02/14 14:59	74-82-8	
200.7 Metals, Total	Analytical Method: E	PA 200.7 Prepara	ation Metl	hod: EF	PA 200.7			
Iron	ND ug/L		50.0	1	10/30/14 14:30	11/05/14 15:07	7439-89-6	
Manganese	188 ug/L		5.0	1	10/30/14 14:30	11/05/14 15:07	7439-96-5	
200.7 Metals, Dissolved	Analytical Method: E	PA 200.7 Prepara	ation Metl	hod: EF	PA 200.7			
Iron, Dissolved	ND ug/L		50.0	1	10/29/14 15:00	11/05/14 14:29	7439-89-6	
Manganese, Dissolved	184 ug/L		5.0	1	10/29/14 15:00	11/05/14 14:29	7439-96-5	
8260 MSV	Analytical Method: E	PA 5030B/8260						
Acetone	ND ug/L		10.0	1		10/30/14 17:09	67-64-1	
Benzene	ND ug/L		1.0	1		10/30/14 17:09	71-43-2	
Bromobenzene	ND ug/L		1.0	1		10/30/14 17:09	-	
Bromochloromethane	ND ug/L		1.0	1		10/30/14 17:09		
Bromodichloromethane	ND ug/L		1.0	1		10/30/14 17:09		
Bromoform	ND ug/L		1.0	1		10/30/14 17:09		
Bromomethane	ND ug/L		5.0	1		10/30/14 17:09		
2-Butanone (MEK)	ND ug/L		10.0	1		10/30/14 17:09		
n-Butylbenzene	ND ug/L		1.0	1		10/30/14 17:09		
sec-Butylbenzene	ND ug/L		1.0	1		10/30/14 17:09		
tert-Butylbenzene	ND ug/L		1.0	1		10/30/14 17:09		
Carbon disulfide	ND ug/L		5.0	1		10/30/14 17:09		
Carbon tetrachloride	ND ug/L		1.0	1		10/30/14 17:09		L3
Chlorobenzene	ND ug/L		1.0	1		10/30/14 17:09		LU
Chloroethane	ND ug/L		1.0	1		10/30/14 17:09		
Chloroform	ND ug/L		1.0	1		10/30/14 17:09		
Chloromethane	ND ug/L		1.0	1		10/30/14 17:09		
2-Chlorotoluene	ND ug/L		1.0	1		10/30/14 17:09		
4-Chlorotoluene	-		1.0	1		10/30/14 17:09		
	ND ug/L					10/30/14 17:09		
1,2-Dibromo-3-chloropropane	ND ug/L		2.5 1.0	1 1				
Dibromochloromethane	ND ug/L		1.0	1		10/30/14 17:09		
1,2-Dibromoethane (EDB)	ND ug/L					10/30/14 17:09		
Dibromomethane	ND ug/L		1.0	1		10/30/14 17:09		
1,2-Dichlorobenzene	ND ug/L		1.0	1		10/30/14 17:09		
1,3-Dichlorobenzene	ND ug/L		1.0	1		10/30/14 17:09		
1,4-Dichlorobenzene	ND ug/L		1.0	1		10/30/14 17:09		
Dichlorodifluoromethane	ND ug/L		1.0	1		10/30/14 17:09		
1,1-Dichloroethane	ND ug/L		1.0	1		10/30/14 17:09		
1,2-Dichloroethane	ND ug/L		1.0	1		10/30/14 17:09		
1,2-Dichloroethene (Total)	3.7 ug/L		1.0	1		10/30/14 17:09		
1,1-Dichloroethene	ND ug/L		1.0	1		10/30/14 17:09		
cis-1,2-Dichloroethene	3.7 ug/L		1.0	1		10/30/14 17:09		
trans-1,2-Dichloroethene	ND ug/L		1.0	1		10/30/14 17:09	156-60-5	

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: MW-15	Lab ID: 60181402	006 Collected: 10/28/1	4 18:25	Received: 1	10/29/14 10:10 N	Aatrix: Water	
Parameters	Results Ur	nits Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical Method: EF	PA 5030B/8260					
1,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 17:09	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		10/30/14 17:09	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 17:09	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		10/30/14 17:09	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 17:09	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 17:09	10061-02-6	
Ethylbenzene	ND ug/L	1.0	1		10/30/14 17:09	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/30/14 17:09	87-68-3	
2-Hexanone	ND ug/L	10.0	1		10/30/14 17:09	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/30/14 17:09	98-82-8	
p-lsopropyltoluene	ND ug/L	1.0	1		10/30/14 17:09	99-87-6	
Methylene chloride	ND ug/L	1.0	1		10/30/14 17:09	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		10/30/14 17:09	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		10/30/14 17:09	1634-04-4	
Naphthalene	ND ug/L	10.0	1		10/30/14 17:09	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 17:09	103-65-1	
Styrene	ND ug/L	1.0	1		10/30/14 17:09		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 17:09	630-20-6	
,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 17:09		
Fetrachloroethene	ND ug/L	1.0	1		10/30/14 17:09		
Foluene	ND ug/L	1.0	1		10/30/14 17:09		
,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 17:09		
I,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 17:09		
I,1,1-Trichloroethane	ND ug/L	1.0	1		10/30/14 17:09		
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 17:09		
Trichloroethene	24.6 ug/L	1.0	1		10/30/14 17:09		
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 17:09		
I,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 17:09		
I,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 17:09		
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 17:09		
/inyl chloride	ND ug/L	1.0	1		10/30/14 17:09		
Kylene (Total)	ND ug/L	3.0	1		10/30/14 17:09		
Surrogates		5.0	1		10/30/14 17.09	1330-20-7	
4-Bromofluorobenzene (S)	99 %	80-120	1		10/30/14 17:09	460-00-4	
1,2-Dichloroethane-d4 (S)	103 %	80-120	1		10/30/14 17:09		
Foluene-d8 (S)	95 %	80-120	1		10/30/14 17:09		
Preservation pH	1.0	0.10	1		10/30/14 17:09	2007 20 0	
	Analytical Method: SI				10/30/14 17:03		
2320B Alkalinity	-		1		11/02/14 11:00		
Alkalinity, Total as CaCO3	299 mg/L	20.0	1		11/03/14 11:22		
ron, Ferrous	Analytical Method: SI						
Iron, Ferrous	ND mg/L	0.20	1		10/31/14 14:54		H6
4500S2D Sulfide, Total	Analytical Method: SI	M 4500-S-2 D					
Sulfide, Total	ND mg/L	0.050	1		11/04/14 12:43	18496-25-8	
4500S2D Sulfide, Total Sulfide, Total	-		1		11/04/14 12:43	18496-25-8	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: MW-15	Lab ID: 60181402006	Collected: 10/28/14 18	:25 Receive	d: 10/29/14 10:10 M	Matrix: Water	
Parameters	Results Units	Report Limit DI	Prepar	ed Analyzed	CAS No. C	Qual
300.0 IC Anions 28 Days	Analytical Method: EPA 300	.0				
Chloride	160 mg/L	20.0 20)	11/10/14 09:05	16887-00-6	
Sulfate	190 mg/L	20.0 20)	11/10/14 09:05	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353	.2				
Nitrogen, Nitrate	2.1 mg/L	0.10 1		10/30/14 08:02		
Nitrogen, Nitrite	ND mg/L	0.10 1		10/30/14 08:02		
Nitrogen, NO2 plus NO3	2.1 mg/L	0.10 1		10/30/14 08:02		
5310C TOC	Analytical Method: SM 5310	C				
Total Organic Carbon	ND mg/L	1.0 1		11/06/14 14:59	7440-44-0	

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: MW-21 Lab ID: 60181402007 Received: 10/29/14 10:10 Collected: 10/28/14 17:25 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual **RSK 175 AIR Headspace** Analytical Method: RSK 175 Ethane ND ug/L 62 1 11/02/14 15:11 74-84-0 ND ug/L 6.2 11/02/14 15:11 74-85-1 Ethene 1 11/02/14 15:11 74-82-8 Methane ND ug/L 6.6 1 200.7 Metals, Total Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 ND ug/L 50.0 10/30/14 14:30 11/05/14 15:09 7439-89-6 Iron 1 Manganese 798 ug/L 5.0 1 10/30/14 14:30 11/05/14 15:09 7439-96-5 200.7 Metals, Dissolved Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Iron, Dissolved ND ug/L 50.0 1 10/29/14 15:00 11/05/14 14:36 7439-89-6 806 ug/L 5.0 10/29/14 15:00 11/05/14 14:36 7439-96-5 Manganese, Dissolved D9 1 Analytical Method: EPA 5030B/8260 8260 MSV 10/30/14 17:24 67-64-1 ND ug/L 10.0 1 Acetone ND ug/L 10/30/14 17:24 71-43-2 Benzene 1.0 1 ND ug/L 10/30/14 17:24 108-86-1 Bromobenzene 1.0 1 Bromochloromethane ND ug/L 1.0 10/30/14 17:24 74-97-5 1 Bromodichloromethane ND ug/L 1.0 10/30/14 17:24 75-27-4 1 Bromoform ND ug/L 1.0 10/30/14 17:24 75-25-2 1 Bromomethane ND ug/L 5.0 1 10/30/14 17:24 74-83-9 2-Butanone (MEK) ND ug/L 10.0 1 10/30/14 17:24 78-93-3 n-Butylbenzene ND ug/L 1.0 10/30/14 17:24 104-51-8 1 sec-Butylbenzene ND ug/L 10 10/30/14 17:24 135-98-8 1 tert-Butylbenzene ND ug/L 10 10/30/14 17:24 98-06-6 1 Carbon disulfide ND ug/L 5.0 10/30/14 17:24 75-15-0 1 Carbon tetrachloride ND ug/L 10/30/14 17:24 56-23-5 L3 1.0 1 Chlorobenzene ND ug/L 1.0 1 10/30/14 17:24 108-90-7 10/30/14 17:24 75-00-3 Chloroethane ND ug/L 1.0 1 Chloroform ND ug/L 1.0 1 10/30/14 17:24 67-66-3 Chloromethane ND ug/L 1.0 1 10/30/14 17:24 74-87-3 ND ug/L 10/30/14 17:24 95-49-8 2-Chlorotoluene 1.0 1 4-Chlorotoluene ND ua/L 1.0 1 10/30/14 17:24 106-43-4 1,2-Dibromo-3-chloropropane ND ug/L 2.5 10/30/14 17:24 96-12-8 1 Dibromochloromethane ND ug/L 10/30/14 17:24 124-48-1 1.0 1 ND ug/L 1,2-Dibromoethane (EDB) 1.0 10/30/14 17:24 106-93-4 1 ND ug/L 10/30/14 17:24 74-95-3 Dibromomethane 1.0 1 1,2-Dichlorobenzene ND ug/L 10/30/14 17:24 95-50-1 1.0 1 1,3-Dichlorobenzene ND ug/L 1.0 1 10/30/14 17:24 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/30/14 17:24 106-46-7 Dichlorodifluoromethane ND ug/L 1.0 1 10/30/14 17:24 75-71-8 1,1-Dichloroethane ND ug/L 10/30/14 17:24 75-34-3 1.0 1 1,2-Dichloroethane ND ug/L 1.0 1 10/30/14 17:24 107-06-2 1,2-Dichloroethene (Total) 2.2 ug/L 1.0 10/30/14 17:24 540-59-0 1 1,1-Dichloroethene ND ug/L 1.0 10/30/14 17:24 75-35-4 1 cis-1.2-Dichloroethene 2.2 ug/L 1.0 10/30/14 17:24 156-59-2 1 trans-1,2-Dichloroethene ND ug/L 1.0 10/30/14 17:24 156-60-5 1

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: MW-21	Lab ID: 6018140200	7 Collected: 10/28/1	4 17:25	Received: 10/29/	'14 10:10 N	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
1,2-Dichloropropane	ND ug/L	1.0	1	10	/30/14 17:24	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1	10,	/30/14 17:24	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1	10	/30/14 17:24	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1	10	/30/14 17:24	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1	10	/30/14 17:24	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1	10	/30/14 17:24	10061-02-6	
Ethylbenzene	ND ug/L	1.0	1	10	/30/14 17:24	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1	10	/30/14 17:24	87-68-3	
2-Hexanone	ND ug/L	10.0	1	10	/30/14 17:24	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1	10,	/30/14 17:24	98-82-8	
p-Isopropyltoluene	ND ug/L	1.0	1	10	/30/14 17:24	99-87-6	
Methylene chloride	ND ug/L	1.0	1		/30/14 17:24		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		/30/14 17:24		
Methyl-tert-butyl ether	ND ug/L	1.0	1			1634-04-4	
Naphthalene	ND ug/L	10.0	1		/30/14 17:24		
n-Propylbenzene	ND ug/L	1.0	1		/30/14 17:24		
Styrene	ND ug/L	1.0	1		/30/14 17:24		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		/30/14 17:24		
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		/30/14 17:24		
Tetrachloroethene	ND ug/L	1.0	1		/30/14 17:24		
Toluene	ND ug/L	1.0	1		/30/14 17:24	-	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		/30/14 17:24		
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		/30/14 17:24		
1,1,1-Trichloroethane	ND ug/L	1.0	1		/30/14 17:24		
1,1,2-Trichloroethane	ND ug/L	1.0	1		/30/14 17:24		
Trichloroethene	3.3 ug/L	1.0	1		/30/14 17:24		
Trichlorofluoromethane	ND ug/L	1.0	1		/30/14 17:24		
1,2,3-Trichloropropane	ND ug/L	2.5	1		/30/14 17:24		
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		/30/14 17:24		
•	ND ug/L	1.0	1		/30/14 17:24		
1,3,5-Trimethylbenzene Vinyl chloride	ND ug/L	1.0	1		/30/14 17:24 /30/14 17:24		
Xylene (Total)	ND ug/L	3.0	1			1330-20-7	
Surrogates	ND ug/E	5.0	1	10	30/14 17.24	1550-20-7	
4-Bromofluorobenzene (S)	100 %	80-120	1	10	/30/14 17:24	460-00-4	
1,2-Dichloroethane-d4 (S)	107 %	80-120	1			17060-07-0	
Toluene-d8 (S)	99 %	80-120	1			2037-26-5	
Preservation pH	1.0	0.10	1		/30/14 17:24		
2320B Alkalinity	Analytical Method: SM 2			10,	00,111.21		
-	312 mg/L		1	11	102/11 11.27		
Alkalinity, Total as CaCO3	6	20.0	1	11/	/03/14 11:27		
Iron, Ferrous	Analytical Method: SM 3						
Iron, Ferrous	ND mg/L	0.20	1	10,	/31/14 14:54		H6
4500S2D Sulfide, Total	Analytical Method: SM	4500-S-2 D					
Sulfide, Total	ND mg/L	0.050	1	11/	/04/14 12:43	18496-25-8	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: MW-21	Lab ID: 60181402007	Collected: 10/28/14	17:25	Received: 10/2	29/14 10:10 N	Aatrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Method: EPA 300.	.0					
Chloride	178 mg/L	20.0	20		11/10/14 09:19	16887-00-6	
Sulfate	275 mg/L	20.0	20		11/10/14 09:19	14808-79-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.	2					
Nitrogen, Nitrate	2.1 mg/L	0.10	1		10/30/14 07:57		
Nitrogen, Nitrite	ND mg/L	0.10	1		10/30/14 07:57		
Nitrogen, NO2 plus NO3	2.1 mg/L	0.10	1		10/30/14 07:57		
5310C TOC	Analytical Method: SM 5310	с					
Total Organic Carbon	ND mg/L	1.0	1		11/06/14 15:58	7440-44-0	

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-5S	Lab ID: 6018140	2008 Collected: 10/28/	14 16:10	Received: 1	0/29/14 10:10 N	Matrix: Water	
Parameters	Results	Units Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method:	EPA 5030B/8260					
Acetone	ND ug/L	10.0	1		10/30/14 17:39	67-64-1	
Benzene	ND ug/L	1.0	1		10/30/14 17:39	71-43-2	
Bromobenzene	ND ug/L	1.0	1		10/30/14 17:39	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		10/30/14 17:39	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		10/30/14 17:39	75-27-4	
Bromoform	ND ug/L	1.0	1		10/30/14 17:39	75-25-2	
Bromomethane	ND ug/L	5.0	1		10/30/14 17:39	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		10/30/14 17:39	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		10/30/14 17:39	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		10/30/14 17:39	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		10/30/14 17:39	98-06-6	
Carbon disulfide	ND ug/L	5.0	1		10/30/14 17:39	75-15-0	
Carbon tetrachloride	ND ug/L	1.0	1		10/30/14 17:39	56-23-5	L3
Chlorobenzene	ND ug/L	1.0	1		10/30/14 17:39	108-90-7	
Chloroethane	ND ug/L	1.0	1		10/30/14 17:39	75-00-3	
Chloroform	ND ug/L	1.0	1		10/30/14 17:39	67-66-3	
Chloromethane	ND ug/L	1.0	1		10/30/14 17:39	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		10/30/14 17:39	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		10/30/14 17:39	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		10/30/14 17:39	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		10/30/14 17:39	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		10/30/14 17:39	106-93-4	
Dibromomethane	ND ug/L	1.0	1		10/30/14 17:39	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 17:39	95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 17:39	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 17:39	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		10/30/14 17:39	75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1		10/30/14 17:39	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		10/30/14 17:39	107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		10/30/14 17:39	540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	1		10/30/14 17:39	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		10/30/14 17:39	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		10/30/14 17:39	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 17:39	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		10/30/14 17:39	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 17:39	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		10/30/14 17:39	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 17:39	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 17:39	10061-02-6	
Ethylbenzene	ND ug/L	1.0	1		10/30/14 17:39		
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/30/14 17:39		
2-Hexanone	ND ug/L	10.0	1		10/30/14 17:39		
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/30/14 17:39		
p-lsopropyltoluene	ND ug/L	1.0	1		10/30/14 17:39		
Methylene chloride	ND ug/L	1.0	1		10/30/14 17:39		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		10/30/14 17:39		
Methyl-tert-butyl ether	ND ug/L	1.0	1		10/30/14 17:39		

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-5S	Lab ID: 60181402008	Collected: 10/28/1	4 16:10	Received: 10	D/29/14 10:10 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Naphthalene	ND ug/L	10.0	1		10/30/14 17:39	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 17:39	103-65-1	
Styrene	ND ug/L	1.0	1		10/30/14 17:39	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 17:39	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 17:39	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		10/30/14 17:39	127-18-4	
Toluene	ND ug/L	1.0	1		10/30/14 17:39	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 17:39	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 17:39	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/30/14 17:39	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 17:39	79-00-5	
Trichloroethene	ND ug/L	1.0	1		10/30/14 17:39	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 17:39	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 17:39	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 17:39	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 17:39	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/30/14 17:39	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/30/14 17:39	1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	99 %	80-120	1		10/30/14 17:39	460-00-4	
1,2-Dichloroethane-d4 (S)	104 %	80-120	1		10/30/14 17:39	17060-07-0	
Toluene-d8 (S)	93 %	80-120	1		10/30/14 17:39	2037-26-5	
Preservation pH	1.0	0.10	1		10/30/14 17:39		

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-7S	Lab ID: 60181402009	Collected: 10/28/14 17:0	5 Received: 10/29/14 10:10 Matrix: Water
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qua
8260 MSV	Analytical Method: EPA 5	030B/8260	
Acetone	ND ug/L	10.0 1	10/30/14 17:53 67-64-1
Benzene	ND ug/L	1.0 1	10/30/14 17:53 71-43-2
Bromobenzene	ND ug/L	1.0 1	10/30/14 17:53 108-86-1
Bromochloromethane	ND ug/L	1.0 1	10/30/14 17:53 74-97-5
Bromodichloromethane	ND ug/L	1.0 1	10/30/14 17:53 75-27-4
Bromoform	ND ug/L	1.0 1	10/30/14 17:53 75-25-2
Bromomethane	ND ug/L	5.0 1	10/30/14 17:53 74-83-9
2-Butanone (MEK)	ND ug/L	10.0 1	10/30/14 17:53 78-93-3
n-Butylbenzene	ND ug/L	1.0 1	10/30/14 17:53 104-51-8
sec-Butylbenzene	ND ug/L	1.0 1	10/30/14 17:53 135-98-8
tert-Butylbenzene	ND ug/L	1.0 1	10/30/14 17:53 98-06-6
Carbon disulfide	ND ug/L	5.0 1	10/30/14 17:53 75-15-0
Carbon tetrachloride	ND ug/L	1.0 1	10/30/14 17:53 56-23-5 L3
Chlorobenzene	ND ug/L	1.0 1	10/30/14 17:53 108-90-7
Chloroethane	ND ug/L	1.0 1	10/30/14 17:53 75-00-3
Chloroform	ND ug/L	1.0 1	10/30/14 17:53 67-66-3
Chloromethane	ND ug/L	1.0 1	10/30/14 17:53 74-87-3
2-Chlorotoluene	ND ug/L	1.0 1	10/30/14 17:53 95-49-8
4-Chlorotoluene	ND ug/L	1.0 1	10/30/14 17:53 106-43-4
1,2-Dibromo-3-chloropropane	ND ug/L	2.5 1	10/30/14 17:53 96-12-8
Dibromochloromethane	ND ug/L	1.0 1	10/30/14 17:53 124-48-1
1,2-Dibromoethane (EDB)	ND ug/L	1.0 1	10/30/14 17:53 106-93-4
Dibromomethane	ND ug/L	1.0 1	10/30/14 17:53 74-95-3
1,2-Dichlorobenzene	ND ug/L	1.0 1	10/30/14 17:53 95-50-1
1,3-Dichlorobenzene	ND ug/L	1.0 1	10/30/14 17:53 541-73-1
1,4-Dichlorobenzene	ND ug/L	1.0 1	10/30/14 17:53 106-46-7
Dichlorodifluoromethane	ND ug/L	1.0 1	10/30/14 17:53 75-71-8
1,1-Dichloroethane	ND ug/L	1.0 1	10/30/14 17:53 75-34-3
1,2-Dichloroethane	ND ug/L	1.0 1	10/30/14 17:53 107-06-2
1,2-Dichloroethene (Total)	2.8 ug/L	1.0 1	10/30/14 17:53 540-59-0
1,1-Dichloroethene	ND ug/L	1.0 1	10/30/14 17:53 75-35-4
cis-1,2-Dichloroethene	2.8 ug/L	1.0 1	10/30/14 17:53 156-59-2
trans-1,2-Dichloroethene	ND ug/L	1.0 1	10/30/14 17:53 156-60-5
1,2-Dichloropropane	ND ug/L	1.0 1	10/30/14 17:53 78-87-5
1,3-Dichloropropane	ND ug/L	1.0 1	10/30/14 17:53 142-28-9
2,2-Dichloropropane	ND ug/L	1.0 1	10/30/14 17:53 594-20-7
1,1-Dichloropropene	ND ug/L	1.0 1	10/30/14 17:53 563-58-6
cis-1,3-Dichloropropene	ND ug/L	1.0 1	10/30/14 17:53 10061-01-5
trans-1,3-Dichloropropene	ND ug/L	1.0 1	10/30/14 17:53 10061-02-6
Ethylbenzene	ND ug/L	1.0 1	10/30/14 17:53 100-41-4
Hexachloro-1,3-butadiene	ND ug/L	1.0 1	10/30/14 17:53 87-68-3
2-Hexanone	ND ug/L	10.0 1	10/30/14 17:53 591-78-6
Isopropylbenzene (Cumene)	ND ug/L	1.0 1	10/30/14 17:53 98-82-8
p-Isopropyltoluene	ND ug/L	1.0 1	10/30/14 17:53 99-87-6
Methylene chloride	ND ug/L	1.0 1	10/30/14 17:53 75-09-2
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0 1	10/30/14 17:53 108-10-1
Methyl-tert-butyl ether	ND ug/L	1.0 1	10/30/14 17:53 1634-04-4

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-7S	Lab ID: 60181402009	Collected: 10/28/1	4 17:05	Received: 10)/29/14 10:10 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Naphthalene	ND ug/L	10.0	1		10/30/14 17:53	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 17:53	103-65-1	
Styrene	ND ug/L	1.0	1		10/30/14 17:53	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 17:53	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 17:53	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		10/30/14 17:53	127-18-4	
Toluene	ND ug/L	1.0	1		10/30/14 17:53	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 17:53	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 17:53	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/30/14 17:53	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 17:53	79-00-5	
Trichloroethene	9.0 ug/L	1.0	1		10/30/14 17:53	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 17:53	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 17:53	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 17:53	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 17:53	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/30/14 17:53	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/30/14 17:53	1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	93 %	80-120	1		10/30/14 17:53	460-00-4	
1,2-Dichloroethane-d4 (S)	106 %	80-120	1		10/30/14 17:53	17060-07-0	
Toluene-d8 (S)	96 %	80-120	1		10/30/14 17:53	2037-26-5	
Preservation pH	1.0	0.10	1		10/30/14 17:53		

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-9S	Lab ID: 60181402	2010 Collected: 10/28/	4 18:50	Received: 1	0/29/14 10:10 N	Aatrix: Water	
Parameters	Results U	nits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: E	PA 5030B/8260					
Acetone	ND ug/L	10.0	1		10/30/14 18:08	67-64-1	
Benzene	ND ug/L	1.0	1		10/30/14 18:08	71-43-2	
Bromobenzene	ND ug/L	1.0	1		10/30/14 18:08	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		10/30/14 18:08	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		10/30/14 18:08	75-27-4	
Bromoform	ND ug/L	1.0	1		10/30/14 18:08	75-25-2	
Bromomethane	ND ug/L	5.0	1		10/30/14 18:08	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		10/30/14 18:08	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		10/30/14 18:08	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		10/30/14 18:08	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		10/30/14 18:08	98-06-6	
Carbon disulfide	ND ug/L	5.0	1		10/30/14 18:08	75-15-0	
Carbon tetrachloride	ND ug/L	1.0	1		10/30/14 18:08	56-23-5	L3
Chlorobenzene	ND ug/L	1.0	1		10/30/14 18:08	108-90-7	
Chloroethane	ND ug/L	1.0	1		10/30/14 18:08	75-00-3	
Chloroform	ND ug/L	1.0	1		10/30/14 18:08	67-66-3	
Chloromethane	ND ug/L	1.0	1		10/30/14 18:08	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		10/30/14 18:08	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		10/30/14 18:08	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		10/30/14 18:08	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		10/30/14 18:08	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		10/30/14 18:08	106-93-4	
Dibromomethane	ND ug/L	1.0	1		10/30/14 18:08	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 18:08	95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 18:08	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 18:08	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		10/30/14 18:08	75-71-8	
1,1-Dichloroethane	6.1 ug/L	1.0	1		10/30/14 18:08	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		10/30/14 18:08	107-06-2	
1,2-Dichloroethene (Total)	18.3 ug/L	1.0	1		10/30/14 18:08	540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	1		10/30/14 18:08	75-35-4	
cis-1,2-Dichloroethene	18.1 ug/L	1.0	1		10/30/14 18:08	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		10/30/14 18:08	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 18:08	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		10/30/14 18:08	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 18:08	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		10/30/14 18:08		
cis-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 18:08	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 18:08	10061-02-6	
Ethylbenzene	ND ug/L	1.0	1		10/30/14 18:08		
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/30/14 18:08		
2-Hexanone	ND ug/L	10.0	1		10/30/14 18:08		
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/30/14 18:08		
p-lsopropyltoluene	ND ug/L	1.0	1		10/30/14 18:08		
Methylene chloride	ND ug/L	1.0	1		10/30/14 18:08		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		10/30/14 18:08		
Methyl-tert-butyl ether	ND ug/L	1.0	1		10/30/14 18:08		

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-9S	Lab ID: 6018140201	0 Collected: 10/28/1	4 18:50	Received: 1	0/29/14 10:10 N	Aatrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Naphthalene	ND ug/L	10.0	1		10/30/14 18:08	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 18:08	103-65-1	
Styrene	ND ug/L	1.0	1		10/30/14 18:08	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 18:08	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 18:08	79-34-5	
Tetrachloroethene	2.0 ug/L	1.0	1		10/30/14 18:08	127-18-4	
Toluene	ND ug/L	1.0	1		10/30/14 18:08	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 18:08	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 18:08	120-82-1	
1,1,1-Trichloroethane	1.2 ug/L	1.0	1		10/30/14 18:08	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 18:08	79-00-5	
Trichloroethene	13.3 ug/L	1.0	1		10/30/14 18:08	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 18:08	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 18:08	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 18:08	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 18:08	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/30/14 18:08	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/30/14 18:08	1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	94 %	80-120	1		10/30/14 18:08	460-00-4	
1,2-Dichloroethane-d4 (S)	100 %	80-120	1		10/30/14 18:08	17060-07-0	
Toluene-d8 (S)	95 %	80-120	1		10/30/14 18:08	2037-26-5	
Preservation pH	1.0	0.10	1		10/30/14 18:08		

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-10S Lab ID: 60181402011 Received: 10/29/14 10:10 Collected: 10/28/14 11:30 Matrix: Water CAS No. Parameters Results Units Report Limit DF Prepared Analyzed Qual 8260 MSV Analytical Method: EPA 5030B/8260 Acetone ND ug/L 10.0 1 10/30/14 18:23 67-64-1 ND ug/L Benzene 1.0 1 10/30/14 18:23 71-43-2 ND ug/L Bromobenzene 1.0 10/30/14 18:23 108-86-1 1 ND ug/L Bromochloromethane 10/30/14 18:23 74-97-5 1.0 1 ND ug/L Bromodichloromethane 1.0 1 10/30/14 18:23 75-27-4 Bromoform ND ug/L 1.0 1 10/30/14 18:23 75-25-2 Bromomethane ND ug/L 5.0 1 10/30/14 18:23 74-83-9 2-Butanone (MEK) ND ug/L 10.0 10/30/14 18:23 78-93-3 1 n-Butylbenzene ND ug/L 1.0 1 10/30/14 18:23 104-51-8 sec-Butylbenzene ND ug/L 1.0 1 10/30/14 18:23 135-98-8 tert-Butylbenzene ND ug/L 1.0 10/30/14 18:23 98-06-6 1 Carbon disulfide ND ug/L 5.0 10/30/14 18:23 75-15-0 1 Carbon tetrachloride ND ug/L 10/30/14 18:23 56-23-5 L3 1.0 1 Chlorobenzene ND ug/L 10/30/14 18:23 108-90-7 1.0 1 Chloroethane ND ug/L 1.0 10/30/14 18:23 75-00-3 1 Chloroform ND ug/L 1.0 1 10/30/14 18:23 67-66-3 Chloromethane ND ug/L 1.0 1 10/30/14 18:23 74-87-3 2-Chlorotoluene ND ug/L 1.0 1 10/30/14 18:23 95-49-8 ND ug/L 1.0 10/30/14 18:23 106-43-4 4-Chlorotoluene 1 1,2-Dibromo-3-chloropropane ND ug/L 2.5 1 10/30/14 18:23 96-12-8 Dibromochloromethane ND ug/L 1.0 1 10/30/14 18:23 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 1.0 10/30/14 18:23 106-93-4 1 ND ug/L 1.0 10/30/14 18:23 74-95-3 Dibromomethane 1 1,2-Dichlorobenzene ND ug/L 10 10/30/14 18:23 95-50-1 1 1,3-Dichlorobenzene ND ug/L 1.0 10/30/14 18:23 541-73-1 1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/30/14 18:23 106-46-7 Dichlorodifluoromethane ND ug/L 1.0 1 10/30/14 18:23 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/30/14 18:23 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/30/14 18:23 107-06-2 1,2-Dichloroethene (Total) ND ug/L 1.0 10/30/14 18:23 540-59-0 1 1,1-Dichloroethene ND ug/L 1.0 1 10/30/14 18:23 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 10/30/14 18:23 156-59-2 trans-1.2-Dichloroethene ND ua/L 1.0 10/30/14 18:23 156-60-5 1 1,2-Dichloropropane ND ug/L 1.0 10/30/14 18:23 78-87-5 1 10/30/14 18:23 142-28-9 1,3-Dichloropropane ND ug/L 1.0 1 10/30/14 18:23 594-20-7 2,2-Dichloropropane ND ug/L 1.0 1 10/30/14 18:23 563-58-6 ND ug/L 1.0 1,1-Dichloropropene 1 10/30/14 18:23 10061-01-5 cis-1,3-Dichloropropene ND ug/L 1.0 1 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/30/14 18:23 10061-02-6 Ethylbenzene ND ug/L 1.0 10/30/14 18:23 100-41-4 1 Hexachloro-1,3-butadiene ND ug/L 10/30/14 18:23 87-68-3 1.0 1 2-Hexanone ND ug/L 10.0 1 10/30/14 18:23 591-78-6 Isopropylbenzene (Cumene) ND ug/L 1.0 1 10/30/14 18:23 98-82-8 p-Isopropyltoluene ND ug/L 1.0 10/30/14 18:23 99-87-6 1 ND ug/L 1.0 10/30/14 18:23 75-09-2 Methylene chloride 1 4-Methyl-2-pentanone (MIBK) ND ug/L 10.0 10/30/14 18:23 108-10-1 1 Methyl-tert-butyl ether ND ug/L 10/30/14 18:23 1634-04-4 1.0 1

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-10S	Lab ID: 60181402011	Collected: 10/28/1	4 11:30	Received:	10/29/14 10:10	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Naphthalene	ND ug/L	10.0	1		10/30/14 18:2	3 91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 18:2	3 103-65-1	
Styrene	ND ug/L	1.0	1		10/30/14 18:2	3 100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 18:2	3 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 18:2	3 79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		10/30/14 18:2	3 127-18-4	
Toluene	ND ug/L	1.0	1		10/30/14 18:2	3 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 18:2	3 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 18:2	3 120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/30/14 18:2	3 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 18:2	3 79-00-5	
Trichloroethene	5.1 ug/L	1.0	1		10/30/14 18:2	3 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 18:2	3 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 18:2	3 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 18:2	3 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 18:2	3 108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/30/14 18:2	3 75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/30/14 18:2	3 1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	97 %	80-120	1		10/30/14 18:2	3 460-00-4	
1,2-Dichloroethane-d4 (S)	102 %	80-120	1		10/30/14 18:2	3 17060-07-0	
Toluene-d8 (S)	97 %	80-120	1		10/30/14 18:2	3 2037-26-5	
Preservation pH	1.0	0.10	1		10/30/14 18:2	3	

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-1 Lab ID: 60181402012 Collected: 10/28/14 13:20 Received: 10/29/14 10:10 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260 MSV Analytical Method: EPA 5030B/8260 Acetone ND ug/L 10.0 1 10/30/14 18:37 67-64-1 ND ug/L Benzene 1.0 1 10/30/14 18:37 71-43-2 ND ug/L Bromobenzene 1.0 10/30/14 18:37 108-86-1 1 Bromochloromethane ND ug/L 10/30/14 18:37 74-97-5 1.0 1 ND ug/L Bromodichloromethane 1.0 1 10/30/14 18:37 75-27-4 Bromoform ND ug/L 1.0 1 10/30/14 18:37 75-25-2 Bromomethane ND ug/L 5.0 1 10/30/14 18:37 74-83-9 2-Butanone (MEK) ND ug/L 10.0 10/30/14 18:37 78-93-3 1 n-Butylbenzene ND ug/L 1.0 1 10/30/14 18:37 104-51-8 sec-Butylbenzene ND ug/L 1.0 1 10/30/14 18:37 135-98-8 tert-Butylbenzene ND ug/L 1.0 10/30/14 18:37 98-06-6 1 Carbon disulfide ND ug/L 5.0 10/30/14 18:37 75-15-0 1 Carbon tetrachloride ND ug/L 10/30/14 18:37 56-23-5 L3 1.0 1 Chlorobenzene ND ug/L 10/30/14 18:37 108-90-7 1.0 1 Chloroethane ND ug/L 10/30/14 18:37 75-00-3 1.0 1 Chloroform ND ug/L 1.0 1 10/30/14 18:37 67-66-3 Chloromethane ND ug/L 1.0 1 10/30/14 18:37 74-87-3 2-Chlorotoluene ND ug/L 1.0 1 10/30/14 18:37 95-49-8 ND ug/L 1.0 10/30/14 18:37 106-43-4 4-Chlorotoluene 1 2.5 1,2-Dibromo-3-chloropropane ND ug/L 1 10/30/14 18:37 96-12-8 Dibromochloromethane ND ug/L 1.0 1 10/30/14 18:37 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 1.0 10/30/14 18:37 106-93-4 1 ND ug/L 1.0 10/30/14 18:37 74-95-3 Dibromomethane 1 1,2-Dichlorobenzene ND ug/L 10 10/30/14 18:37 95-50-1 1 1,3-Dichlorobenzene ND ug/L 1.0 10/30/14 18:37 541-73-1 1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/30/14 18:37 106-46-7 Dichlorodifluoromethane ND ug/L 1.0 1 10/30/14 18:37 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/30/14 18:37 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/30/14 18:37 107-06-2 ND ug/L 1.0 10/30/14 18:37 540-59-0 1,2-Dichloroethene (Total) 1 1,1-Dichloroethene ND ug/L 1.0 1 10/30/14 18:37 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 10/30/14 18:37 156-59-2 trans-1.2-Dichloroethene ND ua/L 1.0 10/30/14 18:37 156-60-5 1 1,2-Dichloropropane ND ug/L 1.0 10/30/14 18:37 78-87-5 1 1,3-Dichloropropane ND ug/L 1.0 1 10/30/14 18:37 142-28-9 2,2-Dichloropropane ND ug/L 1.0 1 10/30/14 18:37 594-20-7 ND ug/L 1.0 10/30/14 18:37 563-58-6 1,1-Dichloropropene 1 10/30/14 18:37 10061-01-5 cis-1,3-Dichloropropene ND ug/L 1.0 1 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/30/14 18:37 10061-02-6 Ethylbenzene ND ug/L 1.0 10/30/14 18:37 100-41-4 1 Hexachloro-1,3-butadiene 10/30/14 18:37 87-68-3 ND ug/L 1.0 1 2-Hexanone ND ug/L 10.0 1 10/30/14 18:37 591-78-6 Isopropylbenzene (Cumene) ND ug/L 1.0 1 10/30/14 18:37 98-82-8 p-Isopropyltoluene ND ug/L 1.0 10/30/14 18:37 99-87-6 1 ND ug/L 1.0 10/30/14 18:37 75-09-2 Methylene chloride 1 4-Methyl-2-pentanone (MIBK) ND ug/L 10.0 10/30/14 18:37 108-10-1 1 Methyl-tert-butyl ether ND ug/L 10/30/14 18:37 1634-04-4 1.0 1

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-1	Lab ID: 6018140201	2 Collected: 10/28/1	4 13:20	Received: 1	0/29/14 10:10 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Naphthalene	ND ug/L	10.0	1		10/30/14 18:37	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 18:37	103-65-1	
Styrene	ND ug/L	1.0	1		10/30/14 18:37	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 18:37	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 18:37	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		10/30/14 18:37	127-18-4	
Toluene	ND ug/L	1.0	1		10/30/14 18:37	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 18:37	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 18:37	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/30/14 18:37	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 18:37	79-00-5	
Trichloroethene	9.0 ug/L	1.0	1		10/30/14 18:37	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 18:37	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 18:37	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 18:37	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 18:37	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/30/14 18:37	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/30/14 18:37	1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	91 %	80-120	1		10/30/14 18:37	460-00-4	
1,2-Dichloroethane-d4 (S)	100 %	80-120	1		10/30/14 18:37	17060-07-0	
Toluene-d8 (S)	97 %	80-120	1		10/30/14 18:37	2037-26-5	
Preservation pH	1.0	0.10	1		10/30/14 18:37		

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-2 Lab ID: 60181402013 Received: 10/29/14 10:10 Collected: 10/28/14 13:40 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260 MSV Analytical Method: EPA 5030B/8260 Acetone ND ug/L 10.0 1 10/30/14 18:52 67-64-1 ND ug/L 10/30/14 18:52 71-43-2 Benzene 1.0 1 ND ug/L Bromobenzene 1.0 10/30/14 18:52 108-86-1 1 Bromochloromethane ND ug/L 10/30/14 18:52 74-97-5 1.0 1 ND ug/L Bromodichloromethane 1.0 1 10/30/14 18:52 75-27-4 Bromoform ND ug/L 1.0 1 10/30/14 18:52 75-25-2 Bromomethane ND ug/L 5.0 1 10/30/14 18:52 74-83-9 2-Butanone (MEK) ND ug/L 10.0 10/30/14 18:52 78-93-3 1 n-Butylbenzene ND ug/L 1.0 1 10/30/14 18:52 104-51-8 sec-Butylbenzene ND ug/L 1.0 1 10/30/14 18:52 135-98-8 tert-Butylbenzene ND ug/L 1.0 10/30/14 18:52 98-06-6 1 Carbon disulfide ND ug/L 5.0 10/30/14 18:52 75-15-0 1 Carbon tetrachloride ND ug/L 10/30/14 18:52 56-23-5 L3 1.0 1 Chlorobenzene ND ug/L 10/30/14 18:52 108-90-7 1.0 1 Chloroethane ND ug/L 1.0 10/30/14 18:52 75-00-3 1 Chloroform ND ug/L 1.0 1 10/30/14 18:52 67-66-3 Chloromethane ND ug/L 1.0 1 10/30/14 18:52 74-87-3 2-Chlorotoluene ND ug/L 1.0 1 10/30/14 18:52 95-49-8 ND ug/L 1.0 10/30/14 18:52 106-43-4 4-Chlorotoluene 1 1,2-Dibromo-3-chloropropane 2.5 ND ug/L 1 10/30/14 18:52 96-12-8 Dibromochloromethane ND ug/L 1.0 1 10/30/14 18:52 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 1.0 10/30/14 18:52 106-93-4 1 ND ug/L 1.0 10/30/14 18:52 74-95-3 Dibromomethane 1 1,2-Dichlorobenzene ND ug/L 10 10/30/14 18:52 95-50-1 1 1,3-Dichlorobenzene ND ug/L 1.0 10/30/14 18:52 541-73-1 1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/30/14 18:52 106-46-7 Dichlorodifluoromethane ND ug/L 1.0 1 10/30/14 18:52 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/30/14 18:52 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/30/14 18:52 107-06-2 ND ug/L 1.0 10/30/14 18:52 540-59-0 1,2-Dichloroethene (Total) 1 1,1-Dichloroethene ND ug/L 1.0 1 10/30/14 18:52 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 10/30/14 18:52 156-59-2 trans-1.2-Dichloroethene ND ua/L 1.0 10/30/14 18:52 156-60-5 1 1,2-Dichloropropane ND ug/L 1.0 10/30/14 18:52 78-87-5 1 10/30/14 18:52 142-28-9 1,3-Dichloropropane ND ug/L 1.0 1 10/30/14 18:52 594-20-7 2,2-Dichloropropane ND ug/L 1.0 1 10/30/14 18:52 563-58-6 ND ug/L 1.0 1,1-Dichloropropene 1 10/30/14 18:52 10061-01-5 cis-1,3-Dichloropropene ND ug/L 1.0 1 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/30/14 18:52 10061-02-6 Ethylbenzene ND ug/L 1.0 10/30/14 18:52 100-41-4 1 Hexachloro-1,3-butadiene ND ug/L 10/30/14 18:52 87-68-3 1.0 1 2-Hexanone ND ug/L 10.0 1 10/30/14 18:52 591-78-6 10/30/14 18:52 98-82-8 Isopropylbenzene (Cumene) ND ug/L 1.0 1 p-Isopropyltoluene ND ug/L 1.0 10/30/14 18:52 99-87-6 1 ND ug/L 1.0 10/30/14 18:52 75-09-2 Methylene chloride 1 4-Methyl-2-pentanone (MIBK) ND ug/L 10.0 10/30/14 18:52 108-10-1 1 Methyl-tert-butyl ether ND ug/L 10/30/14 18:52 1634-04-4 1.0 1

10/30/14 18:52 2037-26-5

10/30/14 18:52

ANALYTICAL RESULTS

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Toluene-d8 (S)

Preservation pH

Sample: GMW-2	Lab ID: 601	81402013	Collected: 10/28	'14 13:40	Received: 10)/29/14 10:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Met	hod: EPA 50	30B/8260					
Naphthalene	ND ug	J/L	10.0	1		10/30/14 18:52	91-20-3	
n-Propylbenzene	ND ug	J/L	1.0	1		10/30/14 18:52	103-65-1	
Styrene	ND ug	J/L	1.0	1		10/30/14 18:52	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug	J/L	1.0	1		10/30/14 18:52	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug	J/L	1.0	1		10/30/14 18:52	79-34-5	
Tetrachloroethene	ND ug	J/L	1.0	1		10/30/14 18:52	127-18-4	
Toluene	ND ug	J/L	1.0	1		10/30/14 18:52	108-88-3	
1,2,3-Trichlorobenzene	ND ug	J/L	1.0	1		10/30/14 18:52	87-61-6	
1,2,4-Trichlorobenzene	ND ug	J/L	1.0	1		10/30/14 18:52	120-82-1	
1,1,1-Trichloroethane	ND ug	J/L	1.0	1		10/30/14 18:52	71-55-6	
1,1,2-Trichloroethane	ND ug	J/L	1.0	1		10/30/14 18:52	79-00-5	
Trichloroethene	2.0 ug	J/L	1.0	1		10/30/14 18:52	79-01-6	
Trichlorofluoromethane	ND ug	J/L	1.0	1		10/30/14 18:52	75-69-4	
1,2,3-Trichloropropane	ND ug	J/L	2.5	1		10/30/14 18:52	96-18-4	
1,2,4-Trimethylbenzene	ND ug	J/L	1.0	1		10/30/14 18:52	95-63-6	
1,3,5-Trimethylbenzene	ND ug	J/L	1.0	1		10/30/14 18:52	108-67-8	
Vinyl chloride	ND ug	J/L	1.0	1		10/30/14 18:52	75-01-4	
Xylene (Total)	ND ug	J/L	3.0	1		10/30/14 18:52	1330-20-7	
Surrogates								
4-Bromofluorobenzene (S)	97 %		80-120	1		10/30/14 18:52	460-00-4	
1,2-Dichloroethane-d4 (S)	101 %		80-120	1		10/30/14 18:52	17060-07-0	

80-120

0.10

1

1

94 %

1.0

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-4	Lab ID: 60181402014	Collected: 10/28/14	12:55	Received:	0/29/14 10:10	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 5	6030B/8260					
Acetone	ND ug/L	10.0	1		10/30/14 19:07	67-64-1	
Benzene	ND ug/L	1.0	1		10/30/14 19:07	71-43-2	
Bromobenzene	ND ug/L	1.0	1		10/30/14 19:07	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		10/30/14 19:07	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		10/30/14 19:07	75-27-4	
Bromoform	ND ug/L	1.0	1		10/30/14 19:07	75-25-2	
Bromomethane	ND ug/L	5.0	1		10/30/14 19:07	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		10/30/14 19:07	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		10/30/14 19:07	' 104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		10/30/14 19:07	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		10/30/14 19:07	98-06-6	
Carbon disulfide	ND ug/L	5.0	1		10/30/14 19:07		
Carbon tetrachloride	ND ug/L	1.0	1		10/30/14 19:07		L3
Chlorobenzene	ND ug/L	1.0	1		10/30/14 19:07		
Chloroethane	ND ug/L	1.0	1		10/30/14 19:07		
Chloroform	ND ug/L	1.0	1		10/30/14 19:07		
Chloromethane	ND ug/L	1.0	1		10/30/14 19:07		
2-Chlorotoluene	ND ug/L	1.0	1		10/30/14 19:07		
4-Chlorotoluene	ND ug/L	1.0	1		10/30/14 19:07		
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		10/30/14 19:07		
Dibromochloromethane	ND ug/L	1.0	1		10/30/14 19:07		
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		10/30/14 19:07	-	
Dibromomethane	ND ug/L	1.0	1		10/30/14 19:07		
1,2-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 19:07		
1,3-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 19:07		
1,4-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 19:07		
Dichlorodifluoromethane	ND ug/L	1.0	1		10/30/14 19:07		
1,1-Dichloroethane	ND ug/L	1.0	1		10/30/14 19:07		
	-		1				
1,2-Dichloroethane	ND ug/L	1.0			10/30/14 19:07		
1,2-Dichloroethene (Total)	1.5 ug/L	1.0	1		10/30/14 19:07		
1,1-Dichloroethene	ND ug/L	1.0	1		10/30/14 19:07		
cis-1,2-Dichloroethene	1.5 ug/L	1.0	1		10/30/14 19:07		
trans-1,2-Dichloroethene	ND ug/L	1.0	1		10/30/14 19:07		
1,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 19:07		
1,3-Dichloropropane	ND ug/L	1.0	1		10/30/14 19:07		
2,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 19:07		
1,1-Dichloropropene	ND ug/L	1.0	1		10/30/14 19:07		
cis-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 19:07		
trans-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 19:07		
Ethylbenzene	ND ug/L	1.0	1		10/30/14 19:07		
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/30/14 19:07		
2-Hexanone	ND ug/L	10.0	1		10/30/14 19:07		
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/30/14 19:07		
p-Isopropyltoluene	ND ug/L	1.0	1		10/30/14 19:07		
Methylene chloride	ND ug/L	1.0	1		10/30/14 19:07	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		10/30/14 19:07	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		10/30/14 19:07	1634-04-4	

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-4	Lab ID: 6018140201	4 Collected: 10/28/1	4 12:55	Received: 10	0/29/14 10:10 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Naphthalene	ND ug/L	10.0	1		10/30/14 19:07	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 19:07	103-65-1	
Styrene	ND ug/L	1.0	1		10/30/14 19:07	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 19:07	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 19:07	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		10/30/14 19:07	127-18-4	
Toluene	ND ug/L	1.0	1		10/30/14 19:07	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 19:07	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 19:07	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/30/14 19:07	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 19:07	79-00-5	
Trichloroethene	4.2 ug/L	1.0	1		10/30/14 19:07	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 19:07	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 19:07	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 19:07	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 19:07	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/30/14 19:07	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/30/14 19:07	1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	111 %	80-120	1		10/30/14 19:07		
1,2-Dichloroethane-d4 (S)	102 %	80-120	1		10/30/14 19:07	17060-07-0	
Toluene-d8 (S)	96 %	80-120	1		10/30/14 19:07	2037-26-5	
Preservation pH	1.0	0.10	1		10/30/14 19:07		

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-6I Lab ID: 60181402015 Collected: 10/28/14 16:50 Received: 10/29/14 10:10 Matrix: Water CAS No. Parameters Results Units Report Limit DF Prepared Analyzed Qual 8260 MSV Analytical Method: EPA 5030B/8260 Acetone ND ug/L 10.0 1 10/30/14 19:22 67-64-1 ND ug/L 10/30/14 19:22 71-43-2 Benzene 1.0 1 ND ug/L Bromobenzene 1.0 10/30/14 19:22 108-86-1 1 ND ug/L Bromochloromethane 10/30/14 19:22 74-97-5 1.0 1 ND ug/L 10/30/14 19:22 75-27-4 Bromodichloromethane 1.0 1 Bromoform ND ug/L 1.0 1 10/30/14 19:22 75-25-2 Bromomethane ND ug/L 5.0 1 10/30/14 19:22 74-83-9 2-Butanone (MEK) ND ug/L 10.0 10/30/14 19:22 78-93-3 1 n-Butylbenzene ND ug/L 1.0 1 10/30/14 19:22 104-51-8 ND ug/L sec-Butylbenzene 1.0 1 10/30/14 19:22 135-98-8 tert-Butylbenzene ND ug/L 1.0 10/30/14 19:22 98-06-6 1 Carbon disulfide ND ug/L 5.0 10/30/14 19:22 75-15-0 1 Carbon tetrachloride ND ug/L 10/30/14 19:22 56-23-5 L3 1.0 1 Chlorobenzene ND ug/L 10/30/14 19:22 108-90-7 1.0 1 10/30/14 19:22 75-00-3 Chloroethane ND ug/L 1.0 1 ND ug/L Chloroform 1.0 1 10/30/14 19:22 67-66-3 Chloromethane ND ug/L 1.0 1 10/30/14 19:22 74-87-3 2-Chlorotoluene ND ug/L 1.0 1 10/30/14 19:22 95-49-8 ND ug/L 1.0 10/30/14 19:22 106-43-4 4-Chlorotoluene 1 1,2-Dibromo-3-chloropropane ND ug/L 2.5 1 10/30/14 19:22 96-12-8 Dibromochloromethane ND ug/L 1.0 1 10/30/14 19:22 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 1.0 10/30/14 19:22 106-93-4 1 ND ug/L 1.0 10/30/14 19:22 74-95-3 Dibromomethane 1 1,2-Dichlorobenzene ND ug/L 10 10/30/14 19:22 95-50-1 1 1,3-Dichlorobenzene ND ug/L 1.0 10/30/14 19:22 541-73-1 1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/30/14 19:22 106-46-7 Dichlorodifluoromethane ND ug/L 1.0 1 10/30/14 19:22 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/30/14 19:22 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/30/14 19:22 107-06-2 1,2-Dichloroethene (Total) ND ug/L 1.0 10/30/14 19:22 540-59-0 1 10/30/14 19:22 75-35-4 1,1-Dichloroethene ND ug/L 1.0 1 10/30/14 19:22 156-59-2 cis-1,2-Dichloroethene ND ug/L 1.0 1 trans-1.2-Dichloroethene ND ua/L 1.0 10/30/14 19:22 156-60-5 1 1,2-Dichloropropane ND ug/L 1.0 1 10/30/14 19:22 78-87-5 10/30/14 19:22 142-28-9 1,3-Dichloropropane ND ug/L 1.0 1 10/30/14 19:22 594-20-7 2,2-Dichloropropane ND ug/L 1.0 1 10/30/14 19:22 563-58-6 1,1-Dichloropropene ND ug/L 1.0 1 10/30/14 19:22 10061-01-5 cis-1,3-Dichloropropene ND ug/L 1.0 1 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/30/14 19:22 10061-02-6 Ethylbenzene ND ug/L 1.0 10/30/14 19:22 100-41-4 1 Hexachloro-1,3-butadiene ND ug/L 10/30/14 19:22 87-68-3 1.0 1 2-Hexanone ND ug/L 10.0 1 10/30/14 19:22 591-78-6 10/30/14 19:22 98-82-8 Isopropylbenzene (Cumene) ND ug/L 1.0 1 p-Isopropyltoluene ND ug/L 1.0 10/30/14 19:22 99-87-6 1 ND ug/L 1.0 10/30/14 19:22 75-09-2 Methylene chloride 1 4-Methyl-2-pentanone (MIBK) ND ug/L 10.0 10/30/14 19:22 108-10-1 1 Methyl-tert-butyl ether ND ug/L 10/30/14 19:22 1634-04-4 1.0 1

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-6I	Lab ID: 6018140201	5 Collected: 10/28/1	4 16:50	Received: 1	0/29/14 10:10 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Naphthalene	ND ug/L	10.0	1		10/30/14 19:22	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 19:22	103-65-1	
Styrene	ND ug/L	1.0	1		10/30/14 19:22	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 19:22	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 19:22	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		10/30/14 19:22	127-18-4	
Toluene	ND ug/L	1.0	1		10/30/14 19:22	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 19:22	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 19:22	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/30/14 19:22	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 19:22	79-00-5	
Trichloroethene	ND ug/L	1.0	1		10/30/14 19:22	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 19:22	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 19:22	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 19:22	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 19:22	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/30/14 19:22	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/30/14 19:22	1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	96 %	80-120	1		10/30/14 19:22		
1,2-Dichloroethane-d4 (S)	103 %	80-120	1		10/30/14 19:22	17060-07-0	
Toluene-d8 (S)	99 %	80-120	1		10/30/14 19:22	2037-26-5	
Preservation pH	1.0	0.10	1		10/30/14 19:22		

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-10S Lab ID: 60181402016 Received: 10/29/14 10:10 Collected: 10/28/14 12:05 Matrix: Water CAS No. Parameters Results Units Report Limit DF Prepared Analyzed Qual 8260 MSV Analytical Method: EPA 5030B/8260 Acetone ND ug/L 10.0 1 10/30/14 19:36 67-64-1 ND ug/L Benzene 1.0 1 10/30/14 19:36 71-43-2 ND ug/L Bromobenzene 1.0 10/30/14 19:36 108-86-1 1 Bromochloromethane ND ug/L 10/30/14 19:36 74-97-5 1.0 1 ND ug/L Bromodichloromethane 1.0 1 10/30/14 19:36 75-27-4 Bromoform ND ug/L 1.0 1 10/30/14 19:36 75-25-2 Bromomethane ND ug/L 5.0 1 10/30/14 19:36 74-83-9 2-Butanone (MEK) ND ug/L 10.0 10/30/14 19:36 78-93-3 1 n-Butylbenzene ND ug/L 1.0 1 10/30/14 19:36 104-51-8 sec-Butylbenzene ND ug/L 1.0 1 10/30/14 19:36 135-98-8 tert-Butylbenzene ND ug/L 1.0 10/30/14 19:36 98-06-6 1 Carbon disulfide ND ug/L 5.0 10/30/14 19:36 75-15-0 1 Carbon tetrachloride ND ug/L 10/30/14 19:36 56-23-5 L3 1.0 1 Chlorobenzene ND ug/L 10/30/14 19:36 108-90-7 1.0 1 Chloroethane ND ug/L 10/30/14 19:36 75-00-3 1.0 1 Chloroform ND ug/L 1.0 1 10/30/14 19:36 67-66-3 Chloromethane ND ug/L 1.0 1 10/30/14 19:36 74-87-3 2-Chlorotoluene ND ug/L 1.0 1 10/30/14 19:36 95-49-8 ND ug/L 1.0 10/30/14 19:36 106-43-4 4-Chlorotoluene 1 1,2-Dibromo-3-chloropropane ND ug/L 2.5 1 10/30/14 19:36 96-12-8 Dibromochloromethane ND ug/L 1.0 1 10/30/14 19:36 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 1.0 10/30/14 19:36 106-93-4 1 ND ug/L 1.0 10/30/14 19:36 74-95-3 Dibromomethane 1 1,2-Dichlorobenzene ND ug/L 10 10/30/14 19:36 95-50-1 1 1,3-Dichlorobenzene ND ug/L 1.0 10/30/14 19:36 541-73-1 1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/30/14 19:36 106-46-7 Dichlorodifluoromethane ND ug/L 1.0 1 10/30/14 19:36 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/30/14 19:36 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/30/14 19:36 107-06-2 2.5 ug/L 1.0 10/30/14 19:36 540-59-0 1,2-Dichloroethene (Total) 1 ND ug/L 1,1-Dichloroethene 1.0 1 10/30/14 19:36 75-35-4 2.5 ug/L cis-1,2-Dichloroethene 1.0 1 10/30/14 19:36 156-59-2 trans-1.2-Dichloroethene ND ua/L 1.0 10/30/14 19:36 156-60-5 1 1,2-Dichloropropane ND ug/L 1.0 10/30/14 19:36 78-87-5 1 1,3-Dichloropropane ND ug/L 1.0 1 10/30/14 19:36 142-28-9 10/30/14 19:36 594-20-7 2,2-Dichloropropane ND ug/L 1.0 1 10/30/14 19:36 563-58-6 ND ug/L 1.0 1,1-Dichloropropene 1 10/30/14 19:36 10061-01-5 cis-1,3-Dichloropropene ND ug/L 1.0 1 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/30/14 19:36 10061-02-6 Ethylbenzene ND ug/L 1.0 10/30/14 19:36 100-41-4 1 Hexachloro-1,3-butadiene ND ug/L 10/30/14 19:36 87-68-3 1.0 1 2-Hexanone ND ug/L 10.0 1 10/30/14 19:36 591-78-6 Isopropylbenzene (Cumene) ND ug/L 1.0 1 10/30/14 19:36 98-82-8 p-Isopropyltoluene ND ug/L 1.0 10/30/14 19:36 99-87-6 1 ND ug/L 1.0 10/30/14 19:36 75-09-2 Methylene chloride 1 4-Methyl-2-pentanone (MIBK) ND ug/L 10.0 10/30/14 19:36 108-10-1 1 Methyl-tert-butyl ether ND ug/L 10/30/14 19:36 1634-04-4 1.0 1

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: GMW-10S	Lab ID: 60181402016	Collected: 10/28/1	4 12:05	Received: 1	10/29/14 10:10 N	Aatrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Naphthalene	ND ug/L	10.0	1		10/30/14 19:36	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 19:36	103-65-1	
Styrene	ND ug/L	1.0	1		10/30/14 19:36	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 19:36	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 19:36	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		10/30/14 19:36	127-18-4	
Toluene	ND ug/L	1.0	1		10/30/14 19:36	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 19:36	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 19:36	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/30/14 19:36	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 19:36	79-00-5	
Trichloroethene	12.3 ug/L	1.0	1		10/30/14 19:36	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 19:36	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 19:36	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 19:36	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 19:36	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/30/14 19:36	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/30/14 19:36	1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	102 %	80-120	1		10/30/14 19:36		
1,2-Dichloroethane-d4 (S)	102 %	80-120	1		10/30/14 19:36		
Toluene-d8 (S)	97 %	80-120	1		10/30/14 19:36		
Preservation pH	1.0	0.10	1		10/30/14 19:36		

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: MW-28S Lab ID: 60181402017 Received: 10/29/14 10:10 Collected: 10/28/14 12:25 Matrix: Water CAS No. Parameters Results Units Report Limit DF Prepared Analyzed Qual 8260 MSV Analytical Method: EPA 5030B/8260 Acetone ND ug/L 10.0 1 10/30/14 19:51 67-64-1 ND ug/L Benzene 1.0 1 10/30/14 19:51 71-43-2 ND ug/L Bromobenzene 1.0 10/30/14 19:51 108-86-1 1 ND ug/L Bromochloromethane 10/30/14 19:51 74-97-5 1.0 1 ND ug/L Bromodichloromethane 1.0 1 10/30/14 19:51 75-27-4 Bromoform ND ug/L 1.0 1 10/30/14 19:51 75-25-2 Bromomethane ND ug/L 5.0 1 10/30/14 19:51 74-83-9 2-Butanone (MEK) ND ug/L 10.0 10/30/14 19:51 78-93-3 1 n-Butylbenzene ND ug/L 1.0 1 10/30/14 19:51 104-51-8 sec-Butylbenzene ND ug/L 1.0 1 10/30/14 19:51 135-98-8 tert-Butylbenzene ND ug/L 1.0 10/30/14 19:51 98-06-6 1 Carbon disulfide ND ug/L 5.0 10/30/14 19:51 75-15-0 1 Carbon tetrachloride ND ug/L 10/30/14 19:51 56-23-5 L3 1.0 1 Chlorobenzene ND ug/L 10/30/14 19:51 108-90-7 1.0 1 Chloroethane ND ug/L 1.0 10/30/14 19:51 75-00-3 1 Chloroform ND ug/L 1.0 1 10/30/14 19:51 67-66-3 Chloromethane ND ug/L 1.0 1 10/30/14 19:51 74-87-3 2-Chlorotoluene ND ug/L 1.0 1 10/30/14 19:51 95-49-8 ND ug/L 1.0 10/30/14 19:51 106-43-4 4-Chlorotoluene 1 1,2-Dibromo-3-chloropropane ND ug/L 2.5 1 10/30/14 19:51 96-12-8 Dibromochloromethane ND ug/L 1.0 1 10/30/14 19:51 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 1.0 10/30/14 19:51 106-93-4 1 ND ug/L 1.0 10/30/14 19:51 74-95-3 Dibromomethane 1 1,2-Dichlorobenzene ND ug/L 10 10/30/14 19:51 95-50-1 1 1,3-Dichlorobenzene ND ug/L 1.0 10/30/14 19:51 541-73-1 1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/30/14 19:51 106-46-7 Dichlorodifluoromethane ND ug/L 1.0 1 10/30/14 19:51 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/30/14 19:51 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/30/14 19:51 107-06-2 1,2-Dichloroethene (Total) 1.4 ug/L 1.0 10/30/14 19:51 540-59-0 1 ND ug/L 1,1-Dichloroethene 1.0 1 10/30/14 19:51 75-35-4 1.4 ug/L cis-1,2-Dichloroethene 1.0 1 10/30/14 19:51 156-59-2 trans-1.2-Dichloroethene ND ua/L 1.0 10/30/14 19:51 156-60-5 1 1,2-Dichloropropane ND ug/L 1.0 10/30/14 19:51 78-87-5 1 1,3-Dichloropropane ND ug/L 1.0 1 10/30/14 19:51 142-28-9 10/30/14 19:51 594-20-7 2,2-Dichloropropane ND ug/L 1.0 1 10/30/14 19:51 563-58-6 ND ug/L 1.0 1,1-Dichloropropene 1 10/30/14 19:51 10061-01-5 cis-1,3-Dichloropropene ND ug/L 1.0 1 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/30/14 19:51 10061-02-6 Ethylbenzene ND ug/L 1.0 10/30/14 19:51 100-41-4 1 Hexachloro-1,3-butadiene ND ug/L 10/30/14 19:51 87-68-3 1.0 1 2-Hexanone ND ug/L 10.0 1 10/30/14 19:51 591-78-6 Isopropylbenzene (Cumene) ND ug/L 1.0 1 10/30/14 19:51 98-82-8 p-Isopropyltoluene ND ug/L 1.0 10/30/14 19:51 99-87-6 1 ND ug/L 1.0 10/30/14 19:51 75-09-2 Methylene chloride 1 4-Methyl-2-pentanone (MIBK) ND ug/L 10.0 10/30/14 19:51 108-10-1 1 Methyl-tert-butyl ether ND ug/L 10/30/14 19:51 1634-04-4 1.0 1

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: MW-28S	Lab ID: 6018140201	7 Collected: 10/28/1	4 12:25	Received: 1	0/29/14 10:10 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Naphthalene	ND ug/L	10.0	1		10/30/14 19:51	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 19:51	103-65-1	
Styrene	ND ug/L	1.0	1		10/30/14 19:51	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 19:51	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 19:51	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		10/30/14 19:51	127-18-4	
Toluene	ND ug/L	1.0	1		10/30/14 19:51	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 19:51	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 19:51	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/30/14 19:51	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 19:51	79-00-5	
Trichloroethene	11.3 ug/L	1.0	1		10/30/14 19:51	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 19:51	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 19:51	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 19:51	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 19:51	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/30/14 19:51	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/30/14 19:51	1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	96 %	80-120	1		10/30/14 19:51	460-00-4	
1,2-Dichloroethane-d4 (S)	100 %	80-120	1		10/30/14 19:51	17060-07-0	
Toluene-d8 (S)	92 %	80-120	1		10/30/14 19:51	2037-26-5	
Preservation pH	1.0	0.10	1		10/30/14 19:51		

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: DUP-1	Lab ID: 6018140201	8 Collected: 10/28/1	4 18:50	Received:	10/29/14 10:10	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical Method: EPA	5030B/8260					
Acetone	ND ug/L	10.0	1		10/30/14 20:06	67-64-1	
Benzene	ND ug/L	1.0	1		10/30/14 20:06	6 71-43-2	
Bromobenzene	ND ug/L	1.0	1		10/30/14 20:06	6 108-86-1	
Bromochloromethane	ND ug/L	1.0	1		10/30/14 20:06	6 74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		10/30/14 20:06	6 75-27-4	
Bromoform	ND ug/L	1.0	1		10/30/14 20:06	6 75-25-2	
Bromomethane	ND ug/L	5.0	1		10/30/14 20:06	6 74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		10/30/14 20:06	5 78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		10/30/14 20:06	6 104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		10/30/14 20:06	3 135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		10/30/14 20:06	8 98-06-6	
Carbon disulfide	ND ug/L	5.0	1		10/30/14 20:06	6 75-15-0	
Carbon tetrachloride	ND ug/L	1.0	1		10/30/14 20:06	56-23-5	L3
Chlorobenzene	ND ug/L	1.0	1		10/30/14 20:06	5 108-90-7	
Chloroethane	ND ug/L	1.0	1		10/30/14 20:06	5 75-00-3	
Chloroform	ND ug/L	1.0	1		10/30/14 20:06	67-66-3	
Chloromethane	ND ug/L	1.0	1		10/30/14 20:06	6 74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		10/30/14 20:06	§ 95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		10/30/14 20:06	6 106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		10/30/14 20:06	6 96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		10/30/14 20:06	5 124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		10/30/14 20:06	6 106-93-4	
Dibromomethane	ND ug/L	1.0	1		10/30/14 20:06	6 74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 20:06	8 95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 20:06	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 20:06	6 106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		10/30/14 20:06	6 75-71-8	
1,1-Dichloroethane	6.8 ug/L	1.0	1		10/30/14 20:06	6 75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		10/30/14 20:06	6 107-06-2	
1,2-Dichloroethene (Total)	20.1 ug/L	1.0	1		10/30/14 20:06	540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	1		10/30/14 20:06	6 75-35-4	
cis-1,2-Dichloroethene	19.8 ug/L	1.0	1		10/30/14 20:06	3 156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		10/30/14 20:06	5 156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 20:06	6 78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		10/30/14 20:06	6 142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 20:06	6 594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		10/30/14 20:06		
cis-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 20:06	6 10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 20:06	6 10061-02-6	
Ethylbenzene	ND ug/L	1.0	1		10/30/14 20:06		
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/30/14 20:06	87-68-3	
2-Hexanone	ND ug/L	10.0	1		10/30/14 20:06		
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/30/14 20:06	6 98-82-8	
p-lsopropyltoluene	ND ug/L	1.0	1		10/30/14 20:06		
Methylene chloride	ND ug/L	1.0	1		10/30/14 20:06		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		10/30/14 20:06	6 108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		10/30/14 20:06		

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: DUP-1	Lab ID: 6018140201	B Collected: 10/28/14	18:50	Received: 10/29/14 10:10	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260				
Naphthalene	ND ug/L	10.0	1	10/30/14 20	:06 91-20-3	
n-Propylbenzene	ND ug/L	1.0	1	10/30/14 20	:06 103-65-1	
Styrene	ND ug/L	1.0	1	10/30/14 20	:06 100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	10/30/14 20	:06 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	10/30/14 20	:06 79-34-5	
Tetrachloroethene	2.1 ug/L	1.0	1	10/30/14 20	:06 127-18-4	
Toluene	ND ug/L	1.0	1	10/30/14 20	:06 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	10/30/14 20	:06 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	10/30/14 20	:06 120-82-1	
1,1,1-Trichloroethane	1.5 ug/L	1.0	1	10/30/14 20	:06 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1	10/30/14 20	:06 79-00-5	
Trichloroethene	14.3 ug/L	1.0	1	10/30/14 20	:06 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	10/30/14 20	:06 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1	10/30/14 20	:06 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1	10/30/14 20	:06 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	10/30/14 20	:06 108-67-8	
Vinyl chloride	ND ug/L	1.0	1	10/30/14 20	:06 75-01-4	
Xylene (Total)	ND ug/L	3.0	1	10/30/14 20	:06 1330-20-7	
Surrogates						
4-Bromofluorobenzene (S)	98 %	80-120	1		:06 460-00-4	
1,2-Dichloroethane-d4 (S)	97 %	80-120	1		:06 17060-07-0	
Toluene-d8 (S)	100 %	80-120	1		:06 2037-26-5	
Preservation pH	1.0	0.10	1	10/30/14 20	:06	

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: TRIP BLANK	Lab ID: 60181402019	Lab ID: 60181402019 Collected: Received: 10/29/14 10:10 Matrix: Water						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytical Method: EPA 50	030B/8260						
Acetone	ND ug/L	10.0	1		10/30/14 16:54	67-64-1		
Benzene	ND ug/L	1.0	1		10/30/14 16:54	71-43-2		
Bromobenzene	ND ug/L	1.0	1		10/30/14 16:54	108-86-1		
Bromochloromethane	ND ug/L	1.0	1		10/30/14 16:54	74-97-5		
Bromodichloromethane	ND ug/L	1.0	1		10/30/14 16:54	75-27-4		
Bromoform	ND ug/L	1.0	1		10/30/14 16:54	75-25-2		
Bromomethane	ND ug/L	5.0	1		10/30/14 16:54	74-83-9		
2-Butanone (MEK)	ND ug/L	10.0	1		10/30/14 16:54	78-93-3		
n-Butylbenzene	ND ug/L	1.0	1		10/30/14 16:54	104-51-8		
sec-Butylbenzene	ND ug/L	1.0	1		10/30/14 16:54	135-98-8		
tert-Butylbenzene	ND ug/L	1.0	1		10/30/14 16:54	98-06-6		
Carbon disulfide	ND ug/L	5.0	1		10/30/14 16:54	75-15-0		
Carbon tetrachloride	ND ug/L	1.0	1		10/30/14 16:54	56-23-5	L3	
Chlorobenzene	ND ug/L	1.0	1		10/30/14 16:54	108-90-7		
Chloroethane	ND ug/L	1.0	1		10/30/14 16:54	75-00-3		
Chloroform	ND ug/L	1.0	1		10/30/14 16:54	67-66-3		
Chloromethane	ND ug/L	1.0	1		10/30/14 16:54	74-87-3		
2-Chlorotoluene	ND ug/L	1.0	1		10/30/14 16:54	95-49-8		
4-Chlorotoluene	ND ug/L	1.0	1		10/30/14 16:54	106-43-4		
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		10/30/14 16:54	96-12-8		
Dibromochloromethane	ND ug/L	1.0	1		10/30/14 16:54	124-48-1		
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		10/30/14 16:54	106-93-4		
Dibromomethane	ND ug/L	1.0	1		10/30/14 16:54	74-95-3		
1,2-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 16:54	95-50-1		
1,3-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 16:54	541-73-1		
1,4-Dichlorobenzene	ND ug/L	1.0	1		10/30/14 16:54	106-46-7		
Dichlorodifluoromethane	ND ug/L	1.0	1		10/30/14 16:54	75-71-8		
1,1-Dichloroethane	ND ug/L	1.0	1		10/30/14 16:54	75-34-3		
1,2-Dichloroethane	ND ug/L	1.0	1		10/30/14 16:54			
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		10/30/14 16:54	540-59-0		
1,1-Dichloroethene	ND ug/L	1.0	1		10/30/14 16:54			
cis-1,2-Dichloroethene	ND ug/L	1.0	1		10/30/14 16:54			
trans-1,2-Dichloroethene	ND ug/L	1.0	1		10/30/14 16:54			
1,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 16:54			
1,3-Dichloropropane	ND ug/L	1.0	1		10/30/14 16:54			
2,2-Dichloropropane	ND ug/L	1.0	1		10/30/14 16:54			
1,1-Dichloropropene	ND ug/L	1.0	1		10/30/14 16:54			
cis-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 16:54			
trans-1,3-Dichloropropene	ND ug/L	1.0	1		10/30/14 16:54			
Ethylbenzene	ND ug/L	1.0	1		10/30/14 16:54			
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/30/14 16:54			
2-Hexanone	ND ug/L	10.0	1		10/30/14 16:54			
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/30/14 16:54			
p-lsopropyltoluene	ND ug/L	1.0	1		10/30/14 16:54			
Methylene chloride	ND ug/L	1.0	1		10/30/14 16:54			
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		10/30/14 16:54			
Methyl-tert-butyl ether	ND ug/L	1.0	1		10/30/14 16:54			

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Sample: TRIP BLANK	Lab ID: 60181402019	Collected:		Received: 10/2	29/14 10:10 M	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Naphthalene	ND ug/L	10.0	1		10/30/14 16:54	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/30/14 16:54	103-65-1	
Styrene	ND ug/L	1.0	1		10/30/14 16:54	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 16:54	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/30/14 16:54	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		10/30/14 16:54	127-18-4	
Toluene	ND ug/L	1.0	1		10/30/14 16:54	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 16:54	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/30/14 16:54	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/30/14 16:54	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/30/14 16:54	79-00-5	
Trichloroethene	ND ug/L	1.0	1		10/30/14 16:54	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/30/14 16:54	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/30/14 16:54	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 16:54	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/30/14 16:54	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/30/14 16:54	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/30/14 16:54	1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	92 %	80-120	1		10/30/14 16:54	460-00-4	
1,2-Dichloroethane-d4 (S)	95 %	80-120	1		10/30/14 16:54	17060-07-0	
Toluene-d8 (S)	97 %	80-120	1		10/30/14 16:54	2037-26-5	
Preservation pH	1.0	0.10	1		10/30/14 16:54	Ļ	

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Associated Lab Samples:

QC Batch Method:

QC Batch:

AIR/21717

RSK 175

Analysis Method:

Analysis Description: **RSK 175 AIR HEADSPACE**

RSK 175

60181402001, 60181402002, 60181402003, 60181402004, 60181402005, 60181402006, 60181402007

METHOD BLANK: 1833322 Matrix: Water Associated Lab Samples: 60181402001, 60181402002, 60181402003, 60181402004, 60181402005, 60181402006, 60181402007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Ethane	ug/L	ND	6.2	11/02/14 13:12	
Ethene	ug/L	ND	6.2	11/02/14 13:12	
Methane	ug/L	ND	6.6	11/02/14 13:12	

LABORATORY CONTROL SAMPLE	& LCSD: 1833323		18	33324						
			LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Ethane	ug/L	114	115	115	101	101	85-115	0	20	
Ethene	ug/L	106	106	106	100	100	85-115	0	20	
Methane	ug/L	60.7	60.0	60.2	99	99	85-115	0	20	

SAMPLE DUPLICATE: 1833325

Parameter	Units	60181303003 Result	Dup Result	RPD	Max RPD	Qualifiers
Falailletei	011115					Quaimers
Ethane	ug/L	ND	ND		20	
Ethene	ug/L	ND	ND		20	
Methane	ug/L	5280	5780	9	20	

SAMPLE DUPLICATE: 1833326

		60181364001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Ethane	ug/L	<3.1	ND		20	
Ethene	ug/L	<3.1	ND		20	
Methane	ug/L	6980	6760	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:	2ND 8	KIRBY RE	MEDI	ATION										
Pace Project No .:	60181	402												
QC Batch:	MPR	P/29582			Analys	is Method	: E	PA 200.7						
QC Batch Method:	EPA	200.7			Analys	is Descrip	tion: 2	00.7 Metals,	Total					
Associated Lab San	nples:	60181402	2001, 6	60181402002	, 60181402	003, 6018	1402004, 6	018140200	5, 6018140	2006, 6018	1402007			
METHOD BLANK:	14702	16			N	latrix: Wa	ter							
Associated Lab San	nples:	60181402	2001, 6	60181402002	, 60181402	003, 6018	1402004, 6	018140200	5, 6018140	2006, 6018	1402007			
					Blank	R	eporting							
Paran	neter			Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Iron			ug/L			ND	50.0	11/05/14	14:40					
Manganese			ug/L			ND	5.0	11/05/14	14:40					
LABORATORY COM	NTROL	SAMPLE:	1470)217										
					Spike	LCS	6	LCS	% Rec	;				
Paran	neter			Units	Conc.	Resu	ılt	% Rec	Limits	Qu	alifiers			
Iron			ug/L		10000		9630	96	85	5-115				
Manganese			ug/L		1000		986	99	85	5-115				
MATRIX SPIKE & M	IATRIX	SPIKE DUF	PLICA	TE: 14702	18		1470219							
					MS	MSD								
_				181402003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	- · ·
Paramete	er	Un	its	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron		ug/L		ND	10000	10000	9750	9630	97	96	70-130	1	20	
Manganese		ug/L		249	1000	1000	1240	1240	99	99	70-130	0	20	
MATRIX SPIKE SAI	MPLE:		1470	0220										
					601813		Spike	MS		IS	% Rec			
Paran	neter			Units	Res	ult	Conc.	Result	%	Rec	Limits		Qualif	fiers
Iron			ug/L			1120	10000	108	00	96	70-1	30		
Manganese			ug/L			572	1000	15	50	97	70-1	30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:	2ND & I	KIRBY REMED	DIATION										
Pace Project No .:	601814	02											
QC Batch:	MPRF	2/29565		Analys	s Method	:	EPA 200.7						
QC Batch Method:	EPA 2	00.7		Analys	s Descrip	tion:	200.7 Metals	, Dissolved	ł				
Associated Lab San	nples:	60181402001,	, 60181402002	, 601814020	003, 6018	1402004,	6018140200	5, 601814	02006, 60	181402007			
METHOD BLANK:	146955	1		N	latrix: Wa	ter							
Associated Lab San	nples:	60181402001,	, 60181402002	, 60181402	003, 6018	1402004,	6018140200	5, 601814	02006, 60	181402007			
_				Blank		eporting							
Paran	neter		Units	Result	:	Limit	Analyz		Qualifier	S			
Iron, Dissolved		ug/l			ND	50							
Manganese, Dissolv	/ed	ug/l	L		ND	5	0 11/05/14	14:11					
LABORATORY COM	NTROL S	AMPLE: 146	69552										
				Spike	LCS	6	LCS	% Re	С				
Paran	neter		Units	Conc.	Resu	ılt	% Rec	Limit	s (Qualifiers	_		
Iron, Dissolved		ug/l	L	10000		9970	100	8	5-115				
Manganese, Dissolv	/ed	ug/l	L	1000		1010	101	8	5-115				
MATRIX SPIKE & M	IATRIX S		ATE: 14695	53		1469554	1						
				MS	MSD								
			60181402001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Dissolved		ug/L	7460	10000	10000	1740		99	-	2 70-130		-	
Manganese, Dissolv	ved	ug/L	1130	1000	1000	213	0 2040	100	9	1 70-130	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

QC Batch:	/ISV/65435 Analysis Method: E		EPA 5030B/8260
QC Batch Method:	EPA 5030B/8260	Analysis Description:	8260 MSV Water 10 mL Purge
Associated Lab Sam	ples: 60181402001, 60181402002, 6	0181402003, 60181402004	., 60181402005

METHOD BLANK:	1470048

Matrix: Water

Associated Lab Samples: 60181402001, 60181402002, 60181402003, 60181402004, 60181402005

_		Blank Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifier	
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	10/30/14 10:44		
1,1,1-Trichloroethane	ug/L	ND	1.0	10/30/14 10:44		
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	10/30/14 10:44		
1,1,2-Trichloroethane	ug/L	ND	1.0	10/30/14 10:44		
1,1-Dichloroethane	ug/L	ND	1.0	10/30/14 10:44		
1,1-Dichloroethene	ug/L	ND	1.0	10/30/14 10:44		
1,1-Dichloropropene	ug/L	ND	1.0	10/30/14 10:44		
1,2,3-Trichlorobenzene	ug/L	ND	1.0	10/30/14 10:44		
1,2,3-Trichloropropane	ug/L	ND	2.5	10/30/14 10:44		
1,2,4-Trichlorobenzene	ug/L	ND	1.0	10/30/14 10:44		
1,2,4-Trimethylbenzene	ug/L	ND	1.0	10/30/14 10:44		
1,2-Dibromo-3-chloropropane	ug/L	ND	2.5	10/30/14 10:44		
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	10/30/14 10:44		
1,2-Dichlorobenzene	ug/L	ND	1.0	10/30/14 10:44		
1,2-Dichloroethane	ug/L	ND	1.0	10/30/14 10:44		
1,2-Dichloroethene (Total)	ug/L	ND	1.0	10/30/14 10:44		
,2-Dichloropropane	ug/L	ND	1.0	10/30/14 10:44		
1,3,5-Trimethylbenzene	ug/L	ND	1.0	10/30/14 10:44		
1,3-Dichlorobenzene	ug/L	ND	1.0	10/30/14 10:44		
1,3-Dichloropropane	ug/L	ND	1.0	10/30/14 10:44		
1,4-Dichlorobenzene	ug/L	ND	1.0	10/30/14 10:44		
2,2-Dichloropropane	ug/L	ND	1.0	10/30/14 10:44		
2-Butanone (MEK)	ug/L	ND	10.0	10/30/14 10:44		
2-Chlorotoluene	ug/L	ND	1.0	10/30/14 10:44		
2-Hexanone	ug/L	ND	10.0	10/30/14 10:44		
4-Chlorotoluene	ug/L	ND	1.0	10/30/14 10:44		
1-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	10/30/14 10:44		
Acetone	ug/L	ND	10.0	10/30/14 10:44		
Benzene	ug/L	ND	1.0	10/30/14 10:44		
Bromobenzene	ug/L	ND	1.0	10/30/14 10:44		
Bromochloromethane	ug/L	ND	1.0	10/30/14 10:44		
Bromodichloromethane	ug/L	ND	1.0	10/30/14 10:44		
Bromoform	ug/L	ND	1.0	10/30/14 10:44		
Bromomethane	ug/L	ND	5.0	10/30/14 10:44		
Carbon disulfide	ug/L	ND	5.0	10/30/14 10:44		
Carbon tetrachloride	ug/L	ND	1.0	10/30/14 10:44		
Chlorobenzene	ug/L	ND	1.0	10/30/14 10:44		
Chloroethane	ug/L	ND	1.0	10/30/14 10:44		
Chloroform	ug/L	ND	1.0	10/30/14 10:44		
Chloromethane	ug/L	ND	1.0	10/30/14 10:44		
cis-1,2-Dichloroethene	ug/L	ND	1.0	10/30/14 10:44		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

METHOD BLANK: 1470048 Matrix: Water Associated Lab Samples: 60181402001, 60181402002, 60181402003, 60181402004, 60181402005 Blank Reporting Analyzed Parameter Units Result Limit Qualifiers cis-1,3-Dichloropropene ND 1.0 10/30/14 10:44 ug/L ug/L ND 1.0 10/30/14 10:44 Dibromochloromethane 1.0 10/30/14 10:44 Dibromomethane ug/L ND Dichlorodifluoromethane ND 1.0 10/30/14 10:44 ug/L

Ethylbenzene	ug/L	ND	1.0	10/30/14 10:44
Hexachloro-1,3-butadiene	ug/L	ND	1.0	10/30/14 10:44
Isopropylbenzene (Cumene)	ug/L	ND	1.0	10/30/14 10:44
Methyl-tert-butyl ether	ug/L	ND	1.0	10/30/14 10:44
Methylene chloride	ug/L	ND	1.0	10/30/14 10:44
n-Butylbenzene	ug/L	ND	1.0	10/30/14 10:44
n-Propylbenzene	ug/L	ND	1.0	10/30/14 10:44
Naphthalene	ug/L	ND	10.0	10/30/14 10:44
p-Isopropyltoluene	ug/L	ND	1.0	10/30/14 10:44
sec-Butylbenzene	ug/L	ND	1.0	10/30/14 10:44
Styrene	ug/L	ND	1.0	10/30/14 10:44
tert-Butylbenzene	ug/L	ND	1.0	10/30/14 10:44
Tetrachloroethene	ug/L	ND	1.0	10/30/14 10:44
Toluene	ug/L	ND	1.0	10/30/14 10:44
trans-1,2-Dichloroethene	ug/L	ND	1.0	10/30/14 10:44
trans-1,3-Dichloropropene	ug/L	ND	1.0	10/30/14 10:44
Trichloroethene	ug/L	ND	1.0	10/30/14 10:44
Trichlorofluoromethane	ug/L	ND	1.0	10/30/14 10:44
Vinyl chloride	ug/L	ND	1.0	10/30/14 10:44
Xylene (Total)	ug/L	ND	3.0	10/30/14 10:44
1,2-Dichloroethane-d4 (S)	%	96	80-120	10/30/14 10:44
4-Bromofluorobenzene (S)	%	99	80-120	10/30/14 10:44
Toluene-d8 (S)	%	97	80-120	10/30/14 10:44

LABORATORY CONTROL SAMPLE: 1470049

	L. 1470045					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	21.5	108	80-124	
1,1,1-Trichloroethane	ug/L	20	21.4	107	80-121	
1,1,2,2-Tetrachloroethane	ug/L	20	20.5	102	73-124	
1,1,2-Trichloroethane	ug/L	20	18.9	94	80-120	
1,1-Dichloroethane	ug/L	20	20.4	102	77-120	
1,1-Dichloroethene	ug/L	20	20.6	103	78-126	
1,1-Dichloropropene	ug/L	20	19.1	96	80-120	
1,2,3-Trichlorobenzene	ug/L	20	20.2	101	75-130	
1,2,3-Trichloropropane	ug/L	20	20.4	102	76-127	
1,2,4-Trichlorobenzene	ug/L	20	20.6	103	79-124	
1,2,4-Trimethylbenzene	ug/L	20	21.0	105	80-122	
1,2-Dibromo-3-chloropropane	ug/L	20	20.6	103	68-131	
1,2-Dibromoethane (EDB)	ug/L	20	20.4	102	80-127	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

LABORATORY CONTROL SAMPLE: 1470049

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1.2-Dichlorobenzene	ug/L	20	20.1	101	80-122	
1,2-Dichloroethane	ug/L	20	19.2	96	77-123	
1,2-Dichloroethene (Total)	ug/L	40	40.5	101	80-120	
1,2-Dichloropropane	ug/L	20	20.7	101	80-121	
1,3,5-Trimethylbenzene	ug/L	20	20.7	105	80-121	
1,3-Dichlorobenzene	ug/L	20	20.5	103	80-120	
1,3-Dichloropropane	ug/L	20	20.5	103	80-120	
1,4-Dichlorobenzene	ug/L	20	20.3	103	80-120	
2,2-Dichloropropane	ug/L	20	20.1	101	50-120	
2-Butanone (MEK)	ug/L	100	100	103	52-145	
2-Chlorotoluene	ug/L	20	21.2	106	80-120	
2-Hexanone		100	21.2 96.4	96	57-139	
4-Chlorotoluene	ug/L					
	ug/L	20	20.3	101	80-121	
4-Methyl-2-pentanone (MIBK)	ug/L	100	95.5	95	71-131	
Acetone	ug/L	100	103	103	32-155	
Benzene	ug/L	20	21.2	106	80-120	
Bromobenzene	ug/L	20	20.5	103	80-120	
Bromochloromethane	ug/L	20	19.7	98	77-123	
Bromodichloromethane	ug/L	20	22.0	110	80-120	
Bromoform	ug/L	20	20.7	103	73-124	
romomethane	ug/L	20	15.6	78	31-144	
arbon disulfide	ug/L	20	22.8	114	65-125	
arbon tetrachloride	ug/L	20	29.0	145	78-128 l	_0
chlorobenzene	ug/L	20	21.1	105	80-120	
hloroethane	ug/L	20	18.7	94	55-137	
hloroform	ug/L	20	20.7	104	79-120	
hloromethane	ug/L	20	26.6	133	22-138	
s-1,2-Dichloroethene	ug/L	20	20.1	101	80-120	
s-1,3-Dichloropropene	ug/L	20	19.7	98	80-120	
ibromochloromethane	ug/L	20	22.1	111	80-120	
ibromomethane	ug/L	20	21.3	106	80-122	
ichlorodifluoromethane	ug/L	20	19.0	95	23-120	
thylbenzene	ug/L	20	21.2	106	80-121	
lexachloro-1,3-butadiene	ug/L	20	22.5	113	77-129	
sopropylbenzene (Cumene)	ug/L	20	23.3	116	80-136	
Nethyl-tert-butyl ether	ug/L	20	19.4	97	74-125	
lethylene chloride	ug/L	20	20.4	102	73-126	
-Butylbenzene	ug/L	20	22.7	114	83-123	
-Propylbenzene	ug/L	20	19.4	97	80-122	
laphthalene	ug/L	20	20.3	101	73-130	
-Isopropyltoluene	ug/L	20	21.6	108	80-124	
ec-Butylbenzene	ug/L	20	22.2	111	80-129	
Styrene	ug/L	20	21.1	105	80-120	
ert-Butylbenzene	ug/L	20	19.7	98	80-126	
Tetrachloroethene	ug/L	20	21.3	107	80-121	
Toluene	-	20	20.4	102	80-122	
IUIUEIIE	ug/L	20	20.4	102		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

LABORATORY CONTROL SAMPLE: 1470049

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
trans-1,3-Dichloropropene	ug/L	20	21.7	109	80-127	
Trichloroethene	ug/L	20	19.6	98	80-120	
Trichlorofluoromethane	ug/L	20	21.4	107	67-120	
Vinyl chloride	ug/L	20	20.3	101	59-120	
Xylene (Total)	ug/L	60	62.3	104	80-121	
1,2-Dichloroethane-d4 (S)	%			95	80-120	
4-Bromofluorobenzene (S)	%			99	80-120	
Toluene-d8 (S)	%			101	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

2ND & KIRBY REMEDIATION

60181402

Project:

Pace Project No.:

QUALITY CONTROL DATA

QC Batch: MSV/6	5437	Analysis Meth	nod: EF	PA 5030B/8260	
QC Batch Method: EPA 50	030B/8260	Analysis Desc	cription: 82	60 MSV Water 10	mL Purge
	60181402006, 60181402007				
	60181402013, 60181402014	4, 60181402015, 60	0181402016, 60	0181402017, 60181	1402018, 60181402019
METHOD BLANK: 1470140	0	Matrix:	Water		
Associated Lab Samples:	60181402006, 60181402007	7. 60181402008. 60	0181402009.60	0181402010, 60181	1402011. 60181402012.
	60181402013, 60181402014				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		1.0	10/30/14 16:39	
1,1,1-Trichloroethane	ug/L	ND	1.0	10/30/14 16:39	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	10/30/14 16:39	
1,1,2-Trichloroethane	ug/L	ND	1.0	10/30/14 16:39	
1,1-Dichloroethane	ug/L	ND	1.0	10/30/14 16:39	
1,1-Dichloroethene	ug/L	ND	1.0	10/30/14 16:39	
1,1-Dichloropropene	ug/L	ND	1.0	10/30/14 16:39	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	10/30/14 16:39	
1,2,3-Trichloropropane	ug/L	ND	2.5	10/30/14 16:39	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	10/30/14 16:39	
1,2,4-Trimethylbenzene	ug/L	ND	1.0	10/30/14 16:39	
1,2-Dibromo-3-chloropropane	•	ND	2.5	10/30/14 16:39	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	10/30/14 16:39	
1,2-Dichlorobenzene	ug/L	ND	1.0	10/30/14 16:39	
1,2-Dichloroethane	ug/L	ND	1.0	10/30/14 16:39	
1,2-Dichloroethene (Total)	ug/L	ND	1.0	10/30/14 16:39	
1,2-Dichloropropane	ug/L	ND	1.0	10/30/14 16:39	
1,3,5-Trimethylbenzene	ug/L	ND	1.0	10/30/14 16:39	
1,3-Dichlorobenzene	ug/L	ND	1.0	10/30/14 16:39	
1,3-Dichloropropane	ug/L	ND	1.0	10/30/14 16:39	
1,4-Dichlorobenzene	ug/L	ND	1.0	10/30/14 16:39	
2,2-Dichloropropane	ug/L	ND	1.0	10/30/14 16:39	
2-Butanone (MEK)	ug/L	ND	10.0	10/30/14 16:39	
2-Chlorotoluene	ug/L	ND	1.0	10/30/14 16:39	
2-Hexanone	ug/L	ND	10.0	10/30/14 16:39	
4-Chlorotoluene	ug/L	ND	1.0	10/30/14 16:39	
4-Methyl-2-pentanone (MIBK	() ug/L	ND	10.0	10/30/14 16:39	
Acetone	ug/L	ND	10.0	10/30/14 16:39	
Benzene	ug/L	ND	1.0	10/30/14 16:39	
Bromobenzene	ug/L	ND	1.0	10/30/14 16:39	
Bromochloromethane	ug/L	ND	1.0	10/30/14 16:39	
Bromodichloromethane	ug/L	ND	1.0	10/30/14 16:39	
Bromoform	ug/L	ND	1.0	10/30/14 16:39	
Bromomethane	ug/L	ND	5.0	10/30/14 16:39	
Carbon disulfide	ug/L	ND	5.0	10/30/14 16:39	
Carbon tetrachloride	ug/L	ND	1.0	10/30/14 16:39	
Chlorobenzene	ug/L	ND	1.0	10/30/14 16:39	
Chloroethane	ug/L	ND	1.0	10/30/14 16:39	
Chloroform	ug/L	ND	1.0	10/30/14 16:39	
	"		1.0	40/00/4440.00	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1.0 10/30/14 16:39

ND

REPORT OF LABORATORY ANALYSIS

ug/L

Chloromethane

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

METHOD BLANK: 1470140		Matrix: V	Vater		
	181402006, 60181402007, 181402013, 60181402014,				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/L	ND	1.0	10/30/14 16:39	
cis-1,3-Dichloropropene	ug/L	ND	1.0	10/30/14 16:39	
Dibromochloromethane	ug/L	ND	1.0	10/30/14 16:39	
Dibromomethane	ug/L	ND	1.0	10/30/14 16:39	
Dichlorodifluoromethane	ug/L	ND	1.0	10/30/14 16:39	
Ethylbenzene	ug/L	ND	1.0	10/30/14 16:39	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	10/30/14 16:39	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	10/30/14 16:39	
Methyl-tert-butyl ether	ug/L	ND	1.0	10/30/14 16:39	
Methylene chloride	ug/L	ND	1.0	10/30/14 16:39	
n-Butylbenzene	ug/L	ND	1.0	10/30/14 16:39	
n-Propylbenzene	ug/L	ND	1.0	10/30/14 16:39	
Naphthalene	ug/L	ND	10.0	10/30/14 16:39	
p-Isopropyltoluene	ug/L	ND	1.0	10/30/14 16:39	
sec-Butylbenzene	ug/L	ND	1.0	10/30/14 16:39	
Styrene	ug/L	ND	1.0	10/30/14 16:39	
tert-Butylbenzene	ug/L	ND	1.0	10/30/14 16:39	
Tetrachloroethene	ug/L	ND	1.0	10/30/14 16:39	
Toluene	ug/L	ND	1.0	10/30/14 16:39	
trans-1,2-Dichloroethene	ug/L	ND	1.0	10/30/14 16:39	
trans-1,3-Dichloropropene	ug/L	ND	1.0	10/30/14 16:39	
Trichloroethene	ug/L	ND	1.0	10/30/14 16:39	
Trichlorofluoromethane	ug/L	ND	1.0	10/30/14 16:39	
Vinyl chloride	ug/L	ND	1.0	10/30/14 16:39	
Xylene (Total)	ug/L	ND	3.0	10/30/14 16:39	
1,2-Dichloroethane-d4 (S)	%	101	80-120	10/30/14 16:39	
4-Bromofluorobenzene (S)	%	101	80-120	10/30/14 16:39	
Toluene-d8 (S)	%	101	80-120	10/30/14 16:39	

LABORATORY CONTROL SAMPLE: 1470141

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	20.1	101	80-124	
1,1,1-Trichloroethane	ug/L	20	21.4	107	80-121	
1,1,2,2-Tetrachloroethane	ug/L	20	19.2	96	73-124	
1,1,2-Trichloroethane	ug/L	20	19.6	98	80-120	
1,1-Dichloroethane	ug/L	20	19.4	97	77-120	
1,1-Dichloroethene	ug/L	20	19.5	98	78-126	
1,1-Dichloropropene	ug/L	20	19.4	97	80-120	
1,2,3-Trichlorobenzene	ug/L	20	18.7	93	75-130	
1,2,3-Trichloropropane	ug/L	20	21.1	105	76-127	
1,2,4-Trichlorobenzene	ug/L	20	19.3	97	79-124	
1,2,4-Trimethylbenzene	ug/L	20	19.8	99	80-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

LABORATORY CONTROL SAMPLE: 1470141

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dibromo-3-chloropropane	ug/L	20	21.7	109	68-131	
,2-Dibromoethane (EDB)	ug/L	20	20.0	100	80-127	
,2-Dichlorobenzene	ug/L	20	19.8	99	80-122	
,2-Dichloroethane	ug/L	20	20.7	103	77-123	
2-Dichloroethene (Total)	ug/L	40	39.4	99	80-120	
2-Dichloropropane	ug/L	20	20.7	103	80-121	
3,5-Trimethylbenzene	ug/L	20	20.1	101	80-121	
3-Dichlorobenzene	ug/L	20	19.6	98	80-120	
3-Dichloropropane	ug/L	20	19.9	99	80-120	
4-Dichlorobenzene	ug/L	20	19.4	97	80-120	
2-Dichloropropane	ug/L	20	17.5	87	50-137	
Butanone (MEK)	ug/L	100	104	104	52-145	
Chlorotoluene	ug/L	20	20.0	100	80-120	
Hexanone	ug/L	100	91.7	92	57-139	
Chlorotoluene	ug/L	20	20.0	100	80-121	
Methyl-2-pentanone (MIBK)	ug/L	100	103	103	71-131	
etone	ug/L	100	105	105	32-155	
nzene	ug/L	20	20.8	104	80-120	
omobenzene	ug/L	20	19.6	98	80-120	
mochloromethane	ug/L	20	18.8	94	77-123	
modichloromethane	ug/L	20	22.1	111	80-120	
moform	ug/L	20	19.4	97	73-124	
momethane	ug/L	20	11.6	58	31-144	
rbon disulfide	ug/L	20	21.5	108	65-125	
bon tetrachloride	ug/L	20	28.6	143	78-128 L	0
orobenzene	ug/L	20	19.4	97	80-120	_0
oroethane	ug/L	20	18.2	91	55-137	
oroform	ug/L	20	20.1	100	79-120	
oromethane	ug/L	20	20.1	100	22-138	
1,2-Dichloroethene	•	20	23.9	101	80-120	
1,3-Dichloropropene	ug/L ug/L	20	20.2	101	80-120	
romochloromethane		20	20.2	101	80-120	
romochioromethane	ug/L	20 20	21.4	107	80-120 80-122	
chlorodifluoromethane	ug/L					
	ug/L	20 20	18.0 18.9	90 94	23-120 80-121	
nylbenzene xachloro-1,3-butadiene	ug/L	20	21.0	94 105	77-129	
	ug/L		21.0		80-136	
propylbenzene (Cumene)	ug/L	20		108 102		
thyl-tert-butyl ether	ug/L	20	20.5		74-125	
thylene chloride	ug/L	20	20.0	100	73-126	
Butylbenzene	ug/L	20	21.6	108	83-123	
Propylbenzene	ug/L	20	18.6	93	80-122	
phthalene	ug/L	20	18.6	93	73-130	
sopropyltoluene	ug/L	20	20.5	103	80-124	
c-Butylbenzene	ug/L	20	20.7	103	80-129	
yrene	ug/L	20	19.9	99	80-120	
rt-Butylbenzene	ug/L	20	19.1	95	80-126	
trachloroethene	ug/L	20	19.0	95	80-121	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

LABORATORY CONTROL SAMPLE: 1470141

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L	20	19.2	96	80-122	
trans-1,2-Dichloroethene	ug/L	20	19.2	96	79-121	
trans-1,3-Dichloropropene	ug/L	20	20.3	102	80-127	
Trichloroethene	ug/L	20	20.3	101	80-120	
Trichlorofluoromethane	ug/L	20	20.6	103	67-120	
Vinyl chloride	ug/L	20	19.8	99	59-120	
Xylene (Total)	ug/L	60	58.1	97	80-121	
1,2-Dichloroethane-d4 (S)	%			103	80-120	
4-Bromofluorobenzene (S)	%			98	80-120	
Toluene-d8 (S)	%			94	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:								
Pace Project No.:	60181402 WET/51		Analysis M	othod:	SM 2320B			
QC Batch Method:	SM 232		Analysis M Analysis D					
				•	2320B Alkalinit			4 400007
Associated Lab Sar	npies: 6	0181402001, 6018140200	2,60181402003,	60181402004	, 60181402005,	60181402006,	6018	1402007
METHOD BLANK:	1470760		Matri	x: Water				
Associated Lab Sar	nples: 6	0181402001, 6018140200	2, 60181402003,	60181402004	, 60181402005,	60181402006,	6018	1402007
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyze	d Quali	fiers	
Alkalinity, Total as C	aCO3	mg/L	N	20	0.0 11/03/14 0	9:54		
LABORATORY CO	NTROL SA	MPLE: 1470761						
			Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qu	alifiers
Alkalinity, Total as C	aCO3	mg/L	500	531	106	90-110		
SAMPLE DUPLICA	TE: 1470	0762						
			60181544002	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD		Qualifiers
Alkalinity, Total as C	aCO3	mg/L	110	5 1 [°]	16	0	10	
SAMPLE DUPLICA	TE: 1470	0763						
			60181402001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD		Qualifiers
Alkalinity, Total as C		mg/L	469	۸. ــــــــــــــــــــــــــــــــــــ	77	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	2ND & KIRBY RE	EMEDIATION					
Pace Project No.:	60181402						
QC Batch:	WET/51251		Analysis Me	ethod:	SM 3500-Fe B#	<i>‡</i> 4	
QC Batch Method:	SM 3500-Fe B#	ŧ4	Analysis De	escription:	Iron, Ferrous		
Associated Lab Sar	mples: 6018140	2001, 6018140200	02, 60181402003,	60181402004,	, 60181402005,	60181402006,	60181402007
METHOD BLANK:	1469859		Matrix	c: Water			
Associated Lab Sar	mples: 6018140	2001, 6018140200	02, 60181402003,	60181402004,	, 60181402005,	60181402006,	60181402007
			Blank	Reporting			
Parar	neter	Units	Result	Limit	Analyzeo	d Quali	fiers
Iron, Ferrous		mg/L	ND	0.2	20 10/31/14 14	4:53 H6	
LABORATORY CO	NTROL SAMPLE:	1469860					
LABORATORY CO	NTROL SAMPLE:	1469860	Spike	LCS	LCS	% Rec	
LABORATORY CO		1469860 Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
			•				
Parar		Units	Conc.	Result	% Rec	Limits	
Parar	neter	Units	Conc.	Result	% Rec	Limits	
Parar Iron, Ferrous	neter	Units	Conc.	Result	% Rec	Limits	
Parar Iron, Ferrous	neter TE: 1469861	Units	Conc2	Result 2.1	% Rec	Limits 90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	2ND & KIRBY RE	MEDIATION						
Pace Project No.:	60181402							
QC Batch:	WET/51347		Analysis Me	thod:	SM 4500-S-2 D			
QC Batch Method:	SM 4500-S-2 D		Analysis De	scription:	4500S2D Sulfid	e, Total		
Associated Lab Sar	nples: 6018140	2001, 601814020	02, 60181402003, 6	60181402004,	60181402005, 6	60181402006,	60181402007	
METHOD BLANK:	1472665		Matrix	Water				
Associated Lab Sar	nples: 6018140	2001, 601814020	02, 60181402003, 6	60181402004,	60181402005, 6	60181402006,	60181402007	
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyzed	l Qualif	iers	
Sulfide, Total		mg/L	ND	0.05	50 11/04/14 12	:33		
LABORATORY CO	NTROL SAMPLE:	1472666	o "					
Parar	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Sulfide, Total		mg/L	.5	0.53	105	80-120		
MATRIX SPIKE SAI	MPLE:	1472673						
			60181303008	8 Spike	MS	MS	% Rec	
Paran	neter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Sulfide, Total		mg/L	1	ND .5	0.36	7	75-125	5 M1
SAMPLE DUPLICA	TE: 1472668							
			60181303003	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
		mg/L	ND	N			20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	2ND & KI	RBY REMED	IATION										
Pace Project No.:	60181402	2											
QC Batch:	WETA/3	1734		Analys	sis Method	EI	PA 300.0						
QC Batch Method:	EPA 300	0.0		Analys	sis Descrip	tion: 30	0.0 IC Anio	ns					
Associated Lab Sa	mples: 6	0181402001,	60181402002	, 60181402	2003, 6018	1402004, 6	0181402005	5, 6018140	2006, 6018	1402007			
METHOD BLANK:	1475475			٦	Matrix: Wa	ter							
Associated Lab Sa	mples: 6	0181402001,	60181402002	, 60181402	2003, 6018	1402004, 6	0181402005	5, 6018140	2006, 6018	1402007			
				Blank	K R	eporting							
Para	meter		Units	Resu	lt	Limit	Analyz	ed	Qualifiers				
Chloride		mg/	L		ND	1.0	11/09/14	13:11		_			
Sulfate		mg/	L		ND	1.0	11/09/14	13:11					
LABORATORY CO	NTROL SA	MPLE: 147	/5476										
				Spike	LCS	3	LCS	% Rec	;				
Para	meter		Units	Conc.	Resu	ılt	% Rec	Limits	Qı	alifiers			
Chloride		mg/	L	5	5	4.8	96	90	-110				
Sulfate		mg/	L	5	5	4.8	97	90	-110				
MATRIX SPIKE & I	MATRIX SP	IKE DUPLIC	ATE: 14754	77		1475478							
				MS	MSD								
_			0181346001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramet	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L	65.4	50	50	114	114	97	96	80-120	0	15	
Sulfate		mg/L	314	250	250	569	570	102	102	80-120	0	15	
MATRIX SPIKE SA	MPLE:	147	/5479										
				601814		Spike	MS	Μ	-	% Rec			
Para	meter		Units	Res	ult	Conc.	Result	% F	Rec	Limits		Qualif	fiers
Chloride Sulfate		mg/	L		1940 ND	1000 1000	284	40	90 87	80-´ 80-´			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Project No.: 60181	402								
QC Batch: WET	FA/31579		Analysis	Method	l: E	PA 353.2			
QC Batch Method: EPA	353.2		Analysis	Descrip	otion: 3	53.2 Nitrate + N	Nitrite, Unpres.		
Associated Lab Samples:	60181402	001, 601814020	02, 601814020	03, 6018	31402004, 6	0181402005, 6	60181402006, 6	0181402007	
METHOD BLANK: 14698	380		Ма	atrix: Wa	ater				
Associated Lab Samples:	60181402	001, 601814020	02, 601814020	03, 6018	31402004, 6	0181402005, 6	60181402006, 6	0181402007	
			Blank	F	Reporting		0 ""		
Parameter		Units	Result		Limit	Analyzed	Qualifie	ers	
Nitrogen, Nitrate		mg/L		ND	0.10				
Nitrogen, Nitrite		mg/L		ND	0.10				
Nitrogen, NO2 plus NO3		mg/L		ND	0.10	10/30/14 07:	44		
LABORATORY CONTROL	SAMPLE:	1469881							
			Spike	LC		LCS	% Rec		
Parameter		Units	Conc.	Res	ult	% Rec	Limits	Qualifiers	
Nitrogen, Nitrate		mg/L	1.6		1.7	107	85-115		
Nitrogen, Nitrite		mg/L	.4		0.38	96	90-110		
Nitrogen, NO2 plus NO3		mg/L	2		2.1	105	90-110		
MATRIX SPIKE SAMPLE:		1469882							
			6018139	5001	Spike	MS	MS	% Rec	
Parameter		Units	Resul	t	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Nitrate		mg/L		32.3	32	59.7	86	85-115	
Nitrogen, Nitrite		mg/L		ND	8	8.2	102		
Nitrogen, NO2 plus NO3		mg/L		32.3	40	67.8	89	90-110	M1
MATRIX SPIKE SAMPLE:		1469884							
			6018140	2002	Spike	MS	MS	% Rec	
Parameter		Units	Resul	t	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Nitrate		mg/L		ND	1.6	1.9	117	85-115	M1
Nitrogen, Nitrite		mg/L		ND	.4	0.42	105	90-110	
Nitrogen, NO2 plus NO3		mg/L		ND	2	2.3	114	90-110	M1
SAMPLE DUPLICATE: 1	469883								
Parameter		Units	601813340 Result	003	Dup Result	RPD	Max RPD	Qualifiers	
Nitrogen, Nitrate		mg/L		5.3	15.2	·		20	_
Nitrogen, Nitrite		mg/L		ND	15.2 ND			20 20	
Nitrogen, NO2 plus NO3		mg/L	1		ND			20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

- ,	2ND & K 6018140	IRBY REMEDIATION 2						
QC Batch:	WETA/	31607	Analysis Me	ethod:	SM 5310C			
QC Batch Method:	SM 531	0C	Analysis De	escription:	5310C Total Org	ganic Carbon		
Associated Lab Sam	ples: 6	60181402001, 60181402002						
METHOD BLANK:	1470863		Matrix	: Water				
Associated Lab Sam	ples: 6	60181402001, 60181402002						
_			Blank	Reporting				
Param		Units	Result	Limit	Analyzed		ers	
Total Organic Carbor	า	mg/L	ND		1.0 10/31/14 11	:26		
LABORATORY CON	ITROL SA	MPLE: 1470864						
			Spike	LCS	LCS	% Rec		
Param	eter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Organic Carbor	า	mg/L	5	4.7	93	80-120		
MATRIX SPIKE SAM	1PLE:	1470865						
			6018125300	3 Spike	MS	MS	% Rec	
Param	eter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Total Organic Carbor	า	mg/L		2.5	5 7.6	10	2 80-120	
SAMPLE DUPLICAT	E: 1470	0866						
			60181253005	Dup		Max		
Param	eter	Units	Result	Result	RPD	RPD	Qualifiers	_
Total Organic Carbor	 ו	mg/L	2.6		2.6	2	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

-]	2ND & KIRBY RE 60181402	EMEDIATION							
QC Batch:	WETA/31677		Analysis M	ethod:	SM 5	5310C			
QC Batch Method:	SM 5310C		Analysis De	escription:	5310	C Total Org	anic Carbon		
Associated Lab Samp	oles: 6018140	2003, 6018140200	04, 60181402005,	6018140200	6, 6018	31402007			
METHOD BLANK: 1	1472981		Matrix	k: Water					
Associated Lab Samp	oles: 6018140	2003, 6018140200	04, 60181402005, Blank	6018140200 Reportin		31402007			
Parame	eter	Units	Result	Limit	0	Analyzed	Qualifi	ers	
Total Organic Carbon		mg/L	NE)	1.0 1	11/06/14 10:	29		
LABORATORY CONT	TROL SAMPLE:	1472982							
Parame	eter	Units	Spike Conc.	LCS Result		CS Rec	% Rec Limits	Qualifiers	
Total Organic Carbon		mg/L	5	4.9		99	80-120		
MATRIX SPIKE SAMI	PLE:	1472983							
Parame	eter	Units	6018154400 Result	6 Spike Conc.		MS Result	MS % Rec	% Rec Limits	Qualifiers
Total Organic Carbon		mg/L		5.0	5	9.3	8	80-120	
SAMPLE DUPLICATE	E: 1472984								
_			60181402003				Max	A 11/1	
Parame		Units	Result	Result		RPD		Qualifiers	-
Total Organic Carbon		mg/L	1.5	5	.92J			25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City PASI-M Pace Analytical Services - Minneapolis

BATCH QUALIFIERS

Batch: MSV/65435

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/65437

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- D9 Dissolved result is greater than the total. Data is within laboratory control limits.
- H6 Analysis initiated outside of the 15 minute EPA recommended holding time.
- L0 Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60181402001		RSK 175	AIR/21717		
60181402002	TMW-2	RSK 175	AIR/21717		
60181402003	GMW-8S	RSK 175	AIR/21717		
60181402004	MW-27S	RSK 175	AIR/21717		
60181402005	GMW-6S	RSK 175	AIR/21717		
60181402006	MW-15	RSK 175	AIR/21717		
60181402007	MW-21	RSK 175	AIR/21717		
60181402001	TMW-1	EPA 200.7	MPRP/29582	EPA 200.7	ICP/22198
60181402002	TMW-2	EPA 200.7	MPRP/29582	EPA 200.7	ICP/22198
60181402003	GMW-8S	EPA 200.7	MPRP/29582	EPA 200.7	ICP/22198
60181402004	MW-27S	EPA 200.7	MPRP/29582	EPA 200.7	ICP/22198
60181402005	GMW-6S	EPA 200.7	MPRP/29582	EPA 200.7	ICP/22198
60181402006	MW-15	EPA 200.7	MPRP/29582		ICP/22198
60181402007	MW-21	EPA 200.7	MPRP/29582		ICP/22198
60181402001	TMW-1	EPA 200.7	MPRP/29565	EPA 200.7	ICP/22182
60181402002	TMW-2	EPA 200.7	MPRP/29565	EPA 200.7	ICP/22182
60181402003	GMW-8S	EPA 200.7	MPRP/29565		ICP/22182
60181402004	MW-27S	EPA 200.7	MPRP/29565		ICP/22182
0181402005	GMW-6S	EPA 200.7	MPRP/29565		ICP/22182
0181402006	MW-15	EPA 200.7	MPRP/29565		ICP/22182
60181402007	MW-21	EPA 200.7	MPRP/29565		ICP/22182
60181402001	TMW-1	EPA 5030B/8260	MSV/65435		
60181402002	TMW-2	EPA 5030B/8260	MSV/65435		
60181402003	GMW-8S	EPA 5030B/8260	MSV/65435		
60181402004	MW-27S	EPA 5030B/8260	MSV/65435		
60181402005	GMW-6S	EPA 5030B/8260	MSV/65435		
60181402006	MW-15	EPA 5030B/8260	MSV/65437		
60181402007	MW-21	EPA 5030B/8260	MSV/65437		
60181402008	GMW-5S	EPA 5030B/8260	MSV/65437		
60181402009	GMW-7S	EPA 5030B/8260	MSV/65437		
60181402010	GMW-9S	EPA 5030B/8260	MSV/65437		
60181402011	GMW-10S	EPA 5030B/8260	MSV/65437		
60181402012	GMW-1	EPA 5030B/8260	MSV/65437		
60181402013	GMW-2	EPA 5030B/8260	MSV/65437		
60181402014	GMW-4	EPA 5030B/8260	MSV/65437		
60181402015	GMW-6I	EPA 5030B/8260	MSV/65437		
60181402016	GMW-10S	EPA 5030B/8260	MSV/65437		
60181402017	MW-28S	EPA 5030B/8260	MSV/65437		
0181402018	DUP-1	EPA 5030B/8260	MSV/65437		
60181402019	TRIP BLANK	EPA 5030B/8260	MSV/65437		
60181402001	TMW-1	SM 2320B	WET/51286		
60181402002	TMW-2	SM 2320B	WET/51286		
60181402003	GMW-8S	SM 2320B	WET/51286		
60181402004	MW-27S	SM 2320B	WET/51286		
60181402005	GMW-6S	SM 2320B	WET/51286		
			VVL1/J1200		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2ND & KIRBY REMEDIATION

Pace Project No.: 60181402

Lab ID	Sample ID	QC Batch Method	QC Batch Analytical Method	Analytical Batch
60181402007	MW-21	SM 2320B	WET/51286	
60181402001	TMW-1	SM 3500-Fe B#4	WET/51251	
60181402002	TMW-2	SM 3500-Fe B#4	WET/51251	
60181402003	GMW-8S	SM 3500-Fe B#4	WET/51251	
60181402004	MW-27S	SM 3500-Fe B#4	WET/51251	
60181402005	GMW-6S	SM 3500-Fe B#4	WET/51251	
60181402006	MW-15	SM 3500-Fe B#4	WET/51251	
60181402007	MW-21	SM 3500-Fe B#4	WET/51251	
60181402001	TMW-1	SM 4500-S-2 D	WET/51347	
60181402002	TMW-2	SM 4500-S-2 D	WET/51347	
60181402003	GMW-8S	SM 4500-S-2 D	WET/51347	
60181402004	MW-27S	SM 4500-S-2 D	WET/51347	
60181402005	GMW-6S	SM 4500-S-2 D	WET/51347	
60181402006	MW-15	SM 4500-S-2 D	WET/51347	
60181402007	MW-21	SM 4500-S-2 D	WET/51347	
60181402001	TMW-1	EPA 300.0	WETA/31734	
60181402002	TMW-2	EPA 300.0	WETA/31734	
60181402003	GMW-8S	EPA 300.0	WETA/31734	
60181402004	MW-27S	EPA 300.0	WETA/31734	
60181402005	GMW-6S	EPA 300.0	WETA/31734	
60181402006	MW-15	EPA 300.0	WETA/31734	
60181402007	MW-21	EPA 300.0	WETA/31734	
60181402001	TMW-1	EPA 353.2	WETA/31579	
60181402002	TMW-2	EPA 353.2	WETA/31579	
60181402003	GMW-8S	EPA 353.2	WETA/31579	
60181402004	MW-27S	EPA 353.2	WETA/31579	
60181402005	GMW-6S	EPA 353.2	WETA/31579	
60181402006	MW-15	EPA 353.2	WETA/31579	
60181402007	MW-21	EPA 353.2	WETA/31579	
60181402001	TMW-1	SM 5310C	WETA/31607	
60181402002	TMW-2	SM 5310C	WETA/31607	
60181402003	GMW-8S	SM 5310C	WETA/31677	
60181402004	MW-27S	SM 5310C	WETA/31677	
60181402005	GMW-6S	SM 5310C	WETA/31677	
60181402006	MW-15	SM 5310C	WETA/31677	
60181402007	MW-21	SM 5310C	WETA/31677	

ace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

ction A quired Client Information:	Section Required	Project		-				Inv	ection voice Ir	nforma	_	-		_	_			_					E	Page	e: _	1	of -	2		
mpany: GSI Engineering	Report To								ention		Brian	100	10. Sec.				_	-										-		_
dress. 15012 W. 106th Street	Copy To:	Jost	nua M	ellema (jr	neliema@	gsinetw	ork.com)	_		Nam	ie: G	_		-	_			1	REGU	LAT		_	ENCY	_				2	_	
Lenexa, KS 66212								Ad	idress:		Sam	e as	Section	on A					N	PDE	s r	G	ROUN	D WA	TÊR		RINKIN	G WAT	ER	
bconrad@gsinetwork.com	Purchase	urchase Order No Pace Quote TUST TRC Reference:									CRA			0	THER		*****	777.												
one: 913-495-2360 Fax:	Project Na	ame:	2nd &	k Kirby R	emediatio	n		Pat	ce Proj inager		Heat	her \	Vilso	n					Site	.ocat	ion		KS		VI				////	
equested Due Date/TAT;	Project N	umber:	1480	32						18 #	5655	,5								STA	TE:	-	NO	_	VI		/////			///
					-	-	-	-								Re	quest	ted A	nalys	is Fi	iltere	d (Y)	/N)	V	1111		77777		777	$\overline{//}$
Section D Vali	d Matrix Codes	12													N IN									V			/////			///
Required Client Information MAT		s to le	C=COMP)		COLLE	CTED		-	-	-	Prese	ervat	ives	-	X		-	$\left \right $	-	+	E	-	++	-14	4	111111	11111	11111	1111	111
A Constant of the second secon	ER WT TE WATER WW DUCT P ISOLID SL OL E WP AR ER OT	MATRIX CODE (see valid codes to left)	SAMPLE TYPE (G=GRAB C=(COMPC STAF		COMPO END/Gi	SITE RAB	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved H ₂ SO ₄	HNO3	NaOH	Na ₂ S ₂ O ₃	Methanol Other	L Analysis Test	8260 VOCs	rerrous iron 2320B Alkalinity	RSK-175 MEE	Sulfide	200.7 Total Fe & Mn	200.7 Dissolved Fe & Mn	300.0 Chloride & Sulfate	ð	Chloring (V/M)	Residual Chlorine (Y/N)	Ŭ	6181			
M III		_		DATE	TIME	DATE		SA	#		1	_		ΣÖ	-	-	-	еř		-	-	8 6	5			Pace F 16PS	Project	NO./ L	ab I.D	1.01
1 TMW-1		WI	6	1	1	10/20	1530	-		4 1		-	691	1	10.0	\vdash	X X	X	X)	-	+ +	_	_	1551	16 21	1 18/25	1- 13P	52 13	124 30	1
2 TMW-2		1	11			_	1505		1	4 1		3		1	10.0	×	X X	X	X >	-	×		×		-11-	-+	-+	-	-	+
3 GMW-8S			11		1745	-	1505		-	4 1		3		1	-111	×	XX	X	X X	-	+ +		X	++	-++	-+	-		-	+
4 MW-27S		11		1	1505	_	1030			4 1	+ +	3		1	-	×	X X	X	X	-	X	-	x	\mathbb{H}	╢	-+	-	-	-	+
5 GMW-6S			11		1630		1025			4 1		3	+++	1	-	×	XX	X	X	< X	X		x x	H	-11-	-+	-		-	+
6 MW-15			++-		1625	_	1332			4 1	+ +	3			-	×	XX	X	X .	X X	X		x x		+	-	-			t
7 MW-21			11	112-1	1725		14			4 1		3	N		4	×	XX	X	X	x x	×	X	×	4	-	V	W		-	Ť
8 GMW-5S		-11	++		-		1610		3	-		3	+	+		×	-	+		+		-	-		-					1
g GMW-7S				-			-		3	+		3	+ +	-	-	×	+	+		+	-		-							t
10 GMW-9S		-++	++		-	-	1350		3	+	-	-		-	-	Â	-	+		+	-		-							t
11 CMW-10S		+	++	-	-		1130	++	3	+	-	3		-	1	×	-	1	++	+	-		-		+				- 1	
12 GMW-1			-				1320 DATE		3	ME	+	3	ACI	CEDT	ED BY		LIATIC	ON	-	DA	TE	T	IME	1	-	SAMP	LE CON	DITIONS		1
ADDITIONAL COMMENTS			_		AFFILIATI		-				-	-						-	1	- 1	_	-	-	11		V	V	1	V	-
		JOSH	Mé	elema	- 65	T	10/20		1		-	K	in	~	102	45	2	_		0/2	19	10	0/0	4.	-			-	~	
			_			_		-	-	_	-				_	-	-	-	+	-	-		-	2.	-4	1	У		У	-
					SAMPL	ER NAME	AND SIGN	IATURE	E		1													, c	2	t on N	Sealed (Y/N)		Intact	
Page 74 of 7							me of SAM		29	A)	h	1ELL	EMA		-		TE SI		10	129	114			Temp in °C	⊆	Received or Ice (Y/N)	Custody Se Cooler (Y		Samples In (Y/N)	

ace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately

-	Client Information:	Section B Required P		_	_		~			Secti Invoic Attent	e Info	mation:	n Cr	onrac			_	_	_	-					Ľ	Page:	2	of	0	2
Company:	GSI Engineering	Report To:				imellome	Daoinchu	ork com)	2	-	_	Di la lame:				all	C	_		-			- DV	1051	101/		-			
Address:	15012 W. 106th Street	Copy To.	JUSH	uaiv	ellema (jmellema(gysmetw		_	Addre					ction A		<u> </u>		_	-	-	-	-	AGE				DDDU		
	Lenexa, KS 66212			_				_		Pace (_	Jai	ne a	s Sel		1			_	-	NP					O WATE		DRINKI		ATER
Email To:	bconrad@gsinetwork.com	Purchase O		_				_		Refere	ence:				_	_				1	US	Т	1	RC	RA			OTHER	min	
1	913-495-2360 Fax:	Project Nam	ie:	2nd	& Kirby I	Remediation	on			Manag		1100		Wils	son				-	S	ite Lo	catio	no			Ē				
Requeste	d Due Date/TAT:	Project Nurr	nber:	1480)32			_		Pace F	Profile a	#: 565	5, 5						_		S	TAT	E:	-	_					
			_							_	_					1		lequ	ester	i Ana	lysis	s Filt	tered)					
	Section D Valid Matrix		(ye)	(d		0011	CATED					Drou		atives		INIA										11				
ITEM #	Required Client Information MATRIX PRINKING WATER WATER WASTE WATER WASTE WATER PRODUCT SOLUSOLID OIL WIPE AIR (A-Z, 0-9 / ,-) Sample IDS MUST BE UNIQUE TISSUE	WT	MATRIX CODE (see valid codes to left)	SAMPLE TYPE (G=GRAB C=COMP)	STA	POSITE	COMPOS END/GF	:«AB	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved		HCI	ő		Lanalvsis Test		Ferrous Iron	2320B Alkalinity	Sulfide	100	۳	200.7 Dissolved Fe & Mn	353.2 Nitrate & Nitrite		Residual Chlorine (Y/N)	Bac	Projec	t No.	Lab 1.D.
			-	-	DATE	TIME	DATE	TIME	S	-	12	파파	-		20		_	LIL		r o	in	N	N C	n m	+	-		DHH		(i)
1	GMW-2		VI	G	10/29	1340			-	3			3	-			×		+	+			+	+	+	+	3	parti	_	2
2			H			1255			1-	3	+		3	+		-	X			+		-	+	+				1		014
3	GMW-4 GMW-6I		++			1650			-	3			3			-	1 X	1		-			+	1	+		-	1		ONS
4	GMW-10S					1265	-	-	1	3			3	-			X		-	-				1	H					orb
5	MW-28S		\vdash	++		1225			1	3	H		3	1			X	-		1								V		17
7			H	H		1100			1	1			3		11		6	-											-	-
8				H					1	8			2					-									1.1	1		-
9	DUP-1		1			1850			1	3							×											V		018
10				1.4		103		-		1							1										1	769F	TB	019
11																		11											_	
12								100																						
	ADDITIONAL COMMENTS		REL	INQU	ISHED BY		ION	DAT	E		TIME			A	CCEPT	ED B	Y / A	FILIA	TION			DATE	=	TIN	IE		SAI	APLE CO	DITION	IS
-		5	E A /0	× 1	NEUCA	W - 6:	5	10120	1				1	1)	n	VI	M	57	-		11	12	9	101	0	4.6	Y	X		X
			211-27	· ·	ICH BI			1	,	1	-		V	4		-		-	-	-	1	10	1			2.4	Y	1,	1	Y
-			_	-	_		-	-	-	1		-	-					-		-	-		+	-	-	- 4		-	-	/
-		_	-					-	-	-	-			-						-	1	-	1	-				1	+	
	Page					SAMPL	ER NAME	AND SIGN	VATU	RE	/	1					~~~		-		1		_			i.	uo I	ealed	INJ	Inlact
	ge 75 of 77						PRINT Nai	πe of SAM RE of SAM	-		Spsn /w	1	Me	LEM	-				Signe DD/YY		10]:	201	74			Temp in	Received on Ice (Y/N)	Custody Sealed		Samples Inlact (Y/N)

Chain of Custody

290787092

Analv WANNINSCO

Wo	rkorder: 60181402	Workorder	Name:2ND & KI					-						Anna the second	
	ort To		Subcontra		ATION			wner Rece	eived	Date:	10/29/	2014 Re	sults Re	equest	ed By: 11/7/2014
Pace 9608 Lene Phor	ther Wilson e Analytical Services, Inc. 3 Loiret Blvd. exa, KS 66219 ne (913)599-5665 (913)599-1759		Pace 1700 Suite Minne	Analytical Minn Elm Street	414				/E		Req	uested Ar	nalysis		
	-					Pre	served C	ontainers	M/E/E						
									75						
ltem	Sample ID	Sample Type	Collect Date/Time	Lab iD	Matrix	none			RSK-1						
1	TMW-1	PS	10/28/2014 15:30	1	Water	3			x	_					LAB USE ONL
2	TMW-2	PS	10/28/2014 18:05		Water	3			$\hat{\mathbf{x}}$						001
3	GMW-8S	PS	10/28/2014 17:45	L	Water	3			\ominus	_		┼──┼──			002
4	MW-27S	PS	10/28/2014 15:05		Water	3			$\hat{\mathbf{x}}$			┟──┟──			
5	GMW-6S	PS	10/28/2014 16:30		Water	3			$\hat{\mathbf{x}}^+$	_		├			
6	MW-15	PS	10/28/2014 18:25		Water	3			Â X				- -		
7	MW-21	PS	10/28/2014 17:25		Water	3			$\hat{\mathbf{x}}$						
		I	1		[\sim				Comme		697
Trans	sfers Released By	_	Date/Time	Received B	у			Date/Time	e				Comme	nts	
1	MAL TA I	'la	10127119 (700 Man	Th	10	ATIC	10-30-	14	945					
2	1117 000		1		100		1 Com		<u> </u>	5 8 J					
3	/				~										
Cool	er Temperature on Re	ceipt 3.8	°C Cust	tody Seal (Y	ør N		Re	ceived on k		Y)or	N		Samal	les Intal	GAV 2 N
				4000						2	0 W		ວລາແບ	es inta	Ct Y of N

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.