Remedial Action Completion Report In Situ Chemical Oxidation Enhanced by Soil Mixing Kearsarge Metallurgical Corporation Superfund Site

123 Hobbs Street Conway, New Hampshire 03818

Prepared By:

Weston Solutions, Inc. 43 N. Main Street Concord, New Hampshire 03301

Prepared For:

Federal Sites Section
Hazardous Waste Remediation Bureau
Waste Management Division
New Hampshire Department of Environmental Services
29 Hazen Drive
Concord, New Hampshire 03302-0095

and

U.S. Environmental Protection Agency, Region 1
5 Post Office Square, Suite 100
Mail Code OSRR07-1
Boston, Massachusetts 02109-3912

February 2016

FINAL REMEDIAL ACTION COMPLETION REPORT IN SITU CHEMICAL OXIDATION ENHANCED BY SOIL MIXING KEARSARGE METALLURGICAL CORPORATION SUPERFUND SITE 123 HOBBS STREET CONWAY, NEW HAMPSHIRE 03818

Prepared for:

Federal Sites Section
Hazardous Waste Remediation Bureau
Waste Management Division
New Hampshire Department of Environmental Services

29 Hazen Drive Concord, New Hampshire 03302-0095

and

US Environmental Protection Agency, Region 1

5 Post Office Square, Suite 100 Mail Code OSRR07-1 Boston, Massachusetts 02109-3912

Prepared by:

Weston Solutions, Inc.

43 N. Main Street Concord, New Hampshire 03101-1501

February 2016

Erik Hall, P.E.

as Hall

Senior Project Engineer

Frederick R. Symmes, P.E.

Project Manager

TABLE OF CONTENTS

Secti	on		Page	
1.	BAC	KGROUND	1-1	
	1.1	INTRODUCTION	1-1	
	1.2	SITE LOCATION	1-1	
	1.3	SITE HISTORY	1-2	
	1.4	PROJECT PURPOSE AND SCOPE	1-3	
	1.5	DESIGN OF REMEDIAL ACTION AND PROCUREMENT OF ISCO SUBCONTRACTOR	1-5	
2.	CONSTRUCTION ACTIVITIES			
	2.1	MOBILIZATION AND SITE PREPARATION	2-1	
	2.2	SOIL MIXING AND ISCO IMPLEMENTATION	2-2	
		2.2.1 Soil Mixing/ISCO Procedure	2-3	
	2.3	SITE RESTORATION	2-4	
3.	CHF	CONOLOGY OF EVENTS	3-1	
4.	PERFORMANCE STANDARDS AND CONSTRUCTION QUALITY CONTROL			
	4.1	PERFORMANCE MONITORING		
	4.2	STORM DRAIN MONITORING		
	4.3	SANDY FILL BACKFILL MATERIAL EVALUATION	4-3	
	4.4	CEMENT AND LIME KILN DUST ANALYTICAL DATA REVIEW	4-3	
	4.5	RECOMMENDATIONS FOR IMPROVED IMPLEMENTATION OF ISCO VIA SOIL MIXING	4-3	
5.	FINA	AL INSPECTION	5-1	
6.	OPE	RATION AND MAINTENANCE ACTIVITIES	6-1	
7.	CON	TACT INFORMATION	7-1	
8.	REF	ERENCES	8-1	

LIST OF APPENDICES

APPENDIX A	ISOTEC ISCO SOIL MIXING TREATMENT PROGRAM SUMMARY REPORT
APPENDIX B	WESTON DAILY REPORTS
APPENDIX C	CEMENT KILN DUST AND LIME KILN DUST TRUCK SLIPS
APPENDIX D	WETLAND AND UPLAND SEED MIXTURES
APPENDIX E	SOIL TREATMENT ANALYTICAL DATA PACKAGES
APPENDIX F	CATCH BASIN ANALYTICAL DATA PACKAGES
APPENDIX G	BACKFILL MATERIAL ANALYTICAL DATA PACKAGES
APPENDIX H	CEMENT KILN DUST AND LIME KILN DUST MATERIAL ANALYTICAL DATA PACKAGES

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Soil Treatment Site Plan
Figure 3	Organizational Chart
Figure 4	Soil Mixing with ISCO
Figure 5	Grading Plan
Figure 6	Project Schedule

LIST OF TABLES

T-1-1-1	T	DC	N / :	: 4:	D-4-
Table 1	1 reatment	Performance	ivion	itoring	Data

Table 2 Catch Basin Monitoring Data

Table 3 Contact Information

LIST OF ACRONYMS

% percent

1,1-DCE
1,1-dichloroethene
1,1,1-TCA
1,1,1-trichloroethane
μg/kg
micrograms per kilogram

Active Environmental Technologies, Inc.

ARA Absolute Resource Associates
AROD Record of Decision Amendment
BASP base-activated sodium persulfates

bgs below ground surface CKD cement kiln dust

Coleman Alvin J. Coleman & Son, Inc.

DAB dual axis blender

EPA United States Environmental Protection Agency

ft. feet

GPS global positioning system

GPTS groundwater pump and treat system

ISCO in situ chemical oxidation

ISOTEC In-Situ Oxidative Technologies, Inc.

KMC Kearsarge Metallurgical Corporation

LKD lime kiln dust

LTC Lang Tool Company

MFR modified Fenton's reagent
MNA monitored natural attenuation

NHDES New Hampshire Department of Environmental Services

PID photoionization detector

ppm parts per million
QC quality control
RA remedial action
RFP Request for Proposal
ROD Record of Decision

Site Kearsarge Metallurgical Corporation Superfund Site, Conway, New Hampshire

SRS Soil Remediation Standards

SSHASP Site-Specific Health and Safety Plan

VOCs volatile organic compounds WESTON® Weston Solutions, Inc.

SECTION 1 BACKGROUND

1. BACKGROUND

1.1 INTRODUCTION

This Remedial Action Completion Report describes implementation of the contingent response action, in accordance with the 2012 *Record of Decision Amendment* (ROD Amendment), to treat soil impacted with chlorinated ethenes and ethanes at the Kearsarge Metallurgical Corporation (KMC) Superfund Site (Site) in Conway, New Hampshire. The KMC Site is New Hampshire Department of Environmental Services (NHDES) Site No. 198708002. Weston Solutions, Inc. (WESTON®) performed this work for NHDES and United States Environmental Protection Agency (EPA) Region 1 under WESTON's Contract with NHDES for Site Investigation, Remediation Design, Implementation Oversight at Petroleum and Hazardous Waste Sites; Comprehensive Environmental Response, Compensation, and Liability Act; and Brownfields Projects. The NHDES Work Scope Authorizations for this project are dated 27 August 2015 and 16 October 2015.

1.2 SITE LOCATION

The Site is located at 123 Hobbs Street, Conway, New Hampshire in an industrial park on the western edge of Conway village. The topography of the Site and nearby area is flat. There are several large buildings nearby that house various commercial enterprises. There is a residential area 900 feet (ft.) west of the Site. The Site and adjacent area including Conway Village are served by public water and sewer provided by the Conway Village Fire District. The closest public water supply wells are nearly 1 mile to the north of the Site. A Locus Plan is provided in Figure 1.

The area of the former KMC building is in the southwest portion of the Site and is surrounded by a 6-ft. high chain-link fence. A general site plan is provided in Figure 2. Much of the original KMC building has been razed and the area of the razed portions of the building converted to parking. The remaining portions of the KMC building have been restored to house an active business. The treatment area for this remedial action (RA) is east, and outside of the fenced area of the former KMC building. Prior to this RA, the treatment area was partially wooded and included a stand of poplar trees planted in 2004 to facilitate phytoremediation of some remaining contaminants at the Site (WESTON, 2004). A storm drain pipeline crosses the KMC property

east of the treatment area and conveys storm water runoff from the parking lot for the former Yield House property, located north of the Site, into Pequawket Pond. The decommissioned groundwater treatment building built by EPA in 1993 and operated until 2005 is in the northern portion of the KMC property. All of the treatment process equipment associated with the former groundwater treatment facility has been removed from the Site, and the former treatment plant building is in use by a private business.

1.3 SITE HISTORY

KMC manufactured stainless steel valves and materials at the Site from 1964 until the company ceased operation in 1982. The manufacturing process produced castings using the lost-wax process, which produced waste casting sands and solvents. The solvents and casting sands were disposed in a wooded wetland just east of the old KMC building. Solvents were also discharged through an on-site septic system that was located between the old KMC building and the solvent and casting sands disposal area. Investigations conducted after KMC ceased operations showed that groundwater at the Site was contaminated with volatile organic compounds (VOCs), predominantly 1,1,1-trichloroethane (1,1,1-TCA), and its breakdown products, particularly 1,1-dichloroethene (1,1-DCE). The Site was designated as a Superfund Site in 1984 (EPA, 2013).

EPA issued a *Record of Decision* (ROD) (EPA, 1990) for the Site in 1990 that selected both source control and management of migration remedies. The source control component of the remedy was performed in 1992 by removing and disposing of waste pile material, crushed drums, a solvent-contaminated septic tank, and contaminated soils in the vicinity of the former septic system. The management of migration component required construction and operation of a groundwater pump and treat system (GPTS). Construction of the GPTS was completed and operations commenced in 1993 (EPA, 2013).

In 2000, the groundwater extraction system was enhanced by construction of a groundwater collection trench and associated extraction well (identified as EW-13A) in the most contaminated area of the Site. In 2002, it was determined that a zone of subsurface soils and groundwater at the Site continued to be impacted by significant quantities of contaminants, and that groundwater cleanup objectives could not be attained by pump-and-treat in a reasonable period of time. That

determination led to a supplemental RA in 2003 that included excavation and off-site disposal of approximately 5,600 tons of soil in the most highly-contaminated area of the Site (WESTON, 2004). The 2003 RA also included:

- Removal of several extraction wells and a portion of the collection trench.
- Backfill of the excavated area with crushed stone.
- Installation of a replacement extraction well EW-13B in the area that was excavated and backfilled. Extraction well EW-13B was connected to the existing GPTS.

In December 2005, groundwater contaminant concentrations had decreased to the point where NHDES requested, and EPA approved discontinuing GPTS operation for a period of monitoring and analysis. The subsequent monitoring indicated that restarting of the GPTS was not necessary and that monitored natural attenuation (MNA) of the remaining area of groundwater contamination would likely result in attainment of groundwater cleanup goals. In 2012, EPA issued a ROD Amendment (EPA, 2012) that changed the groundwater remedy from pump-and-treat to MNA. The ROD Amendment specifies that if groundwater contaminant concentrations at the Site stop attenuating and instead increase to levels defined as "trigger conditions" in the ROD Amendment, then a contingent remedy will be implemented. Monitoring performed during 2014 as part of the MNA program indicated that at least one of those trigger conditions had been exceeded. Therefore, based on the requirements of the ROD Amendment and on groundwater contaminant concentration trends at the Site, EPA and NHDES determined that additional response actions were warranted. The first step of the contingent remedy specified in the ROD Amendment is the use of in situ chemical oxidation (ISCO) for treatment of soil and groundwater contamination at the site.

1.4 PROJECT PURPOSE AND SCOPE

The objectives of the additional response action were to:

 Provide treatment of the remaining contamination at the Site in a manner that is consistent with the ROD Amendment in order to achieve the cleanup levels for the Site.

- Minimize the risk that future response actions, other than MNA, are necessary at the Site.
- Help enable removal of the Site from the National Priorities List (NPL) at the earliest reasonable date.

This response action, in accordance with the 2012 ROD Amendment, consisted of treatment of a zone of contaminated soil at the Site via ISCO enhanced by soil mixing. Based on soil analytical data from the Site, the zone targeted for treatment was the interval 7 to 15 ft. below ground surface (bgs) (the Treatment Zone) over an area of approximately 10,000-square feet (the Treatment Area), as shown on Figure 2.

The treatment program and the Post-Treatment Performance Criteria were specified in the *Final Design Specifications Issued for Construction – Revision 1* (WESTON, 2015a).

The overall objectives of this RA are listed below:

• Reduce the concentrations of VOCs in soil in order to attain the groundwater cleanup goals for the Site. Specifically, achieve post-treatment soil criteria of:

1,1-DCE 60 micrograms per kilogram (μg/kg)1,1,1-TCA 150 μg/kg.

- Thoroughly blend soil in the treatment zone with the ISCO reagents in a manner that provides effective contact between the ISCO reagents and the contaminated soils.
- Conduct work in a safe manner that is protective of human health and the environment.

A detailed description of the Modified Fenton's Reagent (MFR) technology is provided in Section 3 of the *ISCO Soil Mixing Treatment Program Summary Report* [In-Situ Oxidative Technologies, Inc. (ISOTEC), 2015b] that is provided in Appendix A.

Following implementation of this RA, EPA will issue an Explanation of Significant Differences that will formally document implementation of the contingent response action at the Site in accordance with the 2012 ROD Amendment.

1.5 DESIGN OF REMEDIAL ACTION AND PROCUREMENT OF ISCO SUBCONTRACTOR

In February 2015, with the approval of NHDES and EPA, WESTON commenced design of the response action. After an initial review of the soil conditions and contaminant distribution at the site, NHDES, EPA, and WESTON agreed that enhancing the ISCO program by combining it with in situ soil mixing would significantly increase the likelihood that response action would result in attainment of the site cleanup goals.

The design process included a laboratory-scale treatability test in order to evaluate the type and dose of ISCO reagents that, when combined with soil mixing, would provide the most effective treatment of the contaminants at the Site. The treatability test was performed by ISOTEC using soil and groundwater samples collected from the Site. Soil samples were collected via direct-push drilling from the Treatment Zone on 22 February 2015, and delivered to ISOTEC. During the treatability test, ISOTEC evaluated the following two ISCO reagents:

- Base-activated sodium persulfate (BASP), which consists of persulfate activated at high (>10.5) pH for oxidation of VOCs.
- Modified Fenton's Reagent (MFR), which consists of hydrogen peroxide activated with a chelated iron catalyst at neutral pH.

Three different doses of each of these two reagents were evaluated along with the appropriate controls during the treatability study as follows:

Laboratory-Scale Treatability Test Conditions		Oxidant Reagent Evaluated		
		BASP	MFR	
Experiments Performed		VOC Destruction and Total Oxidant Demand		
Oxidant Dose	Control	0	0	
(g/kg)*	Low	1	1	
	Medium	5	5	
	High	10	10	
Experimental Duration (days)		6	4	
Parameters Analyzed		VOCs & 1,4-Dioxane	VOCs & 1,4-Dioxane	

Note: *Oxidant doses are presented as grams of oxidant reagent per kilogram of soil (in slurry) being tested

The results of the treatability test showed that the MFR and BASP reagents provided effective treatment of the site contaminants. Initially, BASP was selected as the ISCO reagent for the RA because of its greater persistence in the subsurface and because of possible safety risks associated with MFR. As a result, the ISCO/soil mixing subcontract design documents initially specified the use of BASP, but did allow for submittal of alternate proposals that involve the use of other reagents.

Following completion of the ISCO/Soil Mixing design, a Request for Proposal (RFP) for ISCO/soil mixing services was issued on 9 June 2015. The following contractors were solicited:

- Active Environmental Technologies, Mt. Holly, NJ
- Avanti Corporation, Alexandria, VA
- Charter Environmental, Boston, MA
- Geo-Solutions, New Kensington, PA
- Hayward Baker, Odenton, MD
- ISOTEC, Lawrenceville, NJ
- Lang Tool Co., Beaverton, MI
- Recon Remedial Construction Services, Houston, TX
- Redox Tech, LLC, Attleboro, MA
- Stone Environmental Inc., Concord, NH
- Summit Contracting LLC, Evansville, Indiana
- Vironex, Millersville, DE
- XDD Environmental, Stratham, NH

A bid walk was conducted on 17 June 2015, to allow interested subcontractors to inspect the Site. The bid walk was attended by six subcontractors along with representatives of WESTON and NHDES. Questions were received from interested subcontractors during the bid period. Those questions were answered in addenda to the RFP that were issued on the following dates:

Addendum No. 1 21 June 2015
 Addendum No. 2 25 June 2015

Four proposals were received by the 1 July 2015 Bid Due Date. Proposals were received from:

- Geo-Solutions
- ISOTEC
- Recon Remedial Construction Services
- Redox Tech, LLC

After WESTON, NHDES, and EPA evaluated the proposals, ISOTEC and Redox Tech were considered to be responsive to the RFP and cost-competitive, and therefore, were issued a Request for Best and Final Offer on 17 July 2015. Following receipt and evaluation of the Best and Final Offers on 20 July 2015, ISOTEC was selected as the ISCO/Soil Mixing Subcontractor. The bases of this selection were ISOTEC's competitive pricing and their expertise with the use of multiple types of ISCO reagents in ISCO/soil mixing.

In their proposal, ISOTEC offered MFR as an option in place of BASP as the ISCO reagent. After full evaluation of the proposals for the ISCO/soil mixing subcontract, it was determined that it would be preferable to use MFR as the ISCO reagent for the following reasons:

- 1. Modified Fenton's reagent could be performed at neutral pH, while BASP required raising the pH of the groundwater to the 10.5 to 11.5 range. The elevated pH could persist in the groundwater for an extended period of time after completion of the ISCO program and possibly impact the adjacent Pequawket Pond.
- 2. The residuals from the breakdown of MFR are water, carbon dioxide, oxygen, and iron which are all innocuous, and in the case of iron, occurs naturally in the soils and groundwater at the Site. The residuals from BASP include sulfate, which would likely persist in the site groundwater for an extended period and possibly impact Pequawket Pond.
- 3. By enhancing the ISCO program with soil mixing, the lack of persistence of MFR is less of a concern because soil mixing causes rapid and thorough contact between the ISCO reagents and the soil and groundwater being treated.
- 4. Using MFR would eliminate the need to install a low-permeability subsurface wall to prevent the BASP and associated breakdown products from migrating to the culvert pipe bedding and catch basins that are immediately to the east of the Treatment Area.
- 5. ISOTEC demonstrated extensive experience safely implementing ISCO programs with MFR reagents, thereby addressing concerns about potential safety risks associated with MFR.

Based on the rationale listed above, MFR was selected as the ISCO reagent to be used by ISOTEC during their implementation of the ISCO/soil mixing subcontract at the KMC Site.

SECTION 2 CONSTRUCTION ACTIVITIES

2. CONSTRUCTION ACTIVITIES

This RA included clearing, grubbing, ISCO/soil mixing (using MFR), backfilling and site restoration. The bulk of the work was performed by two subcontractors as follows:

- ISOTEC performed the clearing and grubbing, and performed the ISCO. Lang Tool Company (LTC), a subcontractor to ISOTEC, provided the specialty soil mixing expertise and equipment.
- Following completion of the ISCO/soil mixing, Active Environmental Technologies (Active) performed the soil stabilization, backfilling, and site restoration work completed to date.

During construction, WESTON performed:

- Daily quality control (QC) and safety construction oversight.
- Soil sampling and submission of confirmatory performance monitoring samples to the analytical laboratory.
- Field testing.
- Daily reporting.
- Coordination with NHDES and EPA.

Figure 3 details the organizational structure of the project.

NHDES issued a Notice-to-Proceed with the construction activities to WESTON on 27 August 2015. WESTON and ISOTEC submitted Site-Specific Health and Safety Plans (SSHASP) and Work Plans to NHDES on 4 September 2015. Mobilization of equipment and site preparation commenced on 10 September 2015.

2.1 MOBILIZATION AND SITE PREPARATION

WESTON, ISOTEC, and LTC mobilized materials, instruments, personnel, and services required for implementing the RA to the Site on 10 September 2015, coincident with the arrival of heavy equipment and the soil mixing operations team. A kick-off meeting was conducted at the Site on 10 September 2015 with NHDES, WESTON, ISOTEC, LTC, the property owner, and representatives from the Town of Conway. Prior to commencement of work at the Site, WESTON and ISOTEC performed a pre-construction video survey to document conditions at the

Site. Between 10 and 12 September 2015, the Site was cleared and grubbed by Land and Mowing Solutions (a subcontractor to LTC) and LTC. The topsoil was stripped and stockpiled in two piles located north and south of the Treatment Area. After clearing and grubbing was complete, a temporary security fence was installed around the perimeter of the Site on 12 September 2015. Additional preparatory work included:

- Establishing site control for LTC global positioning system (GPS) equipment.
- Removal of monitoring wells MW-3006, MW-3008, MW-3009, MW-3010, and MW-3011. Those wells were in the Treatment Area and, therefore, needed to be removed prior to the excavation and soil mixing activities. Replacement monitoring wells are planned for installation in 2016.
- Protection of the remaining monitoring wells and one catch basin within the work area using precast concrete well tiles (MW-3004, MW-203A, MW-205, MW-114, EW-13B and CB 7-8).
- Installation of silt fence along the perimeter of the work area.
- Installation of a temporary water meter by Conway Village Fire District on the fire hydrant located northwest of the former water treatment building.
- Installation of a temporary water line from the temporary water meter to the ISCO reagent delivery equipment.
- Wet testing the reagent delivery system.
- Setup of LTC's office trailer.

During the clearing activities, monitoring well MW-3005 was accidentally damaged and was removed. That well will be replaced in 2016. The locations of the site features and elements relating to the RA implementation are shown on Figure 2.

2.2 SOIL MIXING AND ISCO IMPLEMENTATION

The ISCO/soil mixing work was conducted between 14 and 22 September 2015. The ISCO/soil mixing program consisted of the following:

- 1 The Treatment Area was laid out into 111 treatment cells as shown on Figure 4.
- 2 At each treatment cell, approximately 6 to 7 ft. of unsaturated overburden material were excavated from above the 7 to 15 ft. bgs Treatment Zone (The original plan was

based on an estimated water table of 2 to 3 ft. bgs, and therefore, included excavation of only 2 to 3 ft. of overburden prior to commencement of soil mixing. However, the water table was lower than expected because of the relatively dry weather in the vicinity of the Site over the 2 months prior to the project. Therefore, the lower water table at the Site allowed removal of almost all of the overburden down to the top of the Treatment Zone at 7 ft. bgs.) The excavated overburden materials were placed around the perimeter of the Treatment Area in a berm to contain swelling of the blended soils, if such swelling occurred during soil mixing.

- 3 After removal of the top 6 to 7 ft. of overburden from a group of treatment cells, the soil mixing tool, which is termed a dual axis blender (DAB), was used for aggressive mixing of the soils in the Treatment Zone while concurrently injecting the MFR reagents. Additional detail on the soil mixing/ISCO procedure is provided in Subsection 2.2.1.
- 4 The soil mixing/ISCO was performed one cell at a time and proceeded in a systematic pattern through the Treatment Area.
- 5 As the soil mixing/ISCO program progressed, a portion of the treated cells were sampled by WESTON and ISOTEC to verify adequate soil mixing and contact between impacted soils and MFR. Samples were visually inspected for homogeneity and were field screened for VOCs, hydrogen peroxide, and iron. A subset of the samples were couriered to Absolute Resource Associates (ARA) in Portsmouth, New Hampshire for analysis for halogenated VOCs. The results of the sampling and analyses are provided in Section 4.

A detailed description of the soil mixing, ISCO, and sampling procedures is provided in Sections 7 and 8 of the *ISCO Soil Mixing Treatment Program Summary Report* (ISOTEC, 2015b) in Appendix A. Daily documentation of the soil mixing/ISCO program is provided in WESTON's daily reports in Appendix B. Photos of site activities are also provided in Appendix B.

2.2.1 Soil Mixing/ISCO Procedure

After the top 6 to 7 ft. of overburden materials were excavated and placed into a berm around the perimeter of the Treatment Area, LTC used the DAB to blend the soils by plunging the mixing head through the 7 to 15 ft. bgs (approximately 455 to 447 ft. above mean sea level) Treatment Zone. During the initial soil mixing plunges in each cell, ISOTEC's chelated iron catalyst was applied to pre-treat the cells. After the catalyst was blended into each cell, hydrogen peroxide was injected through the DAB at rate of 2.13 pounds of 34% hydrogen peroxide per cubic foot of soil. The approximate total weights of catalyst and 34% hydrogen peroxide injected into the

Treatment Zone over the full duration of the ISCO/soil mixing program at the Site were 2,160 and 201,600 pounds, respectively.

The location and depth of the DAB mixing head were tracked using a GPS system mounted on the DAB. The tracking system enabled accurate positioning of the DAB in each treatment cell. Real-time monitoring and control of the reagent dispensing equipment was performed in order to accurately dispense the catalyst and the hydrogen peroxide to the DAB mixing head at all times. The catalyst batches were mixed using pre-weighed bags in a 100-gallon tank on the reagent delivery truck. The hydrogen peroxide was diluted from 34% to a range of 11% to 21% in 700-gallon tanks on the reagent truck. Scales were used to accurately dispense the correct amount of 34% hydrogen peroxide. A flow meter was used to measure the amount of water added to the catalyst and peroxide mix tanks. All treatment cells received the doses of catalyst and hydrogen peroxide specified in the *ISCO Summary Work Plan* (ISOTEC, 2015a) except for the following:

Cells E12-S1, E12-S2, E13-S1, E13-S2, E13-S4, E14-S1, and E14-S2 received double volume of reagent because of remixing and re-treatment of those cells. The second round ISCO/soil mixing treatment was necessary at those locations because the results of the performance testing showed exceedances of the Post-Treatment Criteria for 1,1-DCE and/or 1,1,1-TCA in those or adjacent cells. Additional details on sampling results and re-treatment are provided in Section 4.

The mixing duration and volumes of catalyst and hydrogen peroxide applied to each cell are detailed in Table 3 of the *ISCO Soil Mixing Treatment Program Summary Report* (ISOTEC, 2015b) located in Appendix A. Table 5 of the *ISCO Soil Mixing Treatment Program Summary Report* (ISOTEC, 2015b) shows the depth to which each cell was mixed.

2.3 SITE RESTORATION

After the soil mixing/ISCO portion of the RA was complete and all performance monitoring data demonstrated compliance with the Post-Treatment Soil Criteria, restoration of the Site commenced. At completion of the soil mixing/ISCO program, the full Treatment Area was an open excavation with a depth of 4 to 7 ft. bgs. Unexpectedly, the treated soils in the bottom of the open excavation, and throughout the Treatment Zone, were a wet slurry-type mixture of the

very fine silty soils from the Treatment Zone. This slurry-type mixture presented significant challenges for backfilling of the open excavation.

Because of the liquid nature and the depth of the soil slurry remaining after soil mixing, the soil in the Treatment Zone required stabilization to increase its bearing capacity prior to backfilling. The existing shallow overburden soils excavated prior to treatment were supplemented by approximately 1,600 tons of clean sandy fill from a nearby quarry owned by A.J. Coleman & Sons, Inc. (Coleman). The shallow overburden/sand mixture was mixed with the treated soil slurry and backfilled into the Treatment Zone. These initial attempts did not result in sufficient stabilization of the soil slurry from the Treatment Zone.

To provide additional stabilization of the soil slurry NHDES and EPA approved the use of kiln dust as an additive to increase the strength to the remaining soil slurry which, at that point, was displaced above the water table. The following two sources of kiln dust were evaluated:

- Cement kiln dust (CKD) from Thomaston, Maine.
- Lime kiln dust (LKD) from Bedford and Marbleton, Quebec, Canada.

Analytical results from these materials were reviewed by WESTON, NHDES, and EPA and found to be acceptable for stabilizing the remaining soil slurry. Further discussion of the soil amendments is provided in Subsection 4.4. Initially, two loads of CKD (approximately 50 tons) were delivered from Dragon Products Company in Thomaston, Maine. Once on-site, this material was mixed with the soil slurry using an excavator and found to not be as reactive as anticipated, and its use was discontinued. Subsequently, nine loads of LKD (approximately 165 tons) were delivered from the Graymont (QC), Inc. facilities in Bedford and Marbleton, Quebec facilities. The LKD was mixed with the soil slurry and found to be sufficiently reactive to stabilize the shallow soils for grading with a bull dozer. The CKD and LKD analytical data and truck delivery receipts are provided in Appendix C.

Final grading of the Site was completed using the topsoil that was stockpiled during the initial grubbing of the Site. A mix of wetland and upland grass seed along with hay mulch was applied over the top soil in accordance with the *Technical Specifications – Site Restoration* (WESTON, 2015b). Because restoration occurred at the end of the growing season, the silt fence will remain

in-place on the downgradient portions of the Site until vegetation is established in spring 2016. The wetland and upland seed mixtures are included as Appendix D. Additional details on the site restoration efforts including photos are provided in the daily reports in Appendix B. Visual observations during the Final Site Inspection indicated active germination and growth of vegetation in the restoration area as of 5 November 2015 because of the unseasonably warm weather. Figure 5 depicts the general grading and locations of the swales of the restored Site. A survey of the restored site conditions will be conducted by a licensed surveyor in 2016.

During site restoration activities, a hydraulic line compression fitting failed on the excavator resulting in surface spill of approximately 8 gallons of hydraulic fluid under the excavator. The spilled hydraulic fluid and associated impacted soils were immediately containerized and properly disposed of off-site by Active. Additional details can be found in the daily report for 2 October 2015 in Appendix B.

SECTION 3 CHRONOLOGY OF EVENTS

3. CHRONOLOGY OF EVENTS

Site activities commenced on 10 September 2015 and were completed on 5 November 2015. The following is a tabular summary of the major events. A Gant chart of the project schedule is presented as Figure 6.

Activity	Start Date	End Date
Record of Decision Amendment (ROD Amendment) issued	18 Sept 2012	18 Sept 2012
NHDES notification to EPA that groundwater monitoring results trigger ROD Amendment requirement to perform a RA	23 Oct 2014	23 Oct 2014
Technical Memorandum regarding RA issued by WESTON to NHDES	15 Dec 2014	13 Jan 2015
Remedial Design	4 Feb 2015	9 June 2015
Bid Walk for RA	17 June 2015	17 June 2015
Notice to Proceed	27 Aug 2015	27 Aug 2015
Planning and preparation of Work Plans and SSHASP	25 Aug 2015	4 Sept 2015
Mobilization of ISCO soil mixing equipment	8 Sept 2015	10 Sept 2015
Kick-off meeting at the Site	10 Sept 2015	10 Sept 2015
Site Preparation including: Notifications to Conway Village Fire and Police Departments of Site work Utility locating (Dig Safe call) Designate safety zone (mark perimeter of work area) Traffic controls Set up staging areas Establish of GPS control points Clearing and grubbing Stripping and stockpiling of topsoil Install water line from hydrant to soil mixing equipment Chemical procurement Establish dust control and erosion and sediment control measures Install monitor well protection	10 Sept 2015	12 Sept 2015
Excavate overburden and stockpile overburden soils above the Treatment Zone (ongoing during soil mixing activities)	12 Sept 2015	20 Sept 2015
MFR deliveries	14 Sept 2015	18 Sept 2015
Perform ISCO Enhanced by Soil Mixing and Performance Monitoring	14 Sept 2015	22 Sept 2015
Receipt of final soil samples demonstrating compliance with the Post-Treatment Soil Criteria	23 Sept 2015	23 Sept 2015
Demobilization of Soil Mixing Equipment	23 Sept 2015	23 Sept 2015
Mobilization of Site Restoration Contractor	28 Sept 2015	28 Sept 2015

Activity	Start Date	End Date
Site Restoration	28 Sept 2015	21 Oct 2015
Demobilization of Site Restoration Contractor	21 Oct 2015	21 Oct 2015
Inspection of the restored Site with NHDES	5 Nov 2015	5 Nov 2015
Removal of temporary security fence	5 Nov 2015	5 Nov 2015

SECTION 4

PERFORMANCE STANDARDS AND CONSTRUCTION QUALITY CONTROL

4. PERFORMANCE STANDARDS AND CONSTRUCTION QUALITY CONTROL

4.1 PERFORMANCE MONITORING

WESTON performed construction oversight throughout the soil mixing/ISCO and site restoration programs. This oversight included continuous supervision of the DAB and reagent dispensing operations. In addition, samples of the treated soils were collected for field testing and for analysis at an off-site laboratory.

In accordance with the *Work Plan* (WESTON, 2015c), Quality Assurance/QC samples were collected each morning from a minimum of one of the cells that were treated the previous day. All of the cells that were treated on the first day of ISCO/soil mixing operations were tested on the second day. The soil samples were collected using a tube sampler mounted on an off-road forklift. Following removal of the tube sampler from the subsurface, the soil samples were extracted from the sampling tube and placed in 5-gallon buckets. The soil samples were:

- Visually inspected to confirm adequate soil mixing.
- Placed in a jar, and the headspace of the jar was tested with a photoionization detector (PID).
- Tested for residual ISCO reagent concentrations using field test kits for hydrogen peroxide and iron. Field testing for hydrogen peroxide was conducted using Quantofix Peroxide 100 test strips. A Hach Iron Color Disc Test Kit, Model IR-18A was used to measure iron in water from the sample.

Samples of the soil with the highest PID reading within a sampled cell were submitted to ARA for analysis for halogenated VOCs via EPA Method 8260C. The samples were analyzed on a 24-hour turn-around-time in order to provide rapid feedback on the effectiveness of the ISCO/soil mixing process. A duplicate sample was analyzed for every 10 samples analyzed.

Each of the cells that were treated during Day 1 of soil mixing (14 September 2015) had VOC samples collected at three depths (approximately 9, 11, and 13 ft. bgs). For the remainder of the treated cells, the depths of VOC samples were selected with a bias toward depths where historical soil data indicated higher contaminant levels. The VOC samples were collected from 56 of the 111 treatment cells (51%). Figure 4 and Table 1 detail the cells from which the samples

were collected and provide the analytical data for 1,1,1-TCA and 1,1-DCE in those samples. The full analytical data packages are provided in Appendix E.

Three treatment cells of the 56 cells tested for VOCs did not meet the Post-Treatment Soil Criteria for 1,1-DCE ($60 \mu g/kg$) and/or 1,1,1-TCA ($150 \mu g/kg$) after the first round of ISCO/soil mixing treatment. Those cells were re-mixed, re-treated with a second full dose of ISCO reagents, and resampled for off-site analysis of VOCs. Additional adjacent cells were re-treated at the same time as the exceeding cells in order to provide a treatment buffer around the areas of exceedances. Following resampling, all re-treated cells met the Post-Treatment Soil Criteria. The following is a summary of re-treated cells:

- Cell E13-S2 was re-treated because of exceedances of the Post-Treatment Soil Criteria for 1,1-DCE and 1,1,1-TCA.
- Cell E14-S1 was re-treated because of an exceedance of the Post-Treatment Soil Criterion for 1,1-DCE.
- Cells E12-S1 and E12-S2 did not have exceedances of the Post-Treatment Soil Criteria but were re-treated to provide a treatment buffer around Cell E13-S2.
- Cells E13-S1 and E14-S2 did not have exceedances but were re-treated to provide a treatment buffer around Cells E13-S2 and E14-S1.
- Cell E13-S4 was re-treated because of and exceedance of Post-Treatment Soil Criterion for 1,1-DCE.

4.2 STORM DRAIN MONITORING

Because of the proximity of the storm drain to the Treatment Area (Figures 2 and 4), and to ensure no impacts to the nearby surface water by site activities, a water sample from the storm drain was collected daily during the RA from catch basins CB 5-6 and CB 6-7 and monitored for hydrogen peroxide and iron. Daily visual inspections showed that water in the storm drain at CB 5-6 and CB 6-7 was not flowing because of the high water level in Pequawket Pond, which caused water to back up into the storm drain pipeline. Field testing for hydrogen peroxide was conducted using Quantofix Peroxide 100 test strips. A Hach Iron Color Disc Test Kit, Model IR-18A was used to test for iron. Hydrogen peroxide was not detected [the detection limit was 1 part per million (ppm)] in the catch basins, and the dissolved iron concentrations remained at or below the background concentrations (1 ppm). In addition, three samples were collected on

14 and 19 September 2015 and 2 October 2015, from catch basin CB5-6 and analyzed for halogenated VOCs via EPA Method 8260C by ARA. Results were non-detect at 2 micrograms per liter for each of the samples analyzed, indicating no impacts from site activities to the storm drain system. The hydrogen peroxide and dissolved iron results are reported in Table 2. Full analytical data packages are included as Appendix F.

4.3 SANDY FILL BACKFILL MATERIAL EVALUATION

Two samples were collected on 2 October 2015 of the sandy fill delivered from the Coleman Quarry, located in Conway, New Hampshire, and analyzed for halogenated VOCs via EPA Method 8260C by ARA. Results were non-detect indicating no exceedances of the NHDES Soil Remediation Standards (SRS). Full analytical data packages are included as Appendix G. In addition, visual inspection of the sandy fill did not indicate any manmade or deleterious material, oil, odor, or sheen. As a result, the material was considered suitable for use as backfill at the Site.

4.4 CEMENT AND LIME KILN DUST ANALYTICAL DATA REVIEW

Prior to the use of the CKD and LKD on-site, WESTON compared the analytical data for metals for each product to the NHDES SRS. Analytes were at or below the NHDES SRS except for arsenic in the CKD which was slightly above the SRS value of 23.6 mg/kg. Verbal approval was granted by NHDES and EPA to use the CKD because of the low risk of exposure and low risk of leachability considering the low volume of CKD mixed with native soil; the low permeability of the material; and the fact that the soil mixture was being placed above the water table at the Site. Analytical results are included as Appendix H.

4.5 RECOMMENDATIONS FOR IMPROVED IMPLEMENTATION OF ISCO VIA SOIL MIXING

Modifications that would have improved the implementation and/or outcome of the RA are provided herein as recommendations that may improve the performance and efficiency of future ISCO/soil mixing projects at other sites.

Recommendation: If, at completion of the ISCO/soil mixing process, the treated soils have very low bearing capacity (a slurry consistency), then use the soil mixing equipment for mixing in reagents that will stabilize those soils prior to backfilling of the overlying soils.

As discussed in Section 2, the low bearing capacity of the soil slurry in the Treatment Zone that resulted from the soil mixing/ISCO process presented significant challenges that slowed and added costs to backfilling and restoration of the Site. To address this challenge, and expedite backfilling, it would have been advantageous to stabilize the slurry at the conclusion of the ISCO/soil mixing process and prior to commencement of backfilling. This stabilization process would likely have involved mixing portland cement, LKD, or other stabilization reagent into the slurry after attainment of the Post-Treatment Performance Criteria was confirmed. This enhancement could have been performed with the soil mixing equipment prior to demobilization of that equipment from the Site.

Because of the relatively short persistence of MFR in the subsurface, the cost impacts of using the expensive soil mixing equipment for the post-ISCO stabilization process should be relatively minimal. The rationale for this is that when MFR is used, confirmation sampling can be performed 1 to 2 days after completion of the ISCO/soil mixing program. For BASP, it may be necessary to wait up to 2 weeks after completion of ISCO/soil mixing before collection of the final confirmation samples. This additional duration associated with BASP could result in significantly higher soil mixing equipment costs.

Recommendation: Stabilization reagents should be reactive chemically, and not just physical bulking agents. The use of sand and partially hydrated CKD, which have little or no reactivity with water, did not provide efficient stabilization of the slurry that resulted from the ISCO/soil mixing process. Reactive LKD provided much more effective stabilization of the slurry. Based on experience at other sites, it is expected that portland cement would also have provided effective stabilization. The available stabilization reagents should be tested on-site for stabilization of the slurry early in the ISCO soil mixing process in order to calculate the proper dose. This approach will enable timely procurement and delivery of the most cost-effective stabilization reagent, when necessary.

SECTION 5 FINAL INSPECTION

5. FINAL INSPECTION

Mr. Andrew Hoffman, P.E. of NHDES and Mr. Erik Hall, P.E. of WESTON conducted a post-restoration site walk on 5 November 2015. At that time, the surface soils at the Site were observed to be stable, with no indications of settlement or soft areas. Indications of germination of vegetation were observed. The site grading and swale configuration was found to be acceptable by NHDES. An additional site inspection will be conducted in 2016 to ensure the vegetation is established and the erosion control measures are removed.

6. OPERATION AND MAINTENANCE ACTIVITIES

After the vegetation is established within the disturbed area, the erosion control measures will be removed in 2016. Additional topsoil, seed, and hay mulch may be required if there are areas where vegetation is not established.

Upon receiving direction from NHDES and EPA, four monitoring wells (MW-3006A, 3008A, 3009A, 3010A) will be installed and developed to replace the six monitoring wells (MWs-3005, 3006, 3008, 3009, 3010, and 3011) removed as part of the RA. Two soil samples (one from the "mixed" matrix based on PID field screening and one from native undisturbed silt at bottom of ISCO mixing zone) will be collected from each monitoring well borehole and analyzed for VOCs by the State of New Hampshire Health and Human Services Laboratory. Slug tests will be performed on all newly installed wells to assess the hydraulic conductivity of the subsurface soils. At the time of slug testing, a comprehensive round of static water levels will be recorded from new and existing wells at the Site. These data will be incorporated into a post-treatment monitoring report along with the additional groundwater sampling data collected by NHDES in 2016.

An elevation survey of the restored site surface conditions and a location and elevation survey of the monitoring well network at the Site also will be conducted in 2016.

SECTION 7 CONTACT INFORMATION

7. CONTACT INFORMATION

Table 3 shows the contact information for key personnel and contractors who were involved with this RA.

SECTION 8 REFERENCES

8. REFERENCES

ISOTEC (In-Situ Oxidative Technologies, Inc.). 2015a. ISCO Summary Work Plan, ISCO Soil Mixing Remedial Services, Kearsarge Metallurgical Corp Superfund Site, Conway, New Hampshire, Revision 1. 21 August 21.

ISOTEC. 2015b. ISCO Soil Mixing Treatment Program Summary Report, ISCO Soil Mixing Remedial Services, Kearsarge Metallurgical Corp Superfund Site, Conway, New Hampshire. 6 October.

EPA (United States Environmental Protection Agency). 1990. Record of Decision, Kearsarge Metallurgical Corporation Superfund Site. 28 September.

EPA. 2012. Record of Decision Amendment, Kearsarge Metallurgical Corporation Superfund Site. 18 September.

EPA. 2013. Kearsarge Metallurgical Corporation Superfund Site Third Five Year Review. 5 September.

WESTON (Weston Solutions, Inc.). 2004. Source Removal Action Completion Report, Kearsarge Metallurgical Corp Superfund Site, Conway, New Hampshire. Revision 1 June 22.

WESTON. 2015a. *Technical Specifications - In-Situ Chemical Oxidation Via Soil Mixing*, Kearsarge Metallurgical Corp Superfund Site, Conway, New Hampshire. Revision 1, August 21.

WESTON. 2015b. Technical Specifications – Site Restoration, Kearsarge Metallurgical Corp Superfund Site, Conway, New Hampshire. Revision 1, 1 July.

WESTON. 2015c. Work Plan - In-Situ Chemical Oxidation Via Soil Mixing, Kearsarge Metallurgical Corp Superfund Site, Conway, New Hampshire. Revision 1, 4 September.

FIGURES

TABLES

Table 1

Treatment Performance Monitoring Data In Situ Chemical Oxidation Enhanced by Soil Mixing **Kearsarge Metallurgical Corporation Superfund Site** Conway, New Hampshire

Date of ISCO/Soil Mixing	Cell Location ^a	Start time of ISCO/Soil Mixing	Stop time of ISCO/Soil Mixing	Total Soil Mixing Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After ISCO/ Soil Mixing	PID Screening (ppmv)	Post-Treatment Hydrogen Peroxide Concentration ^b (ppm)	Post-Treatment Dissolved Iron Concentration ^c (ppm)	Post-Treatment 1,1,1-TCA Concentration ^d (μg/kg)	Post-Treatment 1,1-DCE Concentration ^c (µg/kg)	Comments
						9		0.0	0	20	NA	NA	
14-Sep	E17-S14	10:45	11:04	19	15-Sep	11	Next Day	0.0	0	14	NA	NA	
						13		0.0	0	28	100 U	40 U	Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	12	NA	NA	
14-Sep	E17-S13	11:05	11:20	15	15-Sep	11	Next Day	0.0	0	63	NA	NA	
						13		0.0	0	32	50 U	20 U	Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	10	NA	NA	
14-Sep	E17-S11	11:36	11:42	7	15-Sep	11	Next Day	0.0	0	12	NA	NA	
						13	-	0.0	0	18	100 U		Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	14	NA	NA	
14-Sep	E17-S9	11:52	12:17	25	15-Sep	11	Next Day	0.0	0	9	NA	NA	
						13		0.0	0	15	100 U	40 U	Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	14	NA	NA	
14-Sep	E17-S7	13:07	13:22	15	15-Sep	11	Next Day	0.0	0	8	NA	NA	
						13		0.0	0	5	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.

Table 1
Treatment Performance Monitoring Data
In Situ Chemical Oxidation Enhanced by Soil Mixing
Kearsarge Metallurgical Corporation Superfund Site
Conway, New Hampshire

Date of ISCO/Soil Mixing	Cell Location ^a	Start time of ISCO/Soil Mixing	Stop time of ISCO/Soil Mixing	Total Soil Mixing Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After ISCO/ Soil Mixing	PID Screening (ppmv)	Post-Treatment Hydrogen Peroxide Concentration ^b (ppm)	Post-Treatment Dissolved Iron Concentration ^c (ppm)	Post-Treatment 1,1,1-TCA Concentration ^d (μg/kg)	Post-Treatment 1,1-DCE Concentration ^c (µg/kg)	Comments
						9		0.0	0	11	NA	NA	
14-Sep	E17-S6	13:23	13:38	15	15-Sep	11	Next Day	0.0	0	6	NA	NA	
						13		0.0	0	12	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	6	NA	NA	
14-Sep	E17-S5	13:39	14:08	29	15-Sep	11	Next Day	0.0	0	4	NA	NA	
						13		0.0	0	6	100 U	40 U	Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	12	NA	NA	
						11		0.0	0	8	NA	NA	
14-Sep	E13-S2	16:16	16:33	17	15-Sep	13	Next Day	0.0	0	8	200	110	Sample sent to lab on on 9/16. Results received on 9/17. Exceedance detected. Cell retreated on 9/17. Analytical data received on 9/19/15 with results below project goals.
											60	40	Duplicate sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	6	NA	NA	
						11		0.0	0	12	NA	NA	
14-Sep	E14-S1	15:05	15:19	14	15-Sep	13	Next Day	0.0	0	8	100 U	160	Sample sent to lab on on 9/16. Results received on 9/17. Exceedance detected. Cell retreated on 9/17. Analytical data received on 9/19/15 with results below project goals.

Table 1
Treatment Performance Monitoring Data
In Situ Chemical Oxidation Enhanced by Soil Mixing
Kearsarge Metallurgical Corporation Superfund Site
Conway, New Hampshire

Date of ISCO/Soil Mixing	Cell Location ^a	Start time of ISCO/Soil Mixing	Stop time of ISCO/Soil Mixing	Total Soil Mixing Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After ISCO/ Soil Mixing	PID Screening (ppmv)	Post-Treatment Hydrogen Peroxide Concentration ^b (ppm)	Post-Treatment Dissolved Iron Concentration ^c (ppm)	Post-Treatment 1,1,1-TCA Concentration ^d (µg/kg)	Post-Treatment 1,1-DCE Concentration ^c (µg/kg)	Comments
						9		0.0	0	14	NA	NA	
14-Sep	E15-S2	15:20	15:35	15	15-Sep	11	Next Day	0.0	0	10	NA	NA	
						13		0.0	0	8	100 U	50	Sample sent to lab on 9/16. Results received on 9/17.
45.0			0.40	40	46.6	11		0.0	0	5	NA	NA	
15-Sep	E11-S2	9:00	9:18	18	16-Sep	13	Next Day	0.0	0	10	100	60	Sample sent to lab on 9/16. Results received on 9/17.
15-Sep	E7-S1	12:05	12:22	17	16-Sep	13	Next Day	0.0	1	12	100	30	Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0.0	4	NA	NA	
15-Sep	E9-S2	10:46	11:08	22	16-Sep	11	Next Day	0.0	0.0	9	100	50	
						13		0.0	0.8	6	NA	NA	Sample sent to lab on 9/16. Results received on 9/17.
15-Sep	E10-S1	8:38	8:59	21	16-Sep	13	Next Day	0.0	0.0	6	100	30	Sample sent to lab on 9/16. Results received on 9/17.
15-Sep	E8-S1	11:09	11:31	22	16-Sep	13	Next Day	0.0	0.0	7	100	60	Sample sent to lab on 9/16. Results received on 9/17.
15-Sep	E6-S2	13:37	13:57	20	16-Sep	13	Next Day	0.1	0.0	4	100	30 J	Sample sent to lab on 9/16. Results received on 9/17.
											50 J	20 J	Sample sent to lab on 9/16. Results received on 9/17.
15-Sep	E5-S2	14:19	14:39	20	16-Sep	13	Next Day	0.1	0.0	10	50 J	30 J	Duplicate Sample sent to lab on 9/16. Results received on 9/17.
15-Sep	E5-S1	13:58	14:18	20	16-Sep	13	Next Day	0.0	0.0	5	100	30	Sample sent to lab on 9/16. Results received on 9/17.
15-Sep	E3-S2	15:41	16:03	22	16-Sep	13	Next Day	0.1	0.0	4	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.
15-Sep	E3-S1	15:20	15:40	20	16-Sep	13	Next Day	0.1	0.0	8	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.

Table 1
Treatment Performance Monitoring Data
In Situ Chemical Oxidation Enhanced by Soil Mixing
Kearsarge Metallurgical Corporation Superfund Site
Conway, New Hampshire

Date of ISCO/Soil Mixing	Cell Location ^a	Start time of ISCO/Soil Mixing	Stop time of ISCO/Soil Mixing	Total Soil Mixing Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After ISCO/ Soil Mixing	PID Screening (ppmv)	Post-Treatment Hydrogen Peroxide Concentration ^b (ppm)	Post-Treatment Dissolved Iron Concentration ^c (ppm)	Post-Treatment 1,1,1-TCA Concentration ^d (µg/kg)	Post-Treatment 1,1-DCE Concentration ^e (µg/kg)	Comments
16-Sep	E4-S3	15:20	15:50	30	17-Sep	11	Next Day	0.0	1.0	5	100	40	Sample sent to lab on 9/17. Results received on 9/18.
10 300		13.20	15.50	30	17 300	13	reac buy	0.0	0.0	10	NA	NA	
46.6	FF 63	45.50	16:20	20	47.6	11	Nort Day	0.0	1.0	3	NA	NA	
16-Sep	E5-S3	15:50	16:20	30	17-Sep	13	Next Day	0.0	0.0	6	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
16-Sep	E16-S14	9:22	9:46	24	17-Sep	11	Next Day	0.1	0.0	9	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
10-зер	210-314	3.22	9.40	24	17-Зер	13	Next Day	0.1	0.0	5	NA	NA	
16-Sep	E16-S11	10:28	10:48	20	17-Sep	13	Next Day	0.0	0.0	8	100 U	1 30 U	Sample sent to lab on 9/17. Results received on 9/18.
16-Sep	E1-S2	8:10	8:36	26	17-Sep	13	Next Day	0.0	0.0	7	100 U	1 30 U	Sample sent to lab on 9/17. Results received on 9/18.
16-Sep	E16-S6	12:33	12:54	21	17-Sep	13	Next Day	0.1	0.0	2	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
16-Sep	E16-S9	11:09	11:28	19	17-Sep	13	Next Day	0.1	0.0	9	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
16-Sep	E16-S3	13:43	14:08	25	17-Sep	13	Next Day	0.1	0.0	7	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
17-Sep	E10-S3	9:48	10:17	29	18-Sep	13	Next Day	0.1	0.0	7	100	30 J	Sample sent to lab on 9/18. Results received on 9/19.
17-Sep	E13-S3	11:07	11:37	20	18-Sep	13	Next Day	0.1	0.0	4	100 U	40 J	Sample sent to lab on 9/18. Results received on 9/19.
17-Sep	E14-S12	14:59	15:11	12	18-Sep	13	Next Day	0.0	0.0	10	100 U	1 40 11	Sample sent to lab on 9/18. Results received on 9/19.
17-Sep	E14-S3	11:37	12:00	23	18-Sep	13	Next Day	0.2	0.0	2	100 U	I 40 U	Sample sent to lab on 9/18. Results received on 9/19.
17-Sep	E15-S8	13:02	13:14	12	18-Sep	13	Next Day	0.0	0.0	5	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
17-Sep	E15-S10	13:27	13:50	23	18-Sep	13	Next Day	0.0	0.0	3	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.

Table 1

Treatment Performance Monitoring Data In Situ Chemical Oxidation Enhanced by Soil Mixing **Kearsarge Metallurgical Corporation Superfund Site** Conway, New Hampshire

Date of ISCO/Soil Mixing	Cell Location ^a	Start time of ISCO/Soil Mixing	Stop time of ISCO/Soil Mixing	Total Soil Mixing Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After ISCO/ Soil Mixing	PID Screening (ppmv)	Post-Treatment Hydrogen Peroxide Concentration ^b (ppm)	Post-Treatment Dissolved Iron Concentration ^c (ppm)	Post-Treatment 1,1,1-TCA Concentration ^d (µg/kg)	Post-Treatment 1,1-DCE Concentration ^e (µg/kg)	Comments
											100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
17-Sep	E15-S14	15:23	15:50	27	18-Sep	13	Next Day	0.0	0.0	8	100 U	30 U	Duplicate sample sent to lab on 9/18. Results received on 9/19.
17-Sep	E15-S3	12:33	12:59	26	18-Sep	13	Next Day	0.0	0.0	7	100 U	50 U	Sample sent to lab on 9/18. Results received on 9/19.
17-Sep	E12-S1	17:42	17:59	17	18-Sep	11	Next Day	0.0	0.0	3	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Results received on 9/19.
						13		0.0	0.0	5	NA	NA	Retreated cell on 9/17.
						11		0.0	0.0	5	NA	NA	Retreated cell on 9/17.
17-Sep	E12-S2	17:24	17:42	18	18-Sep	13	Next Day	0.1	0.0	5	100 U		Retreated cell on 9/17. Sample sent to lab on 9/18. Results received on 9/19.
						11		0.0	0.0	3	NA	NA	Retreated cell on 9/17.
17-Sep	E13-S1	17:14	17:24	10	18-Sep	13	Next Day	0.0	0.0	6	100 U		Retreated cell on 9/17. Sample sent to lab on 9/18. Results received on 9/19.
						11		0.0	0.0	4	NA	NA	Retreated cell on 9/17.
17-Sep	E13-S2	16:50	17:14	24	18-Sep	13	Next Day	0.1	0.0	5	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Results received on 9/19.
17-Sep	E14-S1	16:37	16:50	13	18-Sep	11	Next Day	0.1	0.0	6	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Results received on 9/19.
						13		0.0	0.0	8	NA	NA	Retreated cell on 9/17.

Table 1

Treatment Performance Monitoring Data In Situ Chemical Oxidation Enhanced by Soil Mixing **Kearsarge Metallurgical Corporation Superfund Site** Conway, New Hampshire

Date of ISCO/Soil Mixing	Cell Location ^a	Start time of ISCO/Soil Mixing	Stop time of ISCO/Soil Mixing	Total Soil Mixing Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After ISCO/ Soil Mixing	PID Screening (ppmv)	Post-Treatment Hydrogen Peroxide Concentration ^b (ppm)	Post-Treatment Dissolved Iron Concentration ^c (ppm)	Post-Treatment 1,1,1-TCA Concentration ^d (µg/kg)	Post-Treatment 1,1-DCE Concentration ^e (µg/kg)	Comments
						11		0.0	0.0	7	NA	NA	Retreated cell on 9/17.
17-Sep	E14-S2	16:06	16:37	31	18-Sep	13	Next Day	0.0	0.0	3	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Results received on 9/19.
18-Sep	E2-S4	7:56	8:06	10	19-Sep	13	Next Day	0.1	0.0	5	100 U	20 U	Sample Sent to Lab 9/19. Results received on 9/21.
18-Sep	E4-S4	9:15	9:46	31	19-Sep	13	Next Day	0.1	0.0	12	100 U	30 U	Sample Sent to Lab 9/19. Results received on 9/21.
											100 U	20 U	Sample Sent to Lab 9/19. Results received on 9/21.
18-Sep	E3-S5	13:19	13:49	30	19-Sep	13	Next Day	0.1	0.0	13	100 U	30 J	Duplicate Sample Sent to Lab 9/19. Results received on 9/21.
18-Sep	E5-S4	9:47	10:16	29	19-Sep	13	Next Day	0.1	0.0	3	100 U	20 U	Sample Sent to Lab 9/19. Results received on 9/21.
18-Sep	E14-S4	14:26	14:56	30	19-Sep	13	Next Day	0.0	0.0	8	100 U	30 U	Sample Sent to Lab 9/19. Results received on 9/21.
18-Sep	E4-S5	13:50	14:18	28	19-Sep	13	Next Day	0.1	0.0	4	100 U	30 U	Sample Sent to Lab 9/19. Results received on 9/21.
18-Sep	E15-S4	14:56	15:18	22	19-Sep	13	Next Day	0.0	0.0	6	100 U	30 U	Sample Sent to Lab 9/19. Results received on 9/21.
18-Sep	E5-S5	16:18	16:47	29	19-Sep	13	Next Day	0.1	0.0	7	100 U	30 J	Sample Sent to Lab 9/19. Results received on 9/21.
18-Sep	E7-S4	10:37	11:02	25	19-Sep	13	Next Day	0.1	0.0	5	100 U	30 U	Sample Sent to Lab 9/19. Results received on 9/21.
18-Sep	E10-S4	11:42	12:13	31	19-Sep	13	Next Day	0.0	0.0	24	100 U	30 U	Sample Sent to Lab 9/19. Results received on 9/21.
18-Sep	E11-S4	13:11	13:32	21	19-Sep	13	Next Day	0.0	0.0	12	100 U	30 U	Sample Sent to Lab 9/19. Results received on 9/21.

2/24/2016

Table 1

WASTERN STREET

Treatment Performance Monitoring Data In Situ Chemical Oxidation Enhanced by Soil Mixing Kearsarge Metallurgical Corporation Superfund Site Conway, New Hampshire

Date of ISCO/Soil Mixing	Cell Location ^a	Start time of ISCO/Soil Mixing	Stop time of ISCO/Soil Mixing	Total Soil Mixing Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After ISCO/ Soil Mixing	PID Screening (ppmv)	Post-Treatment Hydrogen Peroxide Concentration ^b (ppm)	Post-Treatment Dissolved Iron Concentration ^c (ppm)	Post-Treatment 1,1,1-TCA Concentration ^d (µg/kg)	Post-Treatment 1,1-DCE Concentration ^e (µg/kg)	Comments
18-Sep	E13-S4	13:52	14:26	34	19-Sep	13	Next Day	0.1	0.0	13	100 U	80	Sample sent to lab on on 9/19. Results received on 9/21. Exceedance detected. Cell retreated on 9/21. Analytical data received on 9/22 with results below Post-Treatment Criteria.
19-Sep	E5-S6	8:32	8:45	13	21-Sep	13	Approx. 47 hrs	0.0	0.0	4	100 U	1 3011	Sample Sent to Lab 9/21. Results received on 9/22.
19-Sep	E8-S5	9:45	10:15	30	21-Sep	13	Approx. 46 hrs	0.1	0.0	10	Lab broke sample resampled at 14:3		Sample Sent to Lab 9/21.
19-Sep	E13-S5	10:25	10:47	22	21-Sep	13	Approx. 45 hrs	0.0	0.0	10	100 U	1 40 U	Sample Sent to Lab 9/21. Results received on 9/22.
19-Sep	E15-S6	11:40	12:05	25	21-Sep	13	Approx. 44 hrs	0.0	0.0	6	100 U	1 3011	Sample Sent to Lab 9/21. Results received on 9/22.
21-Sep	E13-S4	12:38	13:12	33	21 -Sep	13	Approx. 4 hrs	0.0	2.5	13	100 U	40 U	Sample Sent to Lab 9/19. Cell was retreated on 9/21 at 12:38. Cell was resampled at 14:38 on 9/21. Analytical data received on 9/22.
21-Sep	E8-S5	9:45	10:15	30	21-Sep	13	Approx. 2 days	0.0	10.0	10	70 J	20 J	Sample Sent to Lab 9/21. Lab broke sample bottle. Cell was resampled at approx. 14:30 on 9/21. Results received on 9/22.

Table 1

Treatment Performance Monitoring Data In Situ Chemical Oxidation Enhanced by Soil Mixing Kearsarge Metallurgical Corporation Superfund Site Conway, New Hampshire

Notes:

^a Cell Locations = ID locations of the treatment cells that were sampled after the cell was treated with ISCO and soil mixing.

^b Field testing for hydrogen peroxide was conducted using Quantofix Peroxide 100 test strips.

^c Field testing for total iron was conducted using Hach Iron Color Disc Test Kit, Model IR-18A.

^d 1,1,1-TCA = 1,1,1-Trichloroethane (Post-Treatment Criterion is≤150 μg/kg)

e 1,1-DCE = 1,1-Dichloroethene (Post-Treatment Criterion is≤60 μg/kg)

ft bgs = Feet below ground surface.

ppmv = Parts per million by volume

ppm = Parts per million

NA = Not Analyzed

 $\mu g/kg = Micrograms per kilogram$

Sample Collection Time = Samples collected the morning after day of ISCO/soil mixing.

U = Analyte was not detected. Reporting limit is shown.

Green shading indicates results were non-detect for the compounds indicated.

Yellow highlighting indicates detection at or below the Post-Treatment Criterion for the compound indicated.

Red highlighting indicates detection above the Post-Treatment Criterion for the compound indicated.

Orange highlighting indicates cell was re-treated with ISCO and soil mixing, and then re-sampled because of exceedance of the one or more of the Post-Treatment Criteria after the first round of ISCO and mixing. The results for the sample collected after the second ISCO treatment and mixing met the Post-Treatment Criteria.

Blue highlighting indicates cell was re-treated with ISCO and soil mixing, and then re-sampled because of an exceedance of one or more of the Post-Treatment Criteria in adjacent cell(s) after the first round of ISCO and mixing. The results for the sample collected after the second ISCO/soil mixing treatment met the Post-Treatment Criteria.

Table 2 Catch Basin Monitoring Data In Situ Chemical Oxidation Enhanced by Soil Mixing Kearsarge Metallurgical Superfund Site Conway, New Hampshire

Catch Basin Location	Date	Time	Collected By	Hydrogen Peroxide Concentration (ppm)	Dissolved Iron Concentration (ppm)	Notes
CB5-6	9/15/2015	1630	AB	0	1.0	
	9/16/2015	1115	AB	0	0.4	
	9/16/2015	1643	AB	0	0.1	
	9/17/2015	1021	AB	0	1.4	
	9/17/2015	1610	AB	0	0.3	
	9/18/2015	1102	AB	0	0.6	
	9/18/2015	1610	AB	0	0.2	
	9/19/2015	0915	AB	0	0.8	
	9/19/2015	1200	AB	0	0.8	
	9/21/2015	0910	EH	0	0.0	
	9/21/2015	1515	EH	0	0.8	
CB6-7	9/16/2015	1115	AB	0	1.0	
	9/16/2015	1643	AB	0	0.5	
	9/17/2015	1011	AB	0	1.0	
	9/17/2015	1620	AB	0	0.2	
	9/18/2015	1112	AB	0	0.8	
	9/18/2015	1603	AB	0	0.1	
	9/19/2015	0915	AB	0	1.0	
	9/19/2015	1200	AB	0	1.0	
	9/21/2015	0915	EH	0	0.0	
	9/21/2015	1510	EH	0	0.8	

Notes:

ppm = Parts per million

Table 3 Contact Information cal Oxidation Enhanced by

In Situ Chemical Oxidation Enhanced by Soil Mixing Kearsarge Superfund Site Conway, New Hampshire

Agency/Company	Project Title	Personnel	Address	Phone
EPA	Remedial Project Manager	Mr. Darryl Luce, Ph.D.	US Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OSRR07-1 Boston, MA 02109-3912	(617) 918-1336
NHDES	Project Manager	Mr. Andrew Hoffman, P.E.	New Hampshire Department of Environmental Services 29 Hazen Drive Concord, NH 03301	(603) 271-6778
WESTON	Program Manager	Mr. Todd Walles, PMP, CHMM	Weston Solutions 124 Hebron Avenue Glastonbury, CT 06033	(860) 368-3200
WESTON	Project Manager	Mr. Vincent DelloRusso, P.G.	Weston Solutions 2501 Jolly Road, Suite 100 Okemos, Michigan 48864	(603) 656-5457
WESTON	Technical Manager	Mr. Fred Symmes, P.E.	Weston Solutions 43 N. Main Street Concord, NH 03302	(603) 656-5412
WESTON	Site Superintendent	Mr. Erik Hall, P.E.	Weston Solutions 43 N. Main Street Concord, NH 03302	(603) 656-5436
ISOTECH	Project Manager	Mr. Mike Temple	ISOTEC - In-Situ Oxidative Technologies11 Princess Road Suite A Lawrenceville, NJ 08648	(609) 803-3513
LTC	Project Manager	Mr. Bill Lang	Lang Tool Company 2520 Glidden Road Beaverton, MI 48612	(989) 435-9864
ACTIVE	Project Manager	Mr. JR Evangelista	Active Environmental Technologies 230 Pine St. Mt. Holly, NJ 08060	(609) 864-0822

Notes:

EPA = United States Environmental Protection Agency

NHDES = New Hampshire Department of Environmental Services

WESTON = Weston Solutions, Inc.

APPENDIX A

ISOTEC ISCO SOIL MIXING TREATMENT PROGRAM SUMMARY REPORT

ISCO SOIL MIXING TREATMENT PROGRAM SUMMARY REPORT

ISCO SOIL MIXING REMEDIAL SERVICES
KEARSARGE METALLURGICAL CORP. SUPERFUND SITE
CONWAY, NEW HAMPSHIRE
WORK ORDER NO. 20118.015.003
NHDES SITE NO. 198708002, PROJECT NO. 13323

JANUARY 5, 2015

PREPARED FOR

Weston Solutions, Inc.
45 Constitution Avenue, Suite 100
Concord, NH 03301

ISOTEC Proposal No. 801991(R)

In-Situ Oxidative Technologies, Inc. 11 Princess Road, Suite A Lawrenceville, New Jersey 08648

Phone: (609) 275-8500 Fax: (609) 275-9608 www.insituoxidation.com SBA Certified Small Business

TABLE OF CONTENTS

Executiv	ve Summary
Section	1 Site Characteristics
Section	2 Treatment Program Objectives
Section	3 Technology Overview4
3.1	Modified Fenton's Reagent (MFR)4
Section	4 Project Coordination5
4.1	Project Field Staffing5
4.2	List of Subcontractors5
4.3	List of Major Equipment5
4.4	List of Permits and Approvals/ Utility Markout6
Section	5 Project Schedule
Section	6 Mobilization/Demobilization8
6.1	Pre-Construction Meeting/ Submittals
6.2	Mobilization8
6.3	Demobilization8
Section	7 In-Situ Remediation
7.1	Site Preparation9
7.2	ISCO Soil Mixing10
7.3	Performance Monitoring (Soil Sample Collection)13
7.4	Report Preparation16
7.5	Health and Safety16
7.6	Emergency Spill and Fire Control Measures18
Section	8 Treatment Program Results19

FIGURES

SITE MAP SHOWING AREA OF DISTURBANCE	FIGURE 1
CELL DESIGNATION MAP	FIGURE 2
EQUIPMENT/ CHEMICAL LAYOUT AREAS	FIGURE 3
FIGURE ILLUSTRATING EACH CELL WAS MIXED TO TERMINAL DEPTH	FIGURE 4
SOIL SAMPLING LOCATION MAP	FIGURE 5
FIGURE ILLUSTRATING LOCATION OF RE-MIXED CELLS	Figure 6
TABLES	
POST-TREATMENT SOILS CRITERIA	TABLE 1
KMC Project Implementation Schedule	TABLE 2
SOIL MIXING APPLICATION SUMMARY TABLE	TABLE 3
SOIL MONITORING DATA SUMMARY TABLE	TABLE 4
ISCO DESIGN SUMMARY TABLE	TABLE 5
APPENDICES	
ISOTEC DAILY FIELD REPORTS	Appendix I
LTC DAILY FIELD REPORTS	APPENDIX II
PHOTO LOG	APPENDIX III

ACRONYMS

1,1-DCE 1,1-Dichloroethene 1,1,1-TCA 1,1,1-Trichloroethane

ARA Absolute Resource Associates
BASP Base activated sodium persulfate

bgs Below ground surface
COC Contaminants of Concern
CPR Cardiopulmonary Resuscitation

DAB LTC Dual Axis Blender
DPW Department of Public Works

DTW Depth to Water

ft Feet ft² Square ft

g/kg Grams per kilogram
GPS Global positioning system

GPTS Groundwater Pump and Treat System

HASP Health and Safety Plan ISCO In-situ chemical oxidation

ISOTEC In-Situ Oxidative Technologies, Inc.

JSA Job safety analysis
KMC Kearsarge Superfund Site

lbs Pounds

Ibs/ft³Pounds per cubic feetIbs/yd³Pounds per cubic yardLPSLoss prevention system

LTC Lang Tool Co.

MFR Modified Fenton's Reagent MSDS Material safety data sheets

MSL Mean Sea Level MW Monitoring well

NHDES New Hampshire Department of Environmental Services

PID Photo-ionization detector
PFM Project field manager
PFT Project field technician

PPE Personal protective equipment

PPM Parts per million RFP Request for proposal

SERC New Hampshire State Emergency Response Commission

SOD Soil Oxidant Demand

SSHO Site Health and Safety Officer

TAT Turnaround Time

μg/kg Micrograms per kilogram

USEPA United States Environmental Protection Agency

VOCs Volatile organic contaminants

Weston Weston Solutions, Inc.

yd³ Cubic yards

Executive Summary

In-Situ Oxidative Technologies, Inc. (ISOTEC), along with our teaming partner Lang Tool Company (LTC), was retained by Weston Solutions, Inc. (Weston), on behalf of the New Hampshire Department of Environmental Services (NHDES) and the United States Environmental Protection Agency (USEPA) for in-situ chemical oxidation (ISCO) soil mixing remediation services of impacted soil and groundwater at the Kearsarge Metallurgical Corporation (KMC) Superfund Site (KMC Site), located in Conway, New Hampshire. Weston acted as the Oversight Engineer for the project and was responsible for preparing final submittals to the NHDES and USEPA for field implementation activities. Constituents of concern (COCs) at the subject site include volatile organic compounds (VOCs) primarily consisting of 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethene (1,1-DCE). Permitting for the treatment program activities is governed by the NHDES and USEPA guidelines.

Per specifications provided within the request for proposal (RFP) and subsequent Addendums, ISCO via modified Fenton's reagent (MFR) was utilized as the remedial technology for the soil mixing program. Reagents are directly blended into or around areas of known contamination in the subsurface to treat contaminants of concern (COCs) *in-situ*. Additional work completed along with soil mixing activities included preparatory earthwork, soil erosion/sediment control, dust control, excavation activities, technical support, quality control, on site sample collection and analysis, chemical deliveries/management, chemical preparation/mixing, and health and safety oversight. Post-treatment restoration work was completed by others (Active Environmental, procured by Weston) following completion of all soil-mixing related activities and following our demobilization from the site.

The remedial design strategy selected for the site consisted of ISCO soil mixing via MFR technology, targeting an approximately 10,000 square feet (ft²) area within the 7-15 feet (ft) below ground surface (bgs) interval, or approximately 2,963 cubic yards (yd³). Actual location of the treated area and limit of disturbance is shown on Figure 1.

A total of 44,710 gallons of reagent (34,360 gallons of ~17-21% stabilized hydrogen peroxide and 10,350 gallons of ISOTEC catalyst) were mixed into the target area over the duration of the soil mixing program (Table 3). Actual reagent volume mixed into the treatment area deviated slightly from the original design and is discussed below in Section 7.2. Detailed summary of daily activities completed at the site each day including mixed cell locations, volumes of reagent mixed into the treatment area, sampling locations and relevant field activities are provided as Appendix I (ISOTEC Daily Reports) and Appendix II (LTC Daily Reports). Detailed summary of samples collected along with relevant data is provided as Table 4.

Summary of field activities completed at the KMC site is provided below:

- Modification to the original scope of work which primarily consisted of switching from base activated sodium persulfate (BASP) technology to MFR technology (relatively GREENER technology compared to BASP); exclusion of the barrier wall on the eastern edge of the treatment area; exclusion of the construction entrance and decontamination pad; and exclusion of the wastewater treatment program. Details of the modified work were presented in the ISCO Summary Work Plan, ISCO Soil Mixing Remedial Services Kearsarge Matallurgical Corp. Superfund Site, dated September 4, 2015, prepared by ISOTEC and approved by Weston.
- Mobilization of ISOTEC and LTC equipment and personnel (hereinafter referred to as ISOTEC). Site kick-off meeting between ISOTEC, Weston, NHDES, property owner and township officials. Notification of field activities to the township Fire and Police Departments in case any emergencies were encountered. Notification and permission from the township department of public works (DPW) to utilize a nearby fire hydrant for water supply. Placement of the Dig Safe call for utility verification.
- Initial land clearing, global positioning survey (GPS) of the treatment area, video documentation of current site conditions along the buildings and fence line to show existing conditions, protection of wells and catch basins, installation of the silt fence, installation of the safety perimeter fence, excavation and stockpiling of the upper top soil, excavation of vadose zone soils (non-impacted soils) down to the current water table (deeper than originally planned), placement of excavated soils as a temporary berm/ dike around the edge of the treatment area to prevent run-off, and delineation of the treatment area rows and cells.
- Chemical delivery management and containment, soil mixing of MFR into the treatment area and subsequent sample collection and analysis; re-mixing of select cells based on exceedances detected following the initial mixing attempt; confirmation that each cell was treated to below site specific criteria.
- ➤ Health and safety oversight including modifications and amendments to certain procedures based on comments from Weston field personnel.
- Demobilization activities and transfer of certain pieces of rental equipment to Active Environmental who were procured by Weston to complete final site restoration.

Section 1 Site Characteristics

The Kearsarge Site is located at 123 Hobbs Street in Conway, NH, in an industrial park on the western edge of Conway. There is a residential area 900-feet west of the KMC property with the nearest public water supply well located 1 mile to the north of the site. Past business operations (manufacturing of stainless steel valves and materials that produced waste solvents and casting sands that were disposed of at the site) at the subject site have resulted in groundwater impacts with VOCs, primarily consisting of 1,1,1-TCA and 1,1-DCE. Majority of the former KMC building has been razed and transformed into a paved parking area. The remaining portions of the KMC building have been restored to house active commercial enterprises. The remaining groundwater impacted area resides in the southeast portion of the site within a partially wooded wetland, referred to as the Culvert Area. Site remediation activities however, are exempt from wetland permitting (the substantive technical requirements are still applicable and have been incorporated into the RFP specifications). The site is a relatively flat area that required some clearing and grubbing in order to access the proposed treatment area limits. Previous remedial activities have included source area excavations, phytoremediation, removal of waste pit materials/drums and the installation and operation of a groundwater pump and treat system (GPTS).

The Culvert Area is underlain by a thin layer of fine sand (8 to 14 ft thick) underlain by two low permeability layers, consisting of a discontinuous tan clayey silt layer on top of a grey silt layer. The grey clay/silt layer appears to have limited the vertical downward migration of the contaminants as only the upper few feet of this media warrant treatment. The low permeability silt layer slopes steeply downward from a high of 8 ft bgs in the Culvert Area to a low of greater than 40 ft bgs in the Hobbs Street Area. Depth to groundwater (GW) is relatively shallow at the site and has been detected as shallow as 3 ft bgs in the past, depending on the time of year when sampled. During September 2015, depth to groundwater was closer to 6-7 ft bgs within the target treatment area and allowed for deeper excavation of vadose zone soils to be removed, than originally anticipated.

The approximate area targeted for soil mixing activities was estimated to be 10,000 ft² at depths between 7-15 ft bgs for a total estimated soil treatment volume of approximately 2,963 yd³. Because the current depth to water was deeper than anticipated, only minimal vadose zone soils were included within the soil mixing treatment. All attempts were made by ISOTEC to maintain treatment within only the dimensions specified with the RFP as shown on Figure 1, which included adjustments to a few cell dimensions (E17-S10 and E17-S11) in the vicinity of catch basin CB 7-8, to ensure that the catch basin was not damaged during field activities. The proposed

ISOTEC Project #801991	
treatment area was divided into smaller treatment cells as shown on Figure 2. The equipment/chemical storage layout is provided as Figure 3.	ne
equipment, enermear storage layout is provided as rigure 3.	
In-Situ Oxidative Technologies, Inc.	

January 5, 2015

ISCO Soil Mixing Treatment Program Summary Report

Kearsarge Superfund Site Conway, New Hampshire

Section 2 Treatment Program Objectives

The overall objectives of the treatment program based on specifications provided in the RFP are listed below:

- Ensure that all remediation efforts are performed in a safe manner, protective of human health and the environment;
- Ensure that all proposed activities are performed in a well-thought out, and coordinated manner;
- ➤ Ensure reagent solution is prepared and delivered based on design specifications, to ensure that the proposed treatment area is remediated to below specific criteria set for the site;
- ➤ Ensure complete and thorough soil mixing is occurring between reagents and impacted soils through verification sampling and visual observations; and
- Minimize disturbance to the site to the extent practicable, and conduct field work in a manner that minimizes disturbance to the neighboring active business operations.

The soil mixing remediation program was implemented with the objective to achieve reduction of VOCs in site soils to levels below Post-Treatment Criteria set for the site. Specifically, the following criteria were designated for site remediation goals with samples usually collected the day following soil-mixing activities. Acceptable values for 1,1-DCE and 1,1,1-TCA are represented as micrograms per kilogram (μg/kg).

Table 1: Post-Treatment Soils Criteria

Test Parameter by EPA Method 8260 C	Acceptable Value	
1,1-DCE	≤60 μg/kg	
1,1,1-TCA	≤150 µg/kg	
1,4-Dioxane	Information only	

Samples were collected by ISOTEC/ Weston field personnel and shipped to an analytical laboratory for VOC analysis; along with on-site analysis for additional parameters as discussed in Section 7.3.

Section 3 Technology Overview

Both MFR and BASP proved to be successful towards destruction of site COCs during the March-April 2015 bench testing performed by ISOTEC. MFR was selected as the treatment remedy due to lower overall reagent costs compared to BASP, and because MFR is a "relatively Greener technology" that produces much lower concentrations of byproducts when compared to BASP, which are not expected to have significant impact on nearby potential sensitive receptors (i.e. Pequawket Pond and nearby drain culvert). A summary description of the technology selected for the KMC Site is provided below.

3.1 Modified Fenton's Reagent (MFR)

The MFR process combines proprietary chelated iron complex catalysts¹, mobility control agents, oxidizers, and stabilizers in an optimal chemical formulation over a wide range of pH conditions, including the circum-neutral pH conditions, and employs site-specific delivery systems to destroy the targeted COCs. The process generates powerful free radicals when the catalyst reacts with hydrogen peroxide which includes hydroxyl radicals, superoxide radicals and hydroperoxide anions, which are very effective in treating a wide range of organic contaminants. The principal chemical reactions associated with the MFR process are provided below.

$$\begin{aligned} & \text{H}_2\text{O}_2 + \text{Fe}^{2^+} \rightarrow \text{OH}^\bullet + \text{OH}^- + \text{Fe}^{3^+} \\ & \text{H}_2\text{O}_2 + \text{OH}^\bullet \rightarrow \text{HO}_2^\bullet + \text{H}_2\text{O} \\ & \text{H}_2\text{O}_2 = \text{Hydrogen Peroxide; Fe}^{2^+} = \text{Ferrous Ion;} \\ & \text{Fe}^{3^+} = \text{Ferric Ion; OH}^\bullet = \text{Hydroxyl Radicals;} \\ & \text{OH}^- = \text{Hydroxide Ion; O}_2^\bullet = \text{Superoxide Radicals;} \\ & \text{HO}_2^\bullet + \text{O}_2^\bullet \rightarrow \text{HO}_2^- + \text{O}_2 \end{aligned}$$

MFR allows application of Fenton's reagent without use of strong acids that are known to cause strong exothermic reaction conditions in a traditional Fenton's reaction. MFR uses proprietary stabilizers that allow for a controlled and more gradual decomposition of hydrogen peroxide facilitating safe injection of this oxidant into the subsurface. The use of chelating agents and stabilizers allows significantly improved radial coverage in the treatment area minimizing the loss of iron via precipitation and peroxide to catalytic decomposition (by transition metals). The reaction can occur under natural pH conditions of the subsurface (i.e. pH 5 to 8) eliminating the need for pH adjustment.

¹ ISOTEC catalysts consist of proprietary chelated iron complexes, which remain soluble under a range of pH conditions including neutral pH.

Section 4 Project Coordination

ISOTEC performed majority of the work tasks as specified in the RFP and only subcontracted out small portions of the proposed work (i.e. clearing/grubbing to Land and Mowing Solutions out of Randolph, Vermont).

Tasks handled by Weston (or others) included obtaining site access and permitting, placement of a project information sign, submission of all collected samples to a certified laboratory for analysis, perimeter air monitoring, catch basin monitoring, procurement of a contractor to install perimeter fencing, backfill and site restoration following soil mixing activities (Active Environmental), removal and disposal of erosion and sediment control measures, and restoration of disturbed monitoring wells in the treatment area.

4.1 Project Field Staffing

The project was managed by Prasad Kakarla, P.E., Technical Director and Mike Temple, Senior Project Manager. The ISOTEC field crew consisted of one project field manager and 2 field technicians who assisted LTC with forklift operation, mixing operations, data collection, chemical inventory management, sampling and daily reporting. The LTC crew was managed by Bill Lang, owner of LTC; along with a 3 man crew who managed site clearing/preparation activities, GPS services, excavating, sample collection, chemical preparation and ISCO soil mixing activities. The project field manager also served as the site health and safety officer (SSHO). Weston provided a dedicated field over sight supervisor (Erik Hall) for the duration of field activities, and a field technician to assist with sample collection and monitoring.

4.2 List of Subcontractors

The only subcontractors who worked at the site under the direction of ISOTEC were Land and Mowing Solutions, LLC., out of Randolph, Vermont.

4.3 List of Major Equipment

ISOTEC was equipped with the following major equipment required to complete the scope of work.

- LTC dual axis blender
- LTC-290 tool carrier
- LTC additive mixing truck
- LTC soil sampler
- Excavator
- Dozer

- Wood chipper/mulcher
- > GPS equipment
- Service truck
- Fork Lift
- Portable generator
- Eye wash station, first aid kit, fire extinguishers, spill containment materials
- Chemical Mixing Tanks
- Secondary Containment (capable of 110% containment)
- Field Monitoring Instrumentation (i.e. iron and hydrogen peroxide test kits, bottleware)
- Portable bathroom
- Temporary snow fence/ cones/ delineators

4.4 List of Permits and Approvals/ Utility Markout

Weston procured the necessary permits/approval from the NHDES/EPA to perform the proposed remediation activities and handled all laboratory sample analysis requirements; provided temporary fencing around the site for security; provided control points (as needed) for the edges of the proposed work areas; and handle any site access issues. ISOTEC/Weston notified the township Fire and Police Departments about the scheduled work and provided material data safety sheets (MSDS) of reagents stored on-site to the Fire Department (Chief Solomon). Leslie Cartie, Hazardous Materials Coordinator, at the New Hampshire State Emergency Response Commission (SERC) was also notified about the treatment program activities.

ISOTEC coordinated with the Town of Conway for permission to utilize a nearby fire hydrant for water usage and notified Dig Safe (NH Dig Safe Number is 2015 3610958) to perform a mark out of any identified utilities in the area. Utility providers who came to the site did not detect any known utilities in the proposed work areas. The electric and water lines that run from EM-13B to the former groundwater treatment plant were confirmed to be out of service prior to excavating activities.

All major deliveries were discussed with the property owner (John Hurteau) and access was provided to the 2 neighboring business operations adjacent to the site, for the duration of treatment program activities.

Section 5 Project Schedule

The completed project schedule for all site activities is provided below. All work activities completed on-site were performed Monday through Saturday from 7:00 AM to 5:00 PM (longer hours were required on a few days to complete active mixing/ sampling activities). Daily progress calls were completed each day of the treatment program to discuss field operations and results of the sampling data that were provided the day following collection. Confirmation from Weston that all samples were below site detection limits occurred on September 22, 2015.

Table 2: KMC Project Implementation Schedule

Activity	Start Date	End Date
Notice of Selection	July 29, 2015	July 29, 2015
Notice to Proceed	August 26, 2015	August 26, 2015
Planning and preparation of submittals	August 17, 2015	September 4, 2015
Mobilization (Equipment Mobilization)	September 8, 2015	September 10, 2015
Kick-off meeting at the site (ISOTEC, LTC, Weston, NHDES, Conway Township Officials and property owner)	September 10, 2015	September 12, 2015
Site Preparation Activities	September 10, 2015	September 12, 2015
Perform ISCO via Soil Mixing and required sampling, chemical delivery management	September 14, 2015	September 22, 2015
Demobilization	September 23, 2015	September 23, 2015

Section 6 Mobilization/Demobilization

6.1 Pre-Construction Meeting/Submittals

A pre-construction kickoff meeting was held on September 10, 2015 between ISOTEC/LTC, Weston, NHDES, Conway Township Officials and the property owner to confirm the proposed scope of work, access points, staging areas, support areas and any miscellaneous items that needed to be finalized prior to start of intrusive field activities.

Prior to field implementation all required planning documents were submitted to Weston for review and approval including the approved work plan and site specific health and safety plan (HASP). As needed, additional documents related to field activities and required permitting for personnel were submitted to Weston.

6.2 Mobilization

Mobilization activities occurred from September 8-10, 2015 and included transportation and staging of ISOTEC/LTC equipment, materials, instruments, personnel, and services required for implementing the treatment program at the KMC site. The major equipment transported to the site is provided in Section 4.3.

The materials that were transported to the site included ISOTEC catalyst (pre-weighed at the ISOTEC warehouse) in ~20.5 lb bags (~2,163 lbs total) and 34% hydrogen peroxide in 250 gallon totes (~201,600 lbs total). ISOTEC procured concentrated 34% hydrogen peroxide from a nearby chemical distributor in the New England Area via truck delivery. The hydrogen peroxide totes were stored within secondary containment and covered with tarps for protection from direct sunlight to minimize chances of degradation. The dry powder catalyst chemicals were staged within sealed drums for the duration of the project. Traffic was self regulated during deliveries and no major issues were encountered. The equipment/chemical storage layout is provided as Figure 3.

6.3 Demobilization

Demobilization activities included removal of all staged equipment, materials, instruments, personnel, and services from the project area. Demobilization of majority of equipment took place on September 23, 2015. Six unused totes of hydrogen peroxide were returned to the chemical manufacturer (pre-ordered in case re-mixing was required). The portable toilet was left behind to be utilized by Active Environmental during site restoration activities. All non-regulated waste and debris generated during the treatment program was removed. Empty hydrogen peroxide containers were returned to the manufacturer.

Section 7 In-Situ Remediation

7.1 Site Preparation

Site preparation, and erosion and sediment control measures as specified in the RFP were completed prior to the ISCO soil mixing work, using Best Management Practices. Preparation work included recording a video/audio surveillance of the site to document current conditions prior to any intrusive work being conducted at the site (focus on the existing buildings and fence structures as the wooded area was going to be removed surrounding the treatment area). Control points were established with assistance from Weston and the LTC GPS system. Once defined work areas were outlined, land clearing/grubbing activities occurred across the site as needed to prepare for subsequent excavation and LTC DAB activities. Preparation work included ensuring that the electric and water lines that exist between EM-13B and the former groundwater treatment plant were not active; removal of monitoring wells within the treatment area (MWs-3006, 3008, 3009, 3010, 3011), installation of a silt fence around the perimeter of the site; protection of existing wells located within the work area that are to remain undisturbed using precast concrete tiles (MWs-3004, 203A, 205, 114, EW-13B and CB 7-8); protection of catch basin inlet boxes on the eastern portion of the site via installation of silt bags; removal and stockpiling of top soil (approximately 1-2 feet of surface soils) and vadose zone soils (clean overburden soils were excavated down to the depth of the current water table which was located slightly above the target treatment interval at approximately 6-7 ft bgs). Stockpiled topsoil was covered up with poly sheeting to prevent leaching. Installation of the temporary water line from the hydrant located on Hobbs Street into the chemical preparation area was completed to allow access to running water for chemical preparation, dust suppression and in case of any site emergencies that required dilution of the hydrogen peroxide and or showering of field personnel.

The area of disturbance was limited to an estimated 0.988 acres as shown on Figure 1. Materials originating at the site (i.e. soils, trees, brush), remained at the site and were either incorporated into the work or stockpiled. Cleared vegetative matter and grubbing waste was chipped/ ground and spread across the site. Excavated vadose zone soils were utilized to build a berm around the soil mixing area to contain any swelling that may have occurred during the soil mixing operations. No significant swelling was observed and any accumulated liquids remained well below the working grade elevation at the site.

Access to running water was available at all times during site operations to assist in prevention of dust accumulation. Periodically and as needed, water was sprayed on loose soil piles and site equipment to minimize dust accumulation.

The only pieces of equipment that came in contact with potentially impacted materials were the sampling tool and LTC DAB mixing head. These pieces of equipment were decontaminated (sprayed off) each day over the soil mixing area.

ISCO Soil Mixing Treatment Program Summary Report Kearsarge Superfund Site Conway, New Hampshire ISOTEC Project #801991

Weston procured temporary perimeter fencing that was installed around the perimeter of the work areas for an added measure of security at the site. Temporary fencing (orange safety fencing) and/ or a combination of cones and delineators was also placed around open excavation areas (as needed).

7.2 ISCO Soil Mixing

The ISCO remedial treatment program was implemented at the KMC site using the MFR reagent blended into the subsurface using the LTC dual axis blender (DAB). Utilizing the LTC DAB allows for significantly more contact time between impacted media and introduced MFR reagents as the oxidant is applied at the source (i.e. point of highest mixing energy) where active soil mixing/churning is being applied as the axis blender turns on a vertical axis while the mixing drums counter-rotate on a horizontal axis. Contact with impacted soil mass is greatly enhanced utilizing this approach as MFR reagent is introduced at specific depth intervals to minimize oxidant wastage and ensure contact is achieved where needed. MFR was applied to the impacted saturated soil zone as two separate liquid solutions consisting of ISOTEC's patented chelated iron catalyst and stabilized hydrogen peroxide. Calculated pounds of each reagent were prescribed for each treatment cell based on the dimensions of a given cell. Liquid volumes for each reagent were adjusted (i.e. catalyst liquid volume was increased slightly to 100 gallons per cell to ensure that enough reagent was available to plunge down to depth in each of the four quadrants so that the area was pre-treated with catalyst prior to introduction of the stabilized hydrogen peroxide; and hydrogen peroxide volume was decreased slightly to try and minimize any accumulated swelling and excess liquid in the excavated areas) over the initial day of treatment but the calculated ponds of each reagent designated for each cell was always applied into the batch preparation makeup.

Based on information collected from the bench-testing, a soil oxidant demand (SOD) design criterion of approximately 7 grams of hydrogen peroxide per kilogram (g/kg) of soil was utilized during field application. The soil in the treatment volume is approximately 79% solids by weight and has a unit weight of approximately 110 pounds per cubic feet (lbs/ft³), or 2,970 pounds per cubic yard (lbs/yd³). Since blending was performed in the saturated zone and MFR reagent was introduced as a liquid, adequate groundwater was naturally present to achieve MFR hydration in-situ without the addition of excess water which has been required at other sites to assist the DAB in making the initial plunges into each cell in progressing down to the required treatment depth intervals. The cell layout of the target treatment area is shown in Figure 2. The treatment program ISCO design summary is provided in Table 5.

Reagents were prepared on the Chemical Mixing Truck equipped with scales to accurately measure reagent dosages to ensure solutions were prepared based on project design calculations (ISOTEC catalyst bags were pre-weighed at the ISOTEC office prior to field mobilization). The mixing truck was equipped with multiple mixing/storage tanks that could be utilized to prepare separate reagents or bulk quantities of a single solution to minimize any

downtime during application delivery. The computerized delivery system accurately applies prescribed dosages and volumes into specific treatment areas/depths, and the onboard GPS system precisely locates the treatment cells and verifies the DAB is properly positioned to ensure the entire treatment area (both vertically and horizontally) is thoroughly mixed during field application. A series of valves and hoses are utilized to safely deliver prepared reagents and water supply from the mixing area to the treatment area. Detailed output and figures related to the GPS system tracking of treated cells is provided within Appendix II. Figure 4 illustrates that each cell location was mixed down to slightly below the terminal depth of approximately 15 ft bgs or 447 mean sea level (msl) set for the site (red coloring indicates that soil mixing within a given plunge/quadrant was completed to slightly below the terminal depth).

The following information and procedures were utilized during soil mixing field implementation to complete the scope of work as specified in the RFP at the KMC site:

- 1. The DAB is equipped with a GPS device to allow the operators to know where (which cell is being treated at a given time) the machine is currently sitting and when they have reached the required depths at each cell location. In addition to the GPS system, treatment depths can be tracked visually by the depth numbers installed on the stem of DAB, as well as by establishing control points from ground elevation utilizing surveying equipment. The GPS and control points could be verified at any time during mixing if needed. The rover can be placed on a control point to confirm that it is reading correctly. The rover can shoot a point anywhere on the project at any time that is within the reach of the DAB wherever it may be. The DAB mixing head can be placed on that point where it can record a point so the elevation and position can be compared with the point taken by the rover. This procedure is done at the start of the project and periodically during the course of the project.
- 2. The target area was partitioned into separate treatment cells as shown in Figure 2. Approximate dimensions of each cell were either 10 ft x 10 ft (92 cells), 10 ft x 5 ft (15 cells), or 5 ft x 5 ft (2 cells). As can be seen on Figure 2, majority of the cells were treated as 10 ft x 10 ft cells. Treatment depths for each cell were the same throughout the treatment area (i.e. within the 7-15 ft bgs interval). The MFR solution was applied to the impacted saturated soil zone as a liquid solution with the ISOTEC catalyst solution mixed into each cell first to pre-treat the area with catalyst, followed by introduction of the stabilized hydrogen peroxide (~17-21% concentration) via the DAB. Volumes of MFR introduced into each cell location are provided as Table 3.
- 3. The LTC Dual Axis Blender mixed the soil with the chemicals in a gradual vertical plunge using the on board GPS system to accurately deliver reagent based on design specifications. The reagents were introduced by four precise vertical plunges within each 10-foot by 10-foot cell (smaller sized cells received between 1-2 vertical plunges).

Each plunge treated approximately ¼ of the targeted treatment cell at a time with each of the four plunges supplying equivalent amount of reagents. The DAB began making a vertical plunge into a given cell from the top depth to bottom depth of the targeted vertical interval with the reagent slowly delivered at the point of mixing. Due to the lower than expected water table which appeared at approximately 6-7 ft bgs, there was not much remaining vadose zone soil (unimpacted soils) left so the mixing of reagent began as soon as the DAB made contact with remaining site soils and continued at each location until the terminal depth was reached (mixing was extended slightly past the terminal depth to ensure that the target depth was reached at each location as shown on Figure 4). Following introduction of the full volume of MFR reagent, the DAB was plunged up and down, and side to side multiple times to ensure adequate mixing of reagent and impacted soils was achieved. In order to account for some reagent interchange into any remaining clean unimpacted soils, ISOTEC figured in an additional quantity of MFR equivalent to meet approximately 10% of the associated reagent demand within the originally estimated ~3-7 ft bgs clean interval.

- 4. Soil mixing plunges in the E17 row were adjusted slightly in the vicinity of cells E17-S10 and E17-S11 which were located very near to CB 7-8. These select cells were adjusted to be 10 ft x 5 ft so that additional buffer was provided between the DAB mixing operations and the catch basin (a concrete tile was also placed around CB 7-8 for added protection) in order to maintain a minimum 5-8 feet buffer between mixed cells and existing structures (i.e. the catch basin and the existing storm drain that runs across the eastern edge of the site).
- 5. Initial excavation was performed on the cells in the E17 column and S1 and S2 rows. This soil was placed in a berm on the north and east sides of the treatment area. Soil Mixing commenced in the E17 column first followed by treatment in the S1 and S2 rows. Excavation of new soils followed within areas that were no longer needed for the DAB to access. The E16 column was then treated next followed by treatment in the S3 row. Remainder of rows/ columns were treated with excavation and soil mixing performed in conjunction in the manner described, until the remainder of the area was initially excavated and mixed. The reach of the DAB allowed the machine to be stationed approximately two rows away from the active treated cells. Access to treated cells was maintained a minimum of two days following mixing to allow enough time for collected sample data to be analyzed, and still allow for re-mixing if required. Approximately 15-20 cells were mixed each day.
- 6. ISOTEC originally estimated a reagent requirement of 192,000 lbs of 34% hydrogen peroxide and ~2,050 lbs of ISOTEC catalyst to be blended into the targeted 7-15 ft bgs treatment interval. This reagent quantity was calculated to meet 100% of the reagent demand within the impacted 7-15 ft bgs interval and ~10% of the reagent demand within the overlying clean zone from 3-7 ft bgs in case of any reagent interchange from

the targeted mixing interval of 7-15 ft bgs to the shallower unexcavated overlying soils from 3-7 ft bgs (as previously mentioned, much of the clean unimpacted vadose zone soils were able to be removed during excavation due to the lower than expected water table at the site). Due to several cell locations requiring re-mixing (cells E12-S1, E13-S2, E13-S1, E13-S2, E13-S4, E14-S1 and E14-S2), actual quantity of reagents utilized was ~2,162 lbs of ISOTEC catalyst and 201,600 lbs of 34% hydrogen peroxide.

- 7. Reagents were prepared within tanks fitted to the chemical preparation truck. ISOTEC catalyst was prepared in approximately 100 gallon batches (for 10 ft x 10 ft cells) as needed, and was mixed into the treatment cells prior to introduction of stabilized hydrogen peroxide. Pre-weighed bags of catalyst were shipped to the site based on making ~61 gallon batches. Because additional volume of catalyst was required during the initial plunge into each cell quadrant in order to assist the DAB in reaching the terminal depth, batch volumes were increased to 100 gallons (~25 gallons per plunge into each quadrant). Stabilized hydrogen peroxide batches were prepared in the two larger 700 gallon mixing tanks attached to the truck. Batch sizes were prepared based on the dimensions of the cell being targeted. For a standard 10 ft x 10 ft treatment cell, approximately 120 gallons of water was introduced into the mixing tanks along with a pre-determined volume of stabilizing agents (i.e. ~25 lbs per batch), followed by introduction of approximately 200 gallons of 34% concentrated hydrogen peroxide (~1,902-1,920 lbs). Final concentration of prepared hydrogen peroxide batches ranged from 17-21%. Total volume of hydrogen peroxide estimated for each cell was approximately 400 gallons. Due to several factors including less time required to reach terminal depth at each location than anticipated and swelling of liquids within the excavation area during soil mixing activities, the total volume of diluted hydrogen peroxide introduced into each cell was reduced down to 320 gallons per cell from the originally estimated 400 gallons.
- 8. Scales and flow meters/totalizers were utilized as part of the chemical mixing truck operations to accurately measure hydrogen peroxide batch preparations and dose the appropriate volume of reagent being sent out to each individual treatment cell.

7.3 Performance Monitoring (Soil Sample Collection)

Upon completion of mixing within given cells each day, the following morning, samples of soil were collected (at the discretion of Weston) from a select portion of cells treated the previous day and analyzed for both field parameters (field testing instruments, visual observations) and VOCs (laboratory analysis). Figure 5 illustrates the locations of cells that were sampled during the course of the treatment program. Samples were collected using the telescoping forklift mounted sampling tool (similar to the DAB in that vertical numbers are installed on the stem of the sampling tool) to gauge treatment application efficiency. ISOTEC collected enough sample

for all required analysis. Samples were collected at discrete specific depth intervals to ensure that adequate mixing was occurring across the entire vertical column. Attention was also made to collect samples from historical locations where 1,1,1-TCA and 1,1-DCE elevated concentrations have been detected in the past. The sample tool was attached to the telescoping fork lift and lowered into a designated cell for sample collection. The sample tool was operated hydraulically. Samples were collected at required depth and the sample tool was raised from the treated cell to allow field personnel to take a portion of the soil sample collected. A piston operated mechanism was utilized to push out the sample where it was stored in a dedicated jar/bucket for subsequent sample analysis. ISOTEC performed the field testing analysis (i.e. iron and hydrogen peroxide concentration as well as visual observations) of each sample while Weston prepared samples required for VOC analyses at Absolute Resource Associates (ARA) laboratory. Detailed summary of collected sampling data is provided within Table 4. Daily transport of the samples to the analytical laboratory was provided via courier by ARA. Samples were typically picked up before 11:00 AM each day so they could be transported to ARA early enough to allow testing and results to be received the following day by 12:00 noon (24 hour turnaround time [TAT]).

Samples were collected at multiple depths (typically from 9, 11 and 13 ft bgs) to ensure homogenization was occurring at different depths within the overall vertical column from 7-15 ft bgs. Treated soils showed consistency between individual samples indicating thorough mixing was occurring and no visible signs of untreated soil (i.e. dry soil clumps) were observed within the samples collected. A general description of soils collected at each of the three depth intervals is provided below.

- 9 ft bgs samples were very wet and showed little to no solid soils. Adequate sample
 of dry soil required for ARA laboratory analysis could not be collected at this depth
 interval.
- 11 ft bgs samples were similar but occasionally showed tiny pieces of clay globules within the samples collected which may have indicated a transition into the deeper geologic matrix consisting of more clay/silt components compared to the upper portion of the treated column; or may have just been the heavier sediments that were falling to the deeper portions of the treated areas during mixing operations. A few samples were able to be collected from this depth interval for submittal to ARA for laboratory analysis but not on a consistent basis.
- 13 ft bgs samples were also similar, consisting of very wet soils and slightly more tiny pieces of clay globules within the samples collected compared to the 11 ft bgs samples. Again, this may have been due to a transition into the deeper geologic matrix consisting of more clay/silt components compared to the upper portion of the treated column; or may have just been the heavier sediments that were falling to the deeper portions of the treated areas during mixing operations. Majority of samples submitted for VOC analysis were collected from this depth interval due to

historically deeper impacts reported from this depth compared to the overlying intervals, as well as this depth being the only depth of the three primary treatment intervals sampled that could supply enough dry soils required for submittal to ARA.

- 1. Soil Mixed Material Field Testing: ISOTEC personnel tested each sample collected for residual reagent concentration (i.e. hydrogen peroxide and iron) using field test kits (Hach Kits in the range of 1-10 mg/L) or test strips for hydrogen peroxide (in the range of 1-100 mg/L). Samples of soil were mixed with small volumes of DI water in order to provide enough liquid to be available to run the tests (sample analysis needed to be run on liquid samples). A portion of the soil/DI water sample slurry was extracted from the mix via a syringe and run through a particle filter to allow a clear water sample to be generated for analysis. For hydrogen peroxide testing, test strips were utilized to measure the residual concentration of any oxidant left the day following treatment. Majority of samples collected showed no detectable concentrations of hydrogen peroxide remaining following treatment, with only a few samples indicating concentrations at 1.0 mg/L. Residual dissolved iron concentrations were also tested for and showed low detectable ranges of concentration between 1.0-63.0 mg/L from collected samples. Samples were also screened using a photo-ionization detector (PID) to check for any detectable concentrations emanating from the collected samples. Only low levels (highest peak was 0.2 parts per million [ppm]) of VOCs were detected using the PID on collected samples. The low level PID readings correlate to the low residual VOCs concentrations detected during analytical sampling.
- 2. Soil Mixed Material Laboratory Performance Testing: The soil mixing remediation program was implemented with the objective to achieve reduction of VOCs in site soils to levels below Post-Treatment Criteria set for the site. Specifically, the following criteria for 1,1,1 TCA (≤150 μg/kg) and 1,1-DCE (≤60 μg/kg) were established for the site. A total of fifty-six (56) samples (Figure 5) were submitted to ARA for VOC analysis over the duration of the soil mixing program. Exceedance of VOCs was detected in three locations over the course of the treatment program. Cell locations E13-S2 (1,1,1-TCA of 200 μg/kg and 1,1-DCE of 110 μg/kg), E14-S1 (1,1-DCE of 110 μg/kg) and E13-S4 (1,1-DCE of 80 μg/kg) indicated VOC exceedance following the initial soil mixing application. Each cell location (along with some additional adjacent cells in the northern area) was subsequently re-mixed and re-sampled, with post-treatment data indicating VOC concentrations below criteria set for the site. All other samples indicated VOC concentrations either at levels below the criteria set for the site or at non-detect concentrations.

3. <u>Cell Re-Mixing:</u> Based on results of VOC sampling analysis, and at the request of Weston, select cells were re-mixed over the course of field activities when VOC exceedances were detected. Cells E13-S2 and E14-S1 were re-mixed due to elevated VOC concentrations detected in the samples following the initial mixing application. Because the cells were adjacent to each other as can be seen on Figure 6, it was decided to mix some of the neighboring cells under the assumption that there may have been a localized pocket of VOC mass in the area that could continue to act as a recurring source of groundwater contamination. In total, six cells in the same vicinity (E12-S1, E12-S2, E13-S1, E13-S2, E14-S1 and E14-S2) were re-mixed and re-sampled during field activities. Results indicated non-detect concentrations for 1,1,1,-TCA and 1,1-DCE for each of the six samples analyzed. One additional cell (E13-S4) initially mixed towards the end of the treatment program also came back with VOC concentrations above site criteria and required re-mixing. Similar to the other re-mixed cells, subsequent sampling data indicated non-detect concentrations for both 1,1,1-TCA and 1,1-DCE. No other cells treated at the site required re-mixing.

7.4 Report Preparation

ISOTEC recorded all field notes including names of all on-site personnel, hours worked, meetings attended, mixing cell ID, mixing start time, mixing stop time, application volumes, mixing application rate, any health and safety instances/meetings, deliveries that occurred, PID and groundwater sampling activities performed, field and VOC analysis results, and any other pertinent information during each day of injections. All details were presented in the Daily Construction Reports submitted electronically to Weston by 10:00 AM the following day. ISOTEC and Weston discussed results of the daily sampling/ sampling results on a continual basis and re-mixed select cells as needed.

Compiled soil mixing data summary is presented as Table 3; field/ VOC monitoring data summary is presented as Table 4; ISOTEC daily reports are presented as Appendix I; LTC daily reports are presented as Appendix II; and a photo log of field implementation activities is presented as Appendix III.

7.5 Health and Safety

A site-specific health and safety plan (HASP) for the KMC Site was included under separate cover along with the site work plan prior to mobilizing to the site. A copy of the health and safety plan along with additional copies of the job safety analysis (JSA), and MSDS sheets were maintained on-site at all times during field operations. All members of the injection team have completed health and safety training consistent with the Occupational Safety and Health Act (Title 29 of the Code of Federal Regulations 1910.120) with current certificates. In addition, all ISOTEC employees have also completed loss prevention system (LPS) training with current annual refresher and cardio pulmonary resuscitation (CPR) and basic first aid awareness

ISCO Soil Mixing Treatment Program Summary Report Kearsarge Superfund Site Conway, New Hampshire ISOTEC Project #801991

training. Documentation was provided to Weston to ensure that field personnel were competent in the tasks being performed at the site including chemical management, excavation safety and fork-lift operation. Daily health and safety tailgate meetings were held each day between all site field personnel prior to start of field activities. A site safety audit was completed by Weston on September 14, 2015. Any items identified during the site safety audit as potential concerns were subsequently addressed by ISOTEC/LTC/Weston personnel during the next day(s) field activities.

Personal protective equipment (PPE) level for field activities were set as Modified Level D which included hi-visibility safety vests, steel toe work boots, chemical apron/tyvek (during chemical preparation), hardhat with safety glasses, gloves associated with the specific task being performed (primarily disposable nitrile gloves) and hearing protection when required. ISOTEC personnel were equipped to upgrade to Level C protection if necessary. Full face shields were worn during oxidant transfer and preparation. Weston performed daily air monitoring around the perimeter of the site to monitor for any VOC breathing zone exceedances.

The entire site was surrounded by an 8 ft high chain link perimeter fence to keep pedestrians outside of the treatment area exclusion zone. A combination of cones, delineators and rope/caution tape were utilized to identify the area leading into the excavation area. Field personnel performing soil mixing/ excavation/ and sampling tasks needed to temporarily enter within the excavation exclusion zone to perform said tasks. The area was blocked off each night from the main entrance to the site and the excavation pit was surrounded with orange safety fencing upon our demobilization from the site.

Multiple fire extinguishers were present around the site and near each vehicle (vehicles that did not have their own fire extinguishers were subsequently equipped with one following the safety audit completed at the site by Weston) along with an eye wash station, first aid kit and access to running water in case of an emergency.

Two safety incidents were noted and reported at the site. The first incident involved the bull dozer accidentally colliding with a site monitoring well that was proposed for protection during field activities. The well was not clearly marked with a safety cone/ caution tape and was accidentally struck during initial land clearing activities (i.e. removing portions of the grass/ weeds which were as high as 4-5 ft tall in some areas of the site). Each other monitoring well was subsequently marked (identified within the high brush that existed at the site) prior to commencing land clearing work to minimize occurrence of the incident from happening again. The second incident involved a broken rear-windshield to the bull dozer which was stationed on the edge of the disturbance area during land clearing work. It is presumed that debris from the mulching activities struck the window and caused the crack. No field personnel were in the vicinity of the bulldozer when the incident happened to confirm the actual cause. Because it was presumed that the incident occurred during the mulching activities, subsequent moving of the mulching machine was directed in the north-south directions so that any debris would not be directed towards the construction entrance and nearby existing building properties.

7.6 Emergency Spill and Fire Control Measures

Concentrated hydrogen peroxide was stored within DOT approved totes provided by the distributor, and also within secondary containment pads (capable of 110% containment capacity) for added measure to prevent accidental release if one of the containers were punctured. Fire extinguishers were available at the site along with access to running water to help extinguish any accidental fires or provide dilution to concentrated hydrogen peroxide in an emergency. ISOTEC/ Weston notified the Conway Fire and Police Departments about the chemicals that were stored on site and provided contact information for field personnel in case of an emergency.

Additional concerns associated with spills, release or surfacing was addressed within the HASP.

- ISOTEC trailer/box truck was equipped with multiple emergency fire extinguishers of not less than a 20-B rating. At least one fire extinguisher was located within the vicinity of the chemical storage area, and on each vehicle utilized at the site.
- The mixing area was contained within a temporary berm/dike created by utilizing the upper 6-7 feet of dry soils that existed at the site. All liquids collected within the bermed area were eventually mixed in as part of the soil mixing activities and were allowed to infiltrate back into the subsurface without the need for pumping liquids into temporary holding tanks. Accumulation of swelling liquids never came close to exceeding the berm limits constructed at the site.
- If a spill occurred outside of the mixing area, the spilled liquids were to be contained
 with a combination of soil and dri-zorb materials to temporarily berm up the liquid to
 prevent further spreading. Once contained, liquids would either be pumped or
 collected with a shop-vac and placed into the soil mixing area to be blended in with the
 other MFR reagents and mixed soils/groundwater.
- A spill kit (dri-zorb, sorbent socks and pads) was available to contain any hydraulic spills
 or liquid spills that may have occurred outside of the excavation footprint.
- Secondary containment (capable of 110% containment capacity) was placed around concentrated hydrogen peroxide chemical storage area with a water dilution source located nearby. Concentrated totes were also protected from direct sunlight (to minimize chances of degradation to oxygen) by covering them up with tarps. Dilution of oxidants to very low concentrations using water hoses would be applied in an emergency.
- Protection of catch basin inlet boxes on the eastern portion of the site was provided by installing a silt sack in the boxes prior to intrusive activities during site preparation.

Section 8 Treatment Program Results

The soil mixing remediation program was implemented with the objective to achieve reduction of VOCs in site soils to levels below Post-Treatment Criteria set for the site. Specifically, the following criteria for 1,1,1 TCA (\leq 150 µg/kg) and 1,1-DCE (\leq 60 µg/kg) were established for the site. A total of fifty-six (56) samples (Figure 5) were submitted to ARA for VOC analysis over the duration of the soil mixing program. Exceedance of VOCs was detected in three locations over the course of the treatment program during the initial mixing attempt at each location. Cell locations E13-S2 (1,1,1-TCA of 200 µg/kg and 1,1-DCE of 110 µg/kg), E14-S1 (1,1-DCE of 110 µg/kg) and E13-S4 (1,1-DCE of 80 µg/kg) indicated VOC exceedance following the initial soil mixing application. Each cell location (along with some additional adjacent cells in the northern area) was subsequently re-mixed and re-sampled, with post-treatment data indicating VOC concentrations below criteria set for the site. All other samples indicated VOC concentrations either at levels below the criteria set for the site or at non-detect concentrations.

Based on the soil analytical data collected at the site during the course of soil mixing activities, which indicated final concentration of site COCs below criteria set for the site; it is assumed that a substantial portion of the residual mass that existed at the site was removed during the ISCO soil mixing treatment program. Long term groundwater monitoring will be completed under the direction of NHDES/USEPA.

ISCO Soil Mixing Treatment Program Summary Report
Kearsarge Superfund Site
Conway, New Hampshire
ISOTEC Project #801991

January 5, 2015

FIGURES

In-Situ Oxidative Technologies, Inc.

Areas mixed to 447 MSL area colored green by the Dual Axis Blender on board computer. Areas mixed below 447 are colored red.

Metering Plunge Point Coordinates

Northing **Easting** Elevation ,1125996.784053,537276.647099,446.506226 ,1126000.271217,537279.758424,446.727051 ,1126000.271163,537279.627843,446.677521 ,1126005.516511,537282.464107,446.728577 ,1126009.143693,537285.824884,446.848602 ,1126007.590364,537296.639462,446.855743 ,1126011.838324,537299.470743,446.766022 ,1126011.137288,537292.491990,446.810364 ,1126014.377355,537295.561201,446.684052 ,1126013.546075,537290.174972,446.449371 ,1126013.673764,537290.401372,446.317932 ,1126014.259656,537288.913101,449.773102 ,1126018.183072,537292.147833,446.863678 ,1126016.861383,537303.182891,446.812744 ,1126019.731824,537304.788985,446.562531 , 1126019.058740, 537298.531272, 446.562500,1126021.646978,537300.826827,446.603394 ,1126023.774266,537308.412347,446.694977 ,1126028.185373,537310.844653,446.842743 ,1126026.705964,537304.604489,446.866760 ,1126030.904227,537307.066911,447.012207 ,1126059.946342,537334.376760,446.584778 ,1126064.684007,537337.291963,446.680573 ,1126068.906216,537339.798362,446.604614 ,1126071.040929,537336.368585,446.673645

Easting Northing Elevation ,1126068.354427,537333.686048,446.621521 ,1126079.169557,537342.035405,446.258209 ,1126079.204969,537342.060599,446.365356 ,1126082.568687,537337.281898,446.807922 ,1126078.813087,537334.640186,446.668152 ,1126078.856038,537334.627105,446.677368 ,1126078.874231,537334.614286,446.664673 ,1126078.882787,537334.607757,446.660767 ,1126078.701917,537334.702548,446.716400 ,1126076.222173,537338.537021,446.654114 ,1126076.086177,537338.610713,446.638184 ,1126072.558662,537343.019710,446.648773 ,1126085.411600,537351.086702,446.723633 ,1126081.533502,537348.131652,446.926697 ,1126084.336967,537344.388499,446.646301 ,1126087.225291,537346.568939,446.621582 ,1126087.275174,537346.563084,446.632721 ,1126093.179122,537339.406774,446.601013 ,1126090.384534,537343.621839,446.498596 ,1126089.557180,537336.884198,446.714355 ,1126086.643387,537340.402255,446.928314 www.langtool.com bill@langtool.com

September 21, 2015

Total remixed soil volume as of 9/21 is 163 cubic yards.

ISCO Soil Mixing Treatment Program Summar	y Report
Kearsarge Superfund Site	
Conway, New Hampshire	
ISOTEC Project #801991	

January 5, 2015

TABLES

In-Situ Oxidative Technologies, Inc.

Mixing Date	Mixing Cell ID	Start Time	Stop Time	Mixing Time	Catalyst Volume	Hydrogen Peroxide Volume	Reagent Mixing Rate	Total Volume	Catalyst (pounds)	Hydrogen Peroxide (34% pounds)	Cell Dimensions
9/14/2015	E17-S15	10:24	10:44	20	100	600	35.0	700	20.5	1920	10' x 10'
9/14/2015	E17-S14	10:45	11:04	19	100	400	26.3	500	20.5	1920	10' x 10'
9/14/2015	E17-S13	11:05	11:20	15	100	400	33.3	500	20.5	1920	10' x 10'
9/14/2015	E17-S12	11:21	11:35	14	100	400	35.7	500	20.5	1920	10' x 10'
9/14/2015	E17-S11	11:36	11:42	6	50	200	41.7	250	10.25	960	5' x 10'
9/14/2015	E17-S10	11:43	11:51	8	50	200	31.3	250	10.25	960	5' x 10'
9/14/2015	E17-S9	11:52	12:17	25	80	320	16.0	400	20.5	1920	10' x 10'
9/14/2015	E17-S8	12:53	13:06	13	80	320	30.8	400	20.5	1920	10' x 10'
9/14/2015	E17-S7	13:07	13:22	15	80	320	26.7	400	20.5	1920	10' x 10'
9/14/2015	E17-S6	13:23	13:38	15	80	320	26.7	400	20.5	1920	10' x 10'
9/14/2015	E17-S5	13:39	14:08	29	80	320	13.8	400	20.5	1920	10' x 10'
9/14/2015	E15-S1	14:10	14:20	10	40	160	20.0	200	10.25	960	5' x 10'
9/14/2015	E14-S1	15:05	15:19	14	40	160	14.3	200	10.25	960	5' x 10'
9/14/2015	E15-S2	15:20	15:35	15	80	320	26.7	400	20.5	1920	10' x 10'
9/14/2015	E14-S2	15:35	15:56	21	80	320	19.0	400	20.5	1920	10' x 10'
9/14/2015	E13-S1	15:57	16:06	9	40	160	22.2	200	10.25	960	5' x 10'
9/14/2015	E12-S1	16:06	16:16	10	40	160	20.0	200	10.25	960	5' x 10'
9/14/2015	E13-S2	16:16	16:33	17	80	320	23.5	400	20.5	1920	10' x 10'
9/15/2015	E12-S2	7:46	8:03	17	100	320	24.7	420	20.5	1920	10' x 10'
9/15/2015	E11-S1	8:03	8:20	17	100	320	24.7	420	20.5	1920	10' x 10'
9/15/2015	E10-S1	8:38	8:59	21	100	320	20.0	420	20.5	1920	10' x 10'
9/15/2015	E11-S2	9:00	9:18	18	100	320	23.3	420	20.5	1920	10' x 10'
9/15/2015	E10-S2	9:19	9:39	20	100	320	21.0	420	20.5	1920	10' x 10'
9/15/2015	E9-S1	10:25	10:45	20	100	320	21.0	420	20.5	1920	10' x 10'
9/15/2015	E9-S2	10:46	11:08	22	100	320	19.1	420	20.5	1920	10' x 10'
9/15/2015	E8-S1	11:09	11:31	22	100	320	19.1	420	20.5	1920	10' x 10'
9/15/2015	E8-S2	11:43	12:04	21	100	320	20.0	420	20.5	1920	10' x 10'
9/15/2015	E7-S1	12:05	12:22	17	100	320	24.7	420	20.5	1920	10' x 10'
9/15/2015	E7-S2	12:22	12:49	27	100	320	15.6	420	20.5	1920	10' x 10'

Mixing Date	Mixing Cell ID	Start Time	Stop Time	Mixing Time	Catalyst Volume	Hydrogen Peroxide Volume	Reagent Mixing Rate	Total Volume	Catalyst (pounds)	Hydrogen Peroxide (34% pounds)	Cell Dimensions
9/15/2015	E6-S1	13:17	13:36	19	100	320	22.1	420	20.5	1920	10' x 10'
9/15/2015	E6-S2	13:37	13:57	20	100	320	21.0	420	20.5	1920	10' x 10'
9/15/2015	E5-S1	13:58	14:18	20	100	320	21.0	420	20.5	1920	10' x 10'
9/15/2015	E5-S2	14:19	14:39	20	100	320	21.0	420	20.5	1920	10' x 10'
9/15/2015	E4-S1	14:40	14:57	17	100	320	24.7	420	20.5	1920	10' x 10'
9/15/2015	E4-S2	14:58	15:16	18	100	320	23.3	420	20.5	1920	10' x 10'
9/15/2015	E3-S1	15:20	15:40	20	100	320	21.0	420	20.5	1920	10' x 10'
9/15/2015	E3-S2	15:41	16:03	22	100	320	19.1	420	20.5	1920	10' x 10'
9/15/2015	E2-S1	16:05	16:25	20	100	320	21.0	420	20.5	1920	10' x 10'
9/16/2015	E1-S1	7:40	8:10	30	100	320	14.0	420	20.5	1920	10' x 10'
9/16/2015	E2-S2	8:10	8:36	26	100	320	16.2	420	20.5	1920	10' x 10'
9/16/2015	E1-S2	8:38	9:03	25	100	320	16.8	420	20.5	1920	10' x 10'
9/16/2015	E16-S15	9:06	9:21	15	50	160	14.0	210	10.25	960	5' x 10'
9/16/2015	E16-S14	9:22	9:46	24	100	320	17.5	420	20.5	1920	10' x 10'
9/16/2015	E16-S13	9:46	10:07	21	100	320	20.0	420	20.5	1920	10' x 10'
9/16/2015	E16-S12	10:07	10:28	21	100	320	20.0	420	20.5	1920	10' x 10'
9/16/2015	E16-S11	10:28	10:28	20	100	320	21.0	420	20.5	1920	10' x 10'
9/16/2015	E16-S10	10:48	11:08	20	100	320	21.0	420	20.5	1920	10' x 10'
9/16/2015	E16-S9	11:09	11:28	19	100	320	22.1	420	20.5	1920	10' x 10'
9/16/2015	E16-S8	11:28	11:48	20	100	320	21.0	420	20.5	1920	10' x 10'
9/16/2015	E16-S7	11:48	12:08	20	100	320	21.0	420	20.5	1920	10' x 10'
9/16/2015	E16-S6	12:33	12:54	21	100	320	20.0	420	20.5	1920	10' x 10'
9/16/2015	E16-S5	12:54	13:18	24	100	320	17.5	420	20.5	1920	10' x 10'
9/16/2015	E16-S4	13:18	13:43	25	100	320	16.8	420	20.5	1920	10' x 10'
9/16/2015	E16-S3	13:43	14:08	25	100	320	16.8	420	20.5	1920	10' x 10'
9/16/2015	E1-S3	14:15	14:30	15	50	160	14.0	210	10.25	960	5' x 10'
9/16/2015	E2-S3	14:30	14:54	24	100	320	17.5	420	20.5	1920	10' x 10'
9/16/2015	E3-S3	14:54	15:19	25	100	320	16.8	420	20.5	1920	10' x 10'
9/16/2015	E4-S3	15:20	15:50	30	100	320	14.0	420	20.5	1920	10' x 10'
9/16/2015	E5-S3	15:50	16:20	30	100	320	14.0	420	20.5	1920	10' x 10'

Mixing Date	Mixing Cell ID	Start Time	Stop Time	Mixing Time	Catalyst Volume	Hydrogen Peroxide Volume	Reagent Mixing Rate	Total Volume	Catalyst (pounds)	Hydrogen Peroxide (34% pounds)	Cell Dimensions
9/17/2015	E6-S3	7:58	8:22	24	100	320	17.5	420	20.5	1920	10' x 10'
9/17/2015	E7-S3	8:22	8:48	26	100	320	16.2	420	20.5	1920	10' x 10'
9/17/2015	E8-S3	8:51	9:20	29	100	320	14.5	420	20.5	1920	10' x 10'
9/17/2015	E9-S3	9:21	9:47	26	100	320	16.2	420	20.5	1920	10' x 10'
9/17/2015	E10-S3	9:48	10:17	29	100	320	14.5	420	20.5	1920	10' x 10'
9/17/2015	E11-S3	10:18	10:42	24	100	320	17.5	420	20.5	1920	10' x 10'
9/17/2015	E12-S3	10:43	11:06	23	100	320	18.3	420	20.5	1920	10' x 10'
9/17/2015	E13-S3	11:07	11:37	30	100	320	14.0	420	20.5	1920	10' x 10'
9/17/2015	E14-S3	11:37	12:06	29	100	320	14.5	420	20.5	1920	10' x 10'
9/17/2015	E15-S3	12:33	12:59	26	100	320	16.2	420	20.5	1920	10' x 10'
9/17/2015	E15-S8	13:02	13:14	12	50	160	17.5	210	10.25	960	5' x 10'
9/17/2015	E15-S9	13:14	13:26	12	50	160	17.5	210	10.25	960	5' x 10'
9/17/2015	E15-S10	13:27	13:50	23	100	320	18.3	420	20.5	1920	10' x 10'
9/17/2015	E15-S11	13:50	14:11	21	100	320	20.0	420	20.5	1920	10' x 10'
9/17/2015	E15-S12	14:11	14:37	26	100	320	16.2	420	20.5	1920	10' x 10'
9/17/2015	E15-S13	14:37	14:59	22	100	320	19.1	420	20.5	1920	10' x 10'
9/17/2015	E14-S12	14:59	15:11	12	50	160	17.5	210	10.25	960	5' x 10'
9/17/2015	E14-S13	15:11	15:23	12	50	160	17.5	210	10.25	960	5' x 10'
9/17/2015	E15-S14	15:23	15:50	27	100	320	15.6	420	20.5	1920	10' x 10'
9/17/2015	E14-S14	15:50	15:58	8	25	80	13.1	105	5.125	480	5' x 5'
9/17/2015	E12-S1 (Re-mix)	17:47	17:59	12	50	160	17.5	210	10.25	960	5' x 10'
9/17/2015	E12-S2 (Re-mix)	17:24	17:47	23	100	320	18.3	420	20.5	1920	10' x 10'
9/17/2015	E13-S1 (Re-mix)	17:14	17:24	10	50	160	21.0	210	10.25	960	5' x 10'
9/17/2015	E13-S2 (Re-mix)	16:50	17:14	24	100	320	17.5	420	20.5	1920	10' x 10'
9/17/2015	E14-S1 (Re-mix)	16:37	16:50	13	50	160	16.2	210	10.25	960	5' x 10'
9/17/2015	E14-S2 (Re-mix)	16:06	16:37	31	100	320	13.5	420	20.5	1920	10' x 10'
9/18/2015	E2-S5	7:56	8:06	10	50	160	21.0	210	10.25	960	5' x 10'
9/18/2015	E2-S4	8:06	8:37	31	100	320	13.5	420	20.5	1920	10' x 10'
9/18/2015	E3-S4	8:50	9:15	25	100	320	16.8	420	20.5	1920	10' x 10'
9/18/2015	E4-S4	9:15	9:46	31	100	320	13.5	420	20.5	1920	10' x 10'

Mixing Date	Mixing Cell ID	Start Time	Stop Time	Mixing Time	Catalyst Volume	Hydrogen Peroxide Volume	Reagent Mixing Rate	Total Volume	Catalyst (pounds)	Hydrogen Peroxide (34% pounds)	Cell Dimensions
9/18/2015	E5-S4	9:47	10:16	29	100	320	14.5	420	20.5	1920	10' x 10'
9/18/2015	E6-S4	10:16	10:37	21	100	320	20.0	420	20.5	1920	10' x 10'
9/18/2015	E7-S4	10:37	11:02	25	100	320	16.8	420	20.5	1920	10' x 10'
9/18/2015	E8-S4	11:02	11:26	24	100	320	17.5	420	20.5	1920	10' x 10'
9/18/2015	E9-S4	11:26	11:47	21	100	320	20.0	420	20.5	1920	10' x 10'
9/18/2015	E10-S4	11:47	12:13	26	100	320	16.2	420	20.5	1920	10' x 10'
9/18/2015	E9-S5	12:40	12:50	10	50	160	21.0	210	10.25	960	5' x 10'
9/18/2015	E10-S5	12:50	13:01	11	50	160	19.1	210	10.25	960	5' x 10'
9/18/2015	E11-S4	13:01	13:32	31	100	320	13.5	420	20.5	1920	10' x 10'
9/18/2015	E12-S4	13:34	13:57	23	100	320	18.3	420	20.5	1920	10' x 10'
9/18/2015	E13-S4	13:57	14:26	29	100	320	14.5	420	20.5	1920	10' x 10'
9/18/2015	E14-S4	14:26	14:56	30	100	320	14.0	420	20.5	1920	10' x 10'
9/18/2015	E15-S4	14:56	15:18	22	100	320	19.1	420	20.5	1920	10' x 10'
9/18/2015	E3-S5	15:19	15:49	30	100	320	14.0	420	20.5	1920	10' x 10'
9/18/2015	E4-S5	15:50	16:18	28	100	320	15.0	420	20.5	1920	10' x 10'
9/18/2015	E5-S5	16:18	16:47	29	100	320	14.5	420	20.5	1920	10' x 10'
9/19/2015	E6-S5	8:45	9:15	30	100	320	14.0	420	20.5	1920	10' x 10'
9/19/2015	E7-S5	9:25	9:45	20	100	320	21.0	420	20.5	1920	10' x 10'
9/19/2015	E8-S5	9:45	10:15	30	100	320	14.0	420	20.5	1920	10' x 10'
9/19/2015	E4-S6	8:19	8:32	13	50	160	16.2	210	10.25	960	5' x 10'
9/19/2015	E5-S6	8:32	8:45	13	50	160	16.2	210	10.25	960	5' x 10'
9/19/2015	E6-S6	9:15	9:25	10	50	160	21.0	210	10.25	960	5' x 10'
9/19/2015	E13-S5	10:25	10:47	22	100	320	19.1	420	20.5	1920	10' x 10'
9/19/2015	E12-S5	10:15	10:25	10	25	80	10.5	105	5.125	480	5' x 5'
9/19/2015	E14-S5	10:47	11:10	23	100	320	18.3	420	20.5	1920	10' x 10'
9/19/2015	E14-S6	11:10	11:20	10	50	160	21.0	210	10.25	960	5' x 10'
9/19/2015	E15-S5	11:20	11:40	20	100	320	21.0	420	20.5	1920	10' x 10'
9/19/2015	E15-S6	11:40	12:05	25	100	320	16.8	420	20.5	1920	10' x 10'
9/21/2015	E13-S4 (Re-mix)	34	100	320	12.4	420	20.5	960	10' x 10'		
	Tota	als			10350	34360		44710	2162.75	201600	

			1	1		1	1		1		ı	ı	<u> </u>
Date of Blending	Cell Location	Start time of Blending		Total Blending Time (minutes)		Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (µg/kg)	Post-Treatment 1,1-DCE Concentration (µg/kg)	Notes
						9		0.0	0	20	NA	NA	
14-Sep	E17-S14	10:45	11:04	19	15-Sep	11	Next Day	0.0	0	14	NA	NA	
						13		0.0	0	28	100 U	40 U	Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	12	NA	NA	
14-Sep	E17-S13	11:05	11:20	15	15-Sep	11	Next Day	0.0	0	63	NA	NA	
						13		0.0	0	32	50 U	20 U	Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	10	NA	NA	
14-Sep	E17-S11	11:36	11:42	7	15-Sep	11	Next Day	0.0	0	12	NA	NA	
						13		0.0	0	18	100 U	40 U	Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	14	NA	NA	
14-Sep	E17-S9	11:52	12:17	25	15-Sep	11	Next Day	0.0	0	9	NA	NA	
						13		0.0	0	15	100 U	40 U	Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	14	NA	NA	
14-Sep	E17-S7	13:07	13:22	15	15-Sep	11	Next Day	0.0	0	8	NA	NA	
						13		0.0	0	5	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	11	NA	NA	
14-Sep	E17-S6	13:23	13:38	15	15-Sep	11	Next Day	0.0	0	6	NA	NA	
						13		0.0	0	12	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	6	NA	NA	
14-Sep	E17-S5	13:39	14:08	29	15-Sep	11	Next Day	0.0	0	4	NA	NA	
						13		0.0	0	6	100 U	40 U	Sample sent to lab on 9/16. Results received on 9/17.

Date of Blending	Cell Location	Start time of Blending		Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	1,1,1-TCA Concentration (µg/kg)	Post-Treatment 1,1-DCE Concentration (µg/kg)	Notes
						9		0.0	0	12	NA	NA	
						11		0.0	0	8	NA	NA	
14-Sep	E13-S2	16:16	16:33	17	15-Sep	13	Next Day	0.0	0	8	200	110	Sample sent to lab on on 9/16. Results received on 9/17. Exceedance detected. Cell retreated on 9/17. Analytical data received on 9/19/15 with results below project goals.
											60	40	Duplicate sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	6	NA	NA	
				14		11		0.0	0	12	NA	NA	
14-Sep	E14-S1	15:05	15:19		15-Sep	13	Next Day	0.0	0	8	100 U	160	Sample sent to lab on on 9/16. Results received on 9/17. Exceedance detected. Cell retreated on 9/17. Analytical data received on 9/19/15 with results below project goals.
						9		0.0	0	14	NA	NA	
14-Sep	E15-S2	15:20	15:35	15	15-Sep	11	Next Day	0.0	0	10	NA	NA	
						13		0.0	0	8	100 U	50	Sample sent to lab on 9/16. Results received on 9/17.
						11		0.0	0	5	NA	NA	<u></u>
15-Sep	E11-S2	9:00	9:18	18	16-Sep	13	Next Day	0.0	0	10	100	60	Sample sent to lab on 9/16. Results received on 9/17.
15-Sep	E7-S1	12:05	12:22	17	16-Sep	13	Next Day	0.0	1	12	100	30	Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0.0	4	NA	NA	
15-Sep	E9-S2	10:46	11:08	22	16-Sep	11	Next Day	0.0	0.0	9	100	50	
						13		0.0	0.8	6	NA	NA	Sample sent to lab on 9/16. Results received on 9/17.
15-Sep	E10-S1	8:38	8:59	21	16-Sep	13	Next Day	0.0	0.0	6	100	30	Sample sent to lab on 9/16. Results received on 9/17.
15-Sep	E8-S1	11:09	11:31	22	16-Sep	13	Next Day	0.0	0.0	7	100	60	Sample sent to lab on 9/16. Results received on 9/17.
15-Sep	E6-S2	13:37	13:57	20	16-Sep	13	Next Day	0.1	0.0	4	100	30 1	Sample sent to lab on 9/16. Results received on 9/17.

												1	
Date of Blending	Cell Location	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (µg/kg)	Post-Treatment 1,1-DCE Concentration (µg/kg)	Notes
Dichang	Location	Dictioning	Dichung	Time (minutes)	Samping	Sample (It bgs)	Dienung	(PPIII)	(Pp)	(PP)	50 J	20 J	Sample sent to lab on 9/16. Results received
15-Sep	E5-S2	14:19	14:39	20	16-Sep	13	Next Day	0.1	0.0	10			on 9/17. Duplicate Sample sent to lab on 9/16.
											50 J	30 1	Results received on 9/17.
15-Sep	E5-S1	13:58	14:18	20	16-Sep	13	Next Day	0.0	0.0	5	100	30	Sample sent to lab on 9/16. Results received
15-Sep	E3-S2	15:41	16:03	22	16-Sep	13	Next Day	0.1	0.0	4	100 U	30 U	on 9/17. Sample sent to lab on 9/16. Results received
13-3ep	E3-32	15.41	10.03	22	10-зер	13	Next Day	0.1	0.0	-	100 0	30 0	on 9/17.
15-Sep	E3-S1	15:20	15:40	20	16-Sep	13	Next Day	0.1	0.0	8	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.
						11		0.0	1.0	5	100	40	Sample sent to lab on 9/17. Results received
16-Sep	E4-S3	15:20	15:50	30	17-Sep	13	Next Day	0.0	0.0	10	NA	NA	on 9/18.
						_		0.0	0.0		NA.	IVA	
16-Sep	E5-S3	15:50	16:20	30	17-Sep	11	Next Day	0.0	1.0	3	NA	NA	
10-3ер	E3-33	15.50	16.20	30	17-зер	13	Next Day	0.0	0.0	6	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
						11		0.1	0.0	9	100 U	30 U	Sample sent to lab on 9/17. Results received
16-Sep	E16-S14	9:22	9:46	24	17-Sep		Next Day						on 9/18.
						13		0.1	0.0	5	NA	NA	
16-Sep	E16-S11	10:28	10:48	20	17-Sep	13	Next Day	0.0	0.0	8	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
16-Sep	E1-S2	8:10	8:36	26	17-Sep	13	Next Day	0.0	0.0	7	100 U	30 U	Sample sent to lab on 9/17. Results received
16.6	F46.66	12:33	12:54	21	47.6	13	Nove Davi	0.1	0.0	2	100.11	30 U	on 9/18. Sample sent to lab on 9/17. Results received
16-Sep	E16-S6	12:33	12:54	21	17-Sep	13	Next Day	0.1	0.0	2	100 U	30 0	on 9/18.
16-Sep	E16-S9	11:09	11:28	19	17-Sep	13	Next Day	0.1	0.0	9	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
16-Sep	E16-S3	13:43	14:08	25	17-Sep	13	Next Day	0.1	0.0	7	100 U	30 U	Sample sent to lab on 9/17. Results received
17-Sep	E10-S3	9:48	10:17	29	18-Sep	13	Next Day	0.1	0.0	7	100	30 J	on 9/18. Sample sent to lab on 9/18. Results received
17-3ep	E10-33	9:46	10:17	29	16-3ер	15	Next Day	0.1	0.0	,	100	30.1	on 9/19.
17-Sep	E13-S3	11:07	11:37	20	18-Sep	13	Next Day	0.1	0.0	4	100 U	40 J	Sample sent to lab on 9/18. Results received on 9/19.
17-Sep	E14-S12	14:59	15:11	12	18-Sep	13	Next Day	0.0	0.0	10	100 U	40 U	Sample sent to lab on 9/18. Results received
17-Sep	E14-S3	11:37	12:00	23	18-Sep	13	Next Day	0.2	0.0	2	100 U	40 U	on 9/19. Sample sent to lab on 9/18. Results received
17-3ер	E14-33	11.57	12.00	23	10-зер	13	Next Day	0.2	0.0		100 0	400	on 9/19. Sample sent to lab on 9/18. Results received
17-Sep	E15-S8	13:02	13:14	12	18-Sep	13	Next Day	0.0	0.0	5	100 U	40 U	on 9/19.
17-Sep	E15-S10	13:27	13:50	23	18-Sep	13	Next Day	0.0	0.0	3	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
											100 U	40 U	Sample sent to lab on 9/18. Results received
17-Sep	E15-S14	15:23	15:50	27	18-Sep	13	Next Day	0.0	0.0	8	1000		on 9/19. Duplicate sample sent to lab on 9/18. Results
											100 U	30 U	received on 9/19.

			1	1			1						
Date of Blending	Cell Location	Start time of Blending		Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (µg/kg)	Post-Treatment 1,1-DCE Concentration (µg/kg)	Notes
17-Sep	E15-S3	12:33	12:59	26	18-Sep	13	Next Day	0.0	0.0	7	100 U		Sample sent to lab on 9/18. Results received on 9/19.
17-Sep	E12-S1	17:42	17:59	17	18-Sep	11	Next Day	0.0	0.0	3	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
17-зер	E12-31	17:42	17:59	17	16-3ер	13	Next Day	0.0	0.0	5	NA	NA	Retreated cell on 9/17.
17-Sep	E12-S2	17:24	17:42	18	18-Sep	11	Next Day	0.0	0.0	5	NA	NA	Retreated cell on 9/17.
27 50\$			271.2	10	20 000	13		0.1	0.0	5	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
47.6	F43.64	17:14	17:24	10	10.6	11	New A Devi	0.0	0.0	3	NA	NA	Retreated cell on 9/17.
17-Sep	E13-S1	17:14	17:24	10	18-Sep	13	Next Day	0.0	0.0	6	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
47.0	-42.62	46.50	47.44		40.0	11		0.0	0.0	4	NA	NA	Retreated cell on 9/17.
17-Sep	E13-S2	16:50	17:14	24	18-Sep	13	Next Day	0.1	0.0	5	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
17-Sep	E14-S1	16:37	16:50	13	18-Sep	11	Next Day	0.1	0.0	6	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
17-зер	E14-31	16:37	16:50	15	16-3ер	13	Next Day	0.0	0.0	8	NA	NA	Retreated cell on 9/17.
47.6	E14-S2	16:06	16:37	31	10.5	11	New A Devi	0.0	0.0	7	NA	NA	Retreated cell on 9/17.
17-Sep	E14-32	16:06	16:37	51	18-Sep	13	Next Day	0.0	0.0	3	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
18-Sep	E2-S4	7:56	8:06	10	19-Sep	13	Next Day	0.1	0.0	5	100 U	20 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
18-Sep	E4-S4	9:15	9:46	31	19-Sep	13	Next Day	0.1	0.0	12	100 U	30 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
											100 U	20 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
18-Sep	E3-S5	13:19	13:49	30	19-Sep	13	Next Day	0.1	0.0	13	100 U	30 1	Duplicate Sample Sent to Lab 9/19. Analytical data received on 9/21.
18-Sep	E5-S4	9:47	10:16	29	19-Sep	13	Next Day	0.1	0.0	3	100 U	20 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
18-Sep	E14-S4	14:26	14:56	30	19-Sep	13	Next Day	0.0	0.0	8	100 U	30 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
18-Sep	E4-S5	13:50	14:18	28	19-Sep	13	Next Day	0.1	0.0	4	100 U	30 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
18-Sep	E15-S4	14:56	15:18	22	19-Sep	13	Next Day	0.0	0.0	6	100 U	30 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
18-Sep	E5-S5	16:18	16:47	29	19-Sep	13	Next Day	0.1	0.0	7	100 U	30 J	Sample Sent to Lab 9/19. Analytical data received on 9/21.
18-Sep	E7-S4	10:37	11:02	25	19-Sep	13	Next Day	0.1	0.0	5	100 U	30 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.

Date of Blending	Cell Location	Start time of Blending		Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (µg/kg)	Post-Treatment 1,1-DCE Concentration (µg/kg)	Notes
18-Sep	E10-S4	11:42	12:13	31	19-Sep	13	Next Day	0.0	0.0	24	100 U	30 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
18-Sep	E11-S4	13:11	13:32	21	19-Sep	13	Next Day	0.0	0.0	12	100 U	30 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
18-Sep	E13-S4	13:52	14:26	34	19-Sep	13	Next Day	0.1	0.0	13	100 U	80	Sample sent to lab on on 9/19. Results received on 9/21. Exceedance detected. Cell retreated on 9/21. Analytical data received on 9/22 with results below project goals.
19-Sep	E5-S6	8:32	8:45	13	21-Sep	13	Approx. 47 hrs	0.0	0.0	4	100 U	30 U	Sample Sent to Lab 9/21. Analytical data received on 9/22.
19-Sep	E8-S5	9:45	10:15	30	21-Sep	13	Approx. 46 hrs	0.1	0.0	10	Lab broke sample resampled at 14:3		Sample Sent to Lab 9/21.
19-Sep	E13-S5	10:25	10:47	22	21-Sep	13	Approx. 45 hrs	0.0	0.0	10	100 U	40 0	Sample Sent to Lab 9/21. Analytical data received on 9/22.
19-Sep	E15-S6	11:40	12:05	25	21-Sep	13	Approx. 44 hrs	0.0	0.0	6	100 U	3011	Sample Sent to Lab 9/21. Analytical data received on 9/22.
21-Sep	E13-S4	12:38	13:12	33	21-Sep	13	Approx. 4 hrs	0.0	2.5	13	100 U	40 U	Sample Sent to Lab 9/19. Cell was retreated on 9/21 at 12:38. Cell was resampled at 14:38 on 9/21. Analytical data received on 9/22.
21-Sep	E8-S5	9:45	10:15	30	21-Sep	13	Approx. 2 days	0.0	10.0	10	70 J	20 J	Sample Sent to Lab 9/21. Lab broke sample bottle. Cell will be resampled at approx. 14:30 on 9/21. Analytical data received on 9/22.

Note

Cell Locations = ID locations of the treatment cells that were sampled after the cell was mixed/blended.

ft bgs = Feet below ground surface.

ppm = Parts per million

NA = Not Analyzed

μg/kg = Micrograms per kilogram

Sample Collection Time = Samples collected the morning after day of mixing.

1,1-DCE = 1,1-Dichloroethene (criteria of≤60 µg/kg)

1,1,1-TCA = 1,1,1-Trichloroethane (criteria of≤150 µg/kg)

U=Compound was not detected and the reporting limit is shown.

Green shading indicates results were non-detect for the compounds indicated.

Yellow highlighting indicates detection at or below the criteria for the compound indicated.

Red highlighting indicates detection above the crietria for the compound indicated.

Orange highlighting indicates cell was re-mixed, re-sampled and analyzed due an exceedance of the project goal in the original sample. Results met the project action goals.

Blue highlighting indicates cell was re-mixed, re-sampled, and analyzed due an exceedance of the project goal on in adjacent cell(s). Results met the project action goals.

Field testing for hydrogen peroxide was conducted using Quantofix Peroxide 100 test strips.

Field testing for Total Iron was conducted using Hach Iron Color Disc Test Kit, Model IR-18A.

TABLE 5 Weston/ NHDES ISCO SOIL MIXING DOSAGE DETAILS (MFR) KEARSARGE SUPERFUND SITE CONWAY, NH ISOTEC #801991

Company Comp	Cell I-D	AOC	Length	Width	Depth	Volume	Soil	Soil Mass	Porosity	Pore	Peroxide	Safety	Catalyst	Peroxide	Catalyst	Peroxide	Mix Water	Total
Fig. 1									,			•	•		•		Volume	Solution
E1-S1 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19														(100%)		(34%)		Volume
E2-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198			ft	ft	ft	CY	lb/CY	lb		gallon	g/kg		gal/CY	lb	Gallons	Gallons	Gallons	Gallons
E3-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198	E1-S1	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E4-51 Treatment Area 10 10 8 296 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 627 61 198 19 65-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 99 99 65-51-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 99 99 65-51-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 99 99 65-51-51 Treatment Area 5 10 8 14.8 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 65-52 Treatment Area 10 10 8 29.6 2970 88	E2-S1	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E5-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E6-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-51 Treatment Area 10 10 8 2.96 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-51 Treatment Area 10 10 8 2.96 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-51 Treatment Area 10 10 8 2.96 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-51 Treatment Area 10 10 <td>E3-S1</td> <td>Treatment Area</td> <td>10</td> <td>10</td> <td>8</td> <td>29.6</td> <td>2970</td> <td>88000</td> <td>0.3</td> <td>1795</td> <td>7</td> <td>1.05</td> <td>2.05</td> <td>647</td> <td>61</td> <td>198</td> <td>198</td> <td>457</td>	E3-S1	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
Fe-51	E4-S1	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E7-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E10-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E10-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 .95 E14-51 Treatment Area 5 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 .95 E14-51 Treatment Area 5 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 .95 E15-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 .95 E15-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 .95 E15-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 323 30 99 .95 E15-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E2-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 1	E5-S1	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E8-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 19 11-15 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 11-15 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 11-15 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 11-15 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 11-15 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 11-15 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 647 61 198 19 19 11-15 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 11-15 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 11-15 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 11-15 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 323 30 99 99 99 11-15 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 19 19 19 19 19 19 19 19 19 19 19	E6-S1	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E9-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E10-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 111-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 111-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 627 61 198 19 113-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 114-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 114-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 114-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 114-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 114-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 323 30 99 99 99 114-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 323 30 99 99 99 114-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 14-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 14-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 14-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 14-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 19 19 19 19 19 19 19 19 19 19 19	E7-S1	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E10-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 11-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 99 99 19 11-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 99 99 19 11-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 99 99 19 11-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 99 99 19 11-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 99 99 19 11-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 888 7 1.05 2.05 323 30 99 99 99 19 11-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 11-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 11-51 Treatment Area	E8-S1	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795		1.05	2.05	647	61	198	198	457
E11-S1 Treatment Area	E9-S1	Treatment Area	10	10	8	29.6			0.3	1795	7	1.05		647	61	198	198	457
E12-S1 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 99 99 99 9	E10-S1	Treatment Area															198	457
E13-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 151-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 30 99 99 99 151-51 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 30 99 99 99 151-52 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 19 19 19 19 19											-						198	457
E14-S1 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 19 15 15-S1 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 19 19 19 19 19 19 19 19 19 19 19	E12-S1	Treatment Area						44000	0.3	898							99	229
E15-S1 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 99 190 11-15-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-15-152 Treatment Area 10 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-15-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-15-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-15-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-15-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-15-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-15-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 18-152 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 190 190 190 190 190 190 190 190 190 190																	99	229
E1-S2																	99	229
E2-S2		Treatment Area	5	10		14.8			0.3	898		1.05	2.05	323	30	99	99	229
E3-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E4-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E6-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E10-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E14-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E15-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E15-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E15-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05		Treatment Area				29.6			0.3	1795						198	198	457
E4-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E6-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E10-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E12-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E12-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E12-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E12-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E14-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E14-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E15-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E15-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E15-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05															<u> </u>		198	457
E5-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E6-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E10-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 <td></td> <td>Treatment Area</td> <td></td> <td>198</td> <td>457</td>		Treatment Area															198	457
E6-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E10-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 <td></td> <td>Treatment Area</td> <td></td> <td>198</td> <td>457</td>		Treatment Area															198	457
E7-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E10-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 <td></td> <td>198</td> <td>457</td>																	198	457
E8-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E10-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E13-S2 Treatment Area 10 10 </td <td></td> <td>198</td> <td>457</td>																	198	457
E9-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E10-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E12-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E12-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E14-S2 Treatment Area 10 10<																	198	457
E10-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E12-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E13-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E14-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E14-S2 Treatment Area 10 10																	198	457
E11-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E12-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E13-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E14-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E15-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E1-S3 Treatment Area 10 10<														_			198	457
E12-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E13-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E14-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E15-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E1-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E1-S3 Treatment Area 10 10 </td <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>198</td> <td>457</td>				1					1					_			198	457
E13-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E14-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E15-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E1-S3 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 647 61 198 19 E2-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E3-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E4-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E4-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E6-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19					_						· ·						198	457
E14-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E15-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E1-S3 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 647 61 198 19 E2-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E3-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E4-S3 Treatment Area 10 10										-:	•				· -		198	457
E15-S2 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E1-S3 Treatment Area 5 10 8 14.8 2970 44000 0.3 898 7 1.05 2.05 323 30 99 99 E2-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E3-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E4-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E6-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19											•						198	457
E1-S3																		457
E2-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E3-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E4-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E6-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S3 Treatment Area 10 10																		457
E3-S3																		229
E4-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E6-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S3 Treatment Area 10 10																		457
E5-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E6-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S3 Treatment Area 10 10																		457
E6-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E7-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19																		457
E7-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E8-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19																		457
E8-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 E9-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19 - 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19					_						· ·							457 457
E9-S3 Treatment Area 10 10 8 29.6 2970 88000 0.3 1795 7 1.05 2.05 647 61 198 19																		457
														_				457 457
	E9-S3 E10-S3		10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
			+						_				1				198	
					_									_			198	457 457

TABLE 5 Weston/ NHDES ISCO SOIL MIXING DOSAGE DETAILS (MFR) KEARSARGE SUPERFUND SITE CONWAY, NH ISOTEC #801991

	AOC	Length	Width	Depth	Volume	Soil	Soil Mass	Porosity	Pore	Peroxide	Safety	Catalyst	Peroxide	Catalyst	Peroxide	Mix Water	Total
						Density			Volume	SOD	Factor	Demand	Demand (100%)	Volume	Volume (34%)	Volume	Solution Volume
													` '		` ,		
		ft	ft	ft	CY	lb/CY	lb		gallon	g/kg		gal/CY	lb	Gallons	Gallons	Gallons	Gallons
E13-S3	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E14-S3	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E15-S3	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E16-S3 E2-S4	Treatment Area Treatment Area	10 10	10 10	8	29.6 29.6	2970 2970	88000 88000	0.3	1795 1795	7	1.05	2.05 2.05	647 647	61 61	198 198	198 198	457 457
E3-S4	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E4-S4	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E5-S4	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E6-S4	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E7-S4	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E8-S4	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E9-S4	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E10-S4	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E11-S4	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457 457
E12-S4 E13-S4	Treatment Area Treatment Area	10 10	10 10	8	29.6 29.6	2970 2970	88000 88000	0.3	1795 1795	7	1.05	2.05 2.05	647 647	61 61	198 198	198 198	457
E13-34 E14-S4	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E15-S4	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E16-S4	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E2-S5	Treatment Area	5	10	8	14.8	2970	44000	0.3	898	7	1.05	2.05	323	30	99	99	229
E3-S5	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E4-S5	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E5-S5	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E6-S5	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E7-S5	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E8-S5 E9-S5	Treatment Area Treatment Area	10 5	10 10	8	29.6 14.8	2970 2970	88000 44000	0.3	1795 898	7	1.05	2.05	647 323	61 30	198 99	198 99	457 229
E10-S5	Treatment Area	5	10	8	14.8	2970	44000	0.3	898	7	1.05	2.05	323	30	99	99	229
E12-S5	Treatment Area	5	5	8	7.4	2970	22000	0.3	449	7	1.05	2.05	162	15	50	50	114
E13-S5	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E14-S5	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E15-S5	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E16-S5	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E17-S5	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E4-S6	Treatment Area	5	10	8	14.8	2970	44000	0.3	898	7	1.05	2.05	323	30	99	99	229
E5-S6	Treatment Area	5	10	8	14.8	2970	44000	0.3	898	7	1.05	2.05	323	30	99	99	229
E6-S6	Treatment Area	5	10	8	14.8	2970	44000	0.3	898	7	1.05	2.05	323	30	99	99	229
E14-S6	Treatment Area	5	10	8	14.8	2970	44000	0.3	898	7	1.05	2.05	323	30	99	99	229
E15-S6 E16-S6	Treatment Area Treatment Area	10 10	10 10	8	29.6 29.6	2970 2970	88000 88000	0.3	1795 1795	7	1.05	2.05	647 647	61 61	198 198	198 198	457 457
E17-S6	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E16-S7	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457

TABLE 5 Weston/ NHDES ISCO SOIL MIXING DOSAGE DETAILS (MFR) KEARSARGE SUPERFUND SITE CONWAY, NH ISOTEC #801991

Cell I-D	AOC	Length	Width	Depth	Volume	Soil	Soil Mass	Porosity	Pore	Peroxide	Safety	Catalyst	Peroxide	Catalyst	Peroxide	Mix Water	Total
						Density			Volume	SOD	Factor	Demand	Demand	Volume	Volume	Volume	Solution
													(100%)		(34%)		Volume
													(===,,,		(0 1.12)		
		ft	ft	ft	CY	lb/CY	lb		gallon	g/kg		gal/CY	lb	Gallons	Gallons	Gallons	Gallons
E17-S7	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E15-S8	Treatment Area	5	10	8	14.8	2970	44000	0.3	898	7	1.05	2.05	323	30	99	99	229
E16-S8	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E17-S8	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E15-S9	Treatment Area	5	10	8	14.8	2970	44000	0.3	898	7	1.05	2.05	323	30	99	99	229
E16-S9	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E17-S9	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E15-S10	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E16-S10	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E17-S10	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E15-S11	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E16-S11	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E17-S11	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E14-S12	Treatment Area	5	10	8	14.8	2970	44000	0.3	898	7	1.05	2.05	323	30	99	99	229
E15-S12	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E16-S12	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E17-S12	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E14-S13	Treatment Area	5	10	8	14.8	2970	44000	0.3	898	7	1.05	2.05	323	30	99	99	229
E15-S13	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E16-S13	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E17-S13	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E14-S14	Treatment Area	5	5	8	7.4	2970	22000	0.3	449	7	1.05	2.05	162	15	50	50	114
E15-S14	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E16-S14	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E17-S14	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
E16-S15	Treatment Area	5	10	8	14.8	2970	44000	0.3	898	7	1.05	2.05	323	30	99	99	229
E17-S15	Treatment Area	10	10	8	29.6	2970	88000	0.3	1795	7	1.05	2.05	647	61	198	198	457
TOTALS					2,993		8,888,000		181,315				65,327	6,135	20,014	20,014	46,163

Notes

(1) A 5% safety factor was added to the reagent dosage of the 7-15 ft bgs interval in order to account for any reagent interchange from the target treatment interval of 7-15 ft bgs to the unexcavated portion of the overlying soils from ~3-7 ft bgs. The additional dosage is calculated as equivalent to ~10% of the reagent demand associated with the unexcavated portion of the overlying soils (i.e. ~3-7 ft bgs).

(2) ft = feet; CY = cubic yards; g/kg = grams per kilogram; lb = pounds

O Soil Mixing Treatment Program Summary Report arsarge Superfund Site	January 5, 2015
nway, New Hampshire	
OTEC Project #801991	
	APPENDICES

In-Situ Oxidative Technologies, Inc.

ISOTEC				DAII	Y FIELD REP	ORT		11 Princess Rd, Suite A			
				DAIL	THEED KEI	O		Lawrencevill	-		
In-Situ Oxidative Technolog	ies							(609) 275-85			
Date:		10-Sep-15		Client:	Wes		Personnel:		Bill L, Bill O, Coo	dy, Dave, Faun	
Project:	ΚN	AC Site, Conwa		Job Number:			Weather:	Cloudy, 60-7			
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other	
Personnel Names		ime	To & From	Meeting	Preparation	Wells &	Time	ne Equipment	Entry	(Lunch)	
	Start	Stop	Job Site			Analysis			Time		
Mike Temple	7:00 AM	5:00 PM		1.0						0.5	
Mark Ratner	7:00 AM	5:00 PM		1.0						0.5	
Bill Lang	7:00 AM	5:00 PM		1.0						0.5	
Bill Oberloier	7:00 AM	5:00 PM		1.0						0.5	
Dave Roe	1:00 PM	4:00 PM		0.5						0.5	
Cody Shell	1:00 PM	4:00 PM		0.5						0.5	
Faun Koplovsky	11:00 AM	5:00 PM		0.5						0.5	
TOTAL HOURS =	g	9.50	TOTA	L MIXING HOU	JRS =		•	0.0	0	•	
Support Equipment and											
Services	Quantity	Hours	Catalyst	Volume	17% H2O2	2 Volume	Catalys	t Volume	17% H2O2 Volume		
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	
Pumps			0	0	0	0	0	0	0	0	
Generator			0	0	0	0	0	0	0	0	
Mixers			0	0	0	0	0	0	0	0	
Equipment Set			0	0	0	0	0	0	0	0	
Vehicle(s) utilized			0	0	0	0	0	0	0	0	
Raw Materials Used			0	0	0	0	0	0	0	0	
Powder Catalyst	0	lbs.	0	0	0	0	0	0	0	0	
Liquid Catalyst	0	Gallons	0	0	0	0	0	0	0	0	
34% H2O2	0	Gallons	0	0	0	0	0	0	0	0	
17% H2O2	0	Gallons	0	0	0	0	0	0	0	0	
	1		TOTAL INJECT	ION VOLUME :	=	0	1	l			

Set up GPS coordinates, kickoff meeting, cleared majority of the work area (mulching, tree removal), inserted silt sacks in storm drain inlets (CB 7-8 and CB 8-9), removed monitoring wells (MWs-3006, 3008, 3009, 3010 and 3011), placed precast concrete well tiles around select wells (MW-3004, MW-203A, MWS-205, MWS-114, MWS-215 and EW-13B), video documentation of existing conditions of buildings/fence/access road, fire hydrant adapter hooked up by the township and checked the access inside of the culvert beneath Hobbs Street where the water line will be run. Spoke to dig safe representative who had marked out behind the building (left flags near the propane tank) and said there were no known utilities in the wooded area that they would need to mark out.

Health and Safety Items Covered:

General site safety topics covered during the kickoff meeting between ISOTEC (Mike Temple, Mark Ratner), LTC (Bill L, Bill O), Weston (Erik Hall, Vinnie DelloRusso, Fred Symmes), NHDES (Drew Hoffman), property owner, town manager and DPW manager. Faun Koplovsky (Land and Mowing Solutions LLC) on site around 11:00 AM.

Unforeseen Site Conditions:

Bulldozer struck MW-3005 during clearing operations. Window in the bulldozer was struck (and cracked) by a rock during the mulching operation. Nobody was in the machine at the time.

List of Deliveries:

Bull dozer and bathroom (9/9), forklift, concrete well tiles, LTC equipment.

Other Comments (Work delays, inspections results, etc.):

During the kickoff meeting it was decided to delay the first hydrogen peroxide delivery until Monday so that chemical was not sitting on site over the weekend without having the perimeter fence installed.

ISOTEC In-Situ Oxidative Technologi	ies			DAILY FIELD REPORT 11 Princess Rd, Suite A Lawrenceville, NJ 08648 (609) 275-8500								
Date:	les	11-Sep-15		Client:	Wes	ton	Personnel:	` '	Bill L, Bill O, Coo	dy Dave Faun		
Project:	KI	VIC Site, Conwa	N NH	Job Number:			Weather:	Sunny, 60-75		ay, Dave, I auii		
rioject.	Ki	vic Site, conwa	Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other		
Personnel Names	-	Γime	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)		
	Start	Stop	Job Site	····cetii.B	. reparation	Analysis		zquipinent	Time	(2011011)		
Mike Temple	7:00 AM	5:00 PM		0.25						0.5		
Mark Ratner	7:00 AM	5:00 PM		0.25						0.5		
Bill Lang	7:00 AM	5:00 PM		0.25						0.5		
Bill Oberloier	7:00 AM	5:00 PM		0.25						0.5		
Dave Roe	7:00 AM	5:00 PM		0.25						0.5		
Cody Shell	7:00 AM	5:00 PM		0.25						0.5		
Faun Koplovsky	7:00 AM	9:00 AM		0.25								
TOTAL HOURS =	!	9.50	TOTA	L MIXING HOU	0.00							
Support Equipment and Services	Quantity	Hours	Catalyst	: Volume	17% H2O2 Volume		Catalyst Volume		17% H2O2 Volume			
Compressor	ζ,		Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume		
Pumps			0	0	0	0	0	0	0	0		
Generator			0	0	0	0	0	0	0	0		
Mixers			0	0	0	0	0	0	0	0		
Equipment Set			0	0	0	0	0	0	0	0		
Vehicle(s) utilized			0	0	0	0	0	0	0	0		
Raw Materials Used			0	0	0	0	0	0	0	0		
Powder Catalyst	0	lbs.	0	0	0	0	0	0	0	0		
Liquid Catalyst	0	Gallons	0	0	0	0	0	0	0	0		
34% H2O2	0	Gallons	0	0	0	0	0	0	0	0		
17% H2O2	0	Gallons	0	0	0	0	0	0	0	0		
		l	TOTAL INJECT	ION VOLUME =		0		l				

Daily safety meeting, cleared remainder of the work area (mulching, tree removal), moved precast concrete well tile from MWS-215 to CB 7-8, provided additional coverage of the culverts beneath Hobbs Street where the water line is run through, tested the water line and ran water out to the chemical preparation truck, installed the silt fence, scraped off top soil across the site and placed into stockpiles, prepared equipment and excavated portions of the site in preparation of soil mixing on Monday.

Health and Safety Items Covered:

General site safety topics and attention to remaining clear of the mulching machine during land clearing covered during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall), L&M Solutions (Faun Koplovsky).

Unforeseen Site Conditions:

List of I	Deliveries:
-----------	-------------

Excavator.

Other Comments (Work delays, inspections results, etc.):

ISOTEC In-Situ Oxidative Technologi	ies			DAIL	Y FIELD REP	ORT		11 Princess F Lawrenceville (609) 275-85	e, NJ 08648			
Date:		12-Sep-15		Client:	Wes	ton	Personnel:	, ,	Mike, Mark, Bill L, Bill O, Cody, Dave			
Project:	KN	AC Site, Conwa	ıy, NH	Job Number:	8019	991	Weather:	Sunny, 65-78		,,		
,		•	Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other		
Personnel Names	1	ime	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)		
	Start	Stop	Job Site			Analysis			Time			
Mike Temple	7:00 AM	2:00 PM		0.25						0.25		
Mark Ratner	7:00 AM	2:00 PM		0.25						0.25		
Bill Lang	7:00 AM	2:00 PM		0.25						0.25		
Bill Oberloier	7:00 AM	2:00 PM		0.25						0.25		
Dave Roe	7:00 AM	2:00 PM		0.25						0.25		
Cody Shell	7:00 AM	2:00 PM		0.25						0.25		
TOTAL HOURS =		5.75	TOTA	L MIXING HO	IDS -			0.0	00			
Support Equipment and		3.73	1017	L WIIXIIVO 110	ting HOOK3 =			1				
Services	Quantity	Hours	Catalyst	Volume	17% H2O2 Volume		Catalys	t Volume	17% H2O2 Volume			
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume		
Pumps			0	0	0	0	0	0	0	0		
Generator			0	0	0	0	0	0	0	0		
Mixers			0	0	0	0	0	0	0	0		
Equipment Set			0	0	0	0	0	0	0	0		
Vehicle(s) utilized			0	0	0	0	0	0	0	0		
Raw Materials Used			0	0	0	0	0	0	0	0		
Powder Catalyst	0	lbs.	0	0	0	0	0	0	0	0		
Liquid Catalyst	0	Gallons	0	0	0	0	0	0	0	0		
34% H2O2	0	Gallons	0	0	0	0	0	0	0	0		
17% H2O2	0	Gallons	0	0	0	0	0	0	0	0		
	ı	ı	TOTAL INJECT	ION VOLUME	=	0	ı	1				

Daily safety meeting, fence installed by contractors, prepared equipment and excavated portions of the site in preparation of soil mixing on Monday. We are excavating to between 455.5 and 456.25, which is just above the contaminated zone that begins at 455 (between 455.5 and 456.25 appears to be the depth of the current water table as the bottom of the excavation area had some water in it after sitting over night). This ability to excavate additional dry (clean unimpacted) soils allows for an increased berm around the perimeter of the site which will help mitigate the chance of needing to dewater; minimizes the overall vertical interval that needs to be mixed (when including clean overburden materials); and also minimizes any potential reagent wastage within the upper clean soils that need to be mixed (passed through) in order to access the underlying impacted areas. Excavated soils have been fairly dry and easy to manage. The 2 cells near CB 7-8 will be treated as 5' x 10' cells instead of 10' x 10' cells due to their proximity to the catch basin.

Health and Safety Items Covered:

List of Deliveries:

General site safety topics and attention to trips and falls as the fence installers were working outside of the silt fence where trees, rocks and other potential trip hazards existed, during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Lee Baronas), fence installation contractors.

existed, during the daily safety meeting between 1501 EC (wirke Temple, Mark Rather), LTC (bill L, bill O, Cody 5, Dave Roe), weston (Lee Baronas), lence installation	
contractors.	
Unforeseen Site Conditions:	

Other Comments (Work delays, inspections results, etc.):

ISOTEC In-Situ Oxidative Technolog	ies			DAIL	Y FIELD REP	ORT		11 Princess Rd, Suite A Lawrenceville, NJ 08648 (609) 275-8500			
Date:	103	14-Sep-15		Client:	Wes	ton	Personnel:	Mike, Mark, Kevin, Bill L, Bill O, Cody, Dave			
Project:	KN	AC Site, Conwa	v. NH	Job Number:			Weather:		y, some shower	· · · · · · · · · · · · · · · · · · ·	
. rojecti			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other	
Personnel Names	1	Гime	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)	
	Start	Stop	Job Site			Analysis		11.11	Time	(/	
Mike Temple	7:00 AM	6:00 PM	0.25	0.5	3.0	•	5.5	1.0	0.5	0.5	
Mark Ratner	7:00 AM	5:30 PM	0.25	0.5	3.0		5.5	1.0		0.5	
Kevin O'Neal	7:00 AM	5:30 PM	0.25	0.5	3.0		5.5	1.0		0.5	
Bill Lang	7:00 AM	5:30 PM	0.25	0.5	3.0		5.5	1.0		0.5	
Bill Oberloier	7:00 AM	5:30 PM	0.25	0.5	3.0		5.5	1.0		0.5	
Dave Roe	7:00 AM	5:30 PM	0.25	0.5	3.0		5.5	1.0		0.5	
Cody Shell	7:00 AM	5:30 PM	0.25	0.5	3.0		5.5	1.0		0.5	
TOTAL HOURS =	1	.0.00	TOTA	L MIXING HOL	JRS =		5.50				
Support Equipment and Services	Quantity	Hours	Catalyst	: Volume	H2O2 Volume		Catalys	t Volume	H2O2 Volume		
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	
Pumps			E17-S15	100	E17-S15	600	E17-S5	80	E17-S5	320	
Generator			E17-S14	100	E17-S14	400	E15-S1	40	E15-S1	160	
Mixers			E17-S13	100	E17-S13	400	E14-S1	40	E14-S1	160	
Equipment Set			E17-S12	100	E17-S12	400	E15-S2	80	E15-S2	320	
Vehicle(s) utilized			E17-S11	50	E17-S11	200	E14-S2	80	E14-S2	320	
Raw Materials Used			E17-S10	50	E17-S10	200	E13-S1	40	E13-S1	160	
Powder Catalyst	307.5	lbs.	E17-S9	80	E17-S9	320	E12-S1	40	E12-S1	160	
Liquid Catalyst	1300	Gallons	E17-S8	80	E17-S8	320	E13-S2	80	E13-S2	320	
34% H2O2	3000	Gallons	E17-S7	80	E17-S7	320	0	0	0	0	
Diluted H2O2	5400	Gallons	E17-S6	80	E17-S6	320	0	0	0	0	
34% H2O2	28800	lbs.									
			TOTAL INJECT	ION VOLUME :	=	6700					

Daily safety meeting and review of major JSA topics (Weston Construction Superintendent Steve O'Brien was on-site to conduct a safety audit and mentioned that each construction vehicle needed their own fire extinguisher, wanted to verify fork-lift operator permits, cautioned about watching the sides of the construction area with heavy machinery on-site, asked about the bull dozer broken window incident, as well as a few other site topics relating to overall project safety). Equipment preparation, received 16 totes of hydrogen peroxide, soil mixing into 18 cells, sampling of the down-gradient catch basin for iron and hydrogen peroxide levels, and excavated portions of Row E16 in preparation of subsequent soil mixing.

to push down through the saturated soil matrix with little to no resistance. Each quadrant of a given cell was mixed down to target depth in a matter of minutes. Visual observation of the MFR reactions (i.e. bubbling near the DAB during plunges as well as after plunges were completed from previously treated areas) could be seen across the entire treated area. Approximately 2 feet of swelling was observed within the E17 row during soil mixing in those cells.

Health and Safety Items Covered:

General site safety topics and review of the major JSA topics. Special attention to material handling and using a spotter while loading/ unloading totes with the fork lift during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall). Delivery truck driver onsite for chemical delivery and equipment salesperson from Caterpillar stopped by to check on the equipment.

Unforeseen Site Conditions:

List of Deliveries:

Received 16 totes of 34% hydrogen peroxide (~4,000 gallons or 38,400 lbs) and 2,000 lbs of stabilizing agents.

Other Comments (Work delays, inspections results, etc.):

Safety audit by Weston.

TREATMENT PROGRAM - MIXING VOLUME SUMMARY KMC Site, Conway, New Hampshire ISOTEC PROJECT #801991

DATE: 14-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 Volume (gal)	Reagent Flow Rate (gal/min)	Total Volume	Catalyst (lbs)	34% H2O2 (lbs)	Cell Dimensions
E17-S15	10:24	10:44	20	100	600	35.0	700	20.5	1920	10' x 10'
E17-S14	10:45	11:04	19	100	400	26.3	500	20.5	1920	10' x 10'
E17-S13	11:05	11:20	15	100	400	33.3	500	20.5	1920	10' x 10'
E17-S12	11:21	11:35	14	100	400	35.7	500	20.5	1920	10' x 10'
E17-S11	11:36	11:42	6	50	200	41.7	250	10.25	960	5' x 10'
E17-S10	11:43	11:51	8	50	200	31.3	250	10.25	960	5' x 10'
E17-S9	11:52	12:17	25	80	320	16.0	400	20.5	1920	10' x 10'
E17-S8	12:53	13:06	13	80	320	30.8	400	20.5	1920	10' x 10'
E17-S7	13:07	13:22	15	80	320	26.7	400	20.5	1920	10' x 10'
E17-S6	13:23	13:38	15	80	320	26.7	400	20.5	1920	10' x 10'
E17-S5	13:39	14:08	29	80	320	13.8	400	20.5	1920	10' x 10'
E15-S1	14:10	14:20	10	40	160	20.0	200	10.25	960	5' x 10'
E14-S1	15:05	15:19	14	40	160	14.3	200	10.25	960	5' x 10'
E15-S2	15:20	15:35	15	80	320	26.7	400	20.5	1920	10' x 10'
E14-S2	15:35	15:56	21	80	320	19.0	400	20.5	1920	10' x 10'
E13-S1	15:57	16:06	9	40	160	22.2	200	10.25	960	5' x 10'
E12-S1	16:06	16:16	10	40	160	20.0	200	10.25	960	5' x 10'
E13-\$2	16:16	16:33	17	80	320	23.5	400	20.5	1920	10' x 10'
DAY TOTAL/ AVERAGE				1300	5400		6700	307.5	28800	

ISOTEC				DAILY FIELD REPORT 11 Princess Rd, Suite A Lawrenceville, NJ 08648							
In-Situ Oxidative Technolog	ies							(609) 275-85			
Date:		15-Sep-15		Client:	Wes		Personnel:	Mike, Mark, Kevin, Bill L, Bill O, Cody, Dave			
Project:	KI	MC Site, Conwa	•	Job Number:			Weather:	Sunny, 59-83			
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other	
Personnel Names		Time	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)	
	Start	Stop	Job Site			Analysis			Time		
Mike Temple	7:00 AM	5:45 PM	0.25	0.25	0.5		7.5	0.75	0.5	0.25	
Mark Ratner	7:00 AM	5:15 PM	0.25	0.25	0.5	3.0	4.5	0.75		0.25	
Kevin O'Neal	7:00 AM	5:45 PM	0.25	0.25	0.5	4.0	3.5	0.75	0.5	0.25	
Bill Lang	7:00 AM	5:30 PM	0.25	0.25	0.5		7.5	1.0		0.25	
Bill Oberloier	7:00 AM	5:30 PM	0.25	0.25	0.5		7.5	1.0		0.25	
Dave Roe	7:00 AM	5:30 PM	0.25	0.25	0.5		7.5	1.0		0.25	
Cody Shell	7:00 AM	5:30 PM	0.25	0.25	0.5		7.5	1.0		0.25	
TOTAL HOURS =	1	10.00	TOTAL MIXING HOURS =					7.5	0		
Support Equipment and											
Services	Quantity	Hours	Catalyst	Volume	H2O2 Volume		Catalys	t Volume	H2O2 Volume		
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	
Pumps			E12-S2	100	E12-S2	320	E7-S2	100	E7-S2	320	
Generator			E11-S1	100	E11-S1	320	E6-S1	100	E6-S1	320	
Mixers			E10-S1	100	E10-S1	320	E6-S2	100	E6-S2	320	
Equipment Set			E11-S2	100	E11-S2	320	E5-S1	100	E5-S1	320	
Vehicle(s) utilized			E10-S2	100	E10-S2	320	E5-S2	100	E5-S2	320	
Raw Materials Used			E9-S1	100	E9-S1	320	E4-S1	100	E4-S1	320	
Powder Catalyst	410.0	lbs.	E9-S2	100	E9-S2	320	E4-S2	100	E4-S2	320	
Liquid Catalyst	2000	Gallons	E8-S1	100	E8-S1	320	E3-S1	100	E3-S1	320	
34% H2O2	4000	Gallons	E8-S2	100	E8-S2	320	E3-S2	100	E3-S2	320	
Diluted H2O2	6400	Gallons	E7-S1	100	E7-S1	320	E2-S1	100	E2-S1	320	
34% H2O2	38400	lbs.									
			TOTAL INJECT	ION VOLUME :	=	8400					

Daily safety meeting and review of safety audit topics mentioned by Steve O'Brien from the day before (Steve spoke with Tom Andrews (ISOTEC DHS) about updating the AHA for excavation protection. We submitted an updated version to Steve via email). Equipment preparation, received 16 totes of hydrogen peroxide, soil mixing into 20 cells, sampling of the down-gradient catch basin for iron and hydrogen peroxide levels.

Collected soil samples from 10 cells

treated the previous day (E13-S2, E14-S1, E15-S2, E17-S5, E17-S5, E17-S7, E17-S9, E17-S11, E17-S13 and E17-S14). Samples were collected from 3 depth intervals at approximatelly 9, 11 and 13 ft bgs. Samples from each depth showed similar charteristics from samples collected across the treated areas (9' samples were very wet and showed little to no solid soils; 11' samples were similar but occasionally showed a piece of clay within the samples; 13' samples were also very wet and showed some clay sediments mixed in which can be part of the deeper geologic matrix or just the heavier sediments that fell to the bottom of the cell during mixing operations). Pictures of select soil samples were taken by Erik during sample analysis and packaging.

Similar to Day 1 mixing, Day 3

mixing proceeded very well with the DAB being able to push down through the saturated soil matrix with little to no resistance and bubbling within the treated areas could be seen throughout the day. Approximately 1-2 feet of swelling was observed within the S1 and S2 rows during soil mixing in those cells.

Health and Safety Items Covered:

General site safety topics and review of safety audit topics. Added fire extinguishers to each of the rental machines that didn't come equipped with one. Mark and Kevin completed an online sfaty class on fork-lift operation and received a permit for operation. Special attention to watching the sides of the excavation areas for cracks/ sliding of materials during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall, Allie Balter). Delivery truck driver on-site for chemical delivery.

Unforeseen Site Conditions:

List of Deliveries:

Received 16 totes of 34% hydrogen peroxide (~4,000 gallons or 38,400 lbs) and 2,000 lbs of stabilizing agents.

Other Comments (Work delays, inspections results, etc.):

Drew Hoffman (NHDES) on-site to speak with local reporters about treatment program activities. Reporters snapped photos that were approved by Weston.

DATE: 15-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 Volume (gal)	Reagent Flow Rate (gal/min)	Total Volume	Catalyst (lbs)	34% H2O2 (lbs)	Cell Dimensions
E12-S2	7:46	8:03	17	100	320	24.7	420	20.5	1920	10' x 10'
E11-S1	8:03	8:20	17	100	320	24.7	420	20.5	1920	10' x 10'
E10-S1	8:38	8:59	21	100	320	20.0	420	20.5	1920	10' x 10'
E11-S2	9:00	9:18	18	100	320	23.3	420	20.5	1920	10' x 10'
E10-S2	9:19	9:39	20	100	320	21.0	420	20.5	1920	10' x 10'
E9-S1	10:25	10:45	20	100	320	21.0	420	20.5	1920	10' x 10'
E9-S2	10:46	11:08	22	100	320	19.1	420	20.5	1920	10' x 10'
E8-S1	11:09	11:31	22	100	320	19.1	420	20.5	1920	10' x 10'
E8-S2	11:43	12:04	21	100	320	20.0	420	20.5	1920	10' x 10'
E7-S1	12:05	12:22	17	100	320	24.7	420	20.5	1920	10' x 10'
E7-S2	12:22	12:49	27	100	320	15.6	420	20.5	1920	10' x 10'
E6-S1	13:17	13:36	19	100	320	22.1	420	20.5	1920	10' x 10'
E6-S2	13:37	13:57	20	100	320	21.0	420	20.5	1920	10' x 10'
E5-S1	13:58	14:18	20	100	320	21.0	420	20.5	1920	10' x 10'
E5-S2	14:19	14:39	20	100	320	21.0	420	20.5	1920	10' x 10'
E4-S1	14:40	14:57	17	100	320	24.7	420	20.5	1920	10' x 10'
E4-S2	14:58	15:16	18	100	320	23.3	420	20.5	1920	10' x 10'
E3-S1	15:20	15:40	20	100	320	21.0	420	20.5	1920	10' x 10'
E3-S2	15:41	16:03	22	100	320	19.1	420	20.5	1920	10' x 10'
E2-S1	16:05	16:25	20	100	320	21.0	420	20.5	1920	10' x 10'
DAY TOTAL/ AVERAGE				2000	6400	-	8400	410	38400	

ISOTEC				DAII	Y FIELD REP	11 Princess R	,				
				DAIL	T TIELD IKE	O		Lawrenceville	*		
In-Situ Oxidative Technolog	ies							(609) 275-85			
Date:		16-Sep-15		Client:	Wes		Personnel:		Kevin, Bill L, Bil	O, Cody, Dave	
Project:	KN	MC Site, Conwa		Job Number:			Weather:	Sunny, 58-86			
	_		Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other	
Personnel Names		Гime	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)	
	Start	Stop	Job Site			Analysis			Time		
Mike Temple	7:00 AM	5:45 PM	0.25	0.25	0.5		8.0	1.00	0.5	0.5	
Mark Ratner	7:00 AM	5:15 PM	0.25	0.25	0.5	2.0	6.0	1.00		0.5	
Kevin O'Neal	7:00 AM	5:45 PM	0.25	0.25	0.5	3.0	5.0	1.00	0.5	0.5	
Bill Lang	7:00 AM	5:15 PM	0.25	0.25	0.5		8.0	1.0		0.5	
Bill Oberloier	7:00 AM	5:15 PM	0.25	0.25	0.5		8.0	1.0		0.5	
Dave Roe	7:00 AM	7:00 AM 5:15 PM		0.25	0.5		8.0	1.0		0.5	
Cody Shell	7:00 AM	5:15 PM	0.25	0.25	0.5		8.0	1.0		0.5	
TOTAL HOURS =	9	9.75	TOTA	L MIXING HOL	MIXING HOURS =		•	8.0	0		
Support Equipment and											
Services	Quantity	Hours	Catalyst	Volume	H2O2 V	olume	Catalys	t Volume	ne H2O2 Volume		
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	
Pumps			E1-S1	100	E1-S1	320	E16-S8	100	E16-S8	320	
Generator			E2-S2	100	E2-S2	320	E16-S7	100	E16-S7	320	
Mixers			E1-S2	100	E1-S2	320	E16-S6	100	E16-S6	320	
Equipment Set			E16-S15	50	E16-S15	160	E16-S5	100	E16-S5	320	
Vehicle(s) utilized			E16-S14	100	E16-S14	320	E16-S4	100	E16-S4	320	
Raw Materials Used			E16-S13	100	E16-S13	320	E16-S3	100	E16-S3	320	
Powder Catalyst	410.0	lbs.	E16-S12	100	E16-S12	320	E1-S3	50	E1-S3	160	
Liquid Catalyst	2000	Gallons	E16-S11	100	E16-S11	320	E2-S3	100	E2-S3	320	
34% H2O2	4000	Gallons	E16-S10	100	E16-S10	320	E3-S3	100	E3-S3	320	
Diluted H2O2	6400	Gallons	E16-S9	100	E16-S9	320	E4-S3	100	E4-S3	320	
34% H2O2	38400	lbs.	E5-S3	100	E5-S3	320					
			TOTAL INJECT	ION VOLUME :	=	8400					

Daily safety meeting and discussed safety while working around the excavation areas. Bill Oberloier from LTC has the required competent person training for working around excavations (certificate emailed to steve O'Brien on Wednesday night). Equipment preparation, received 16 totes of hydrogen peroxide (returned 35 totes), soil mixing into 21 cells, sampling of the down-gradient catch basin for iron and hydrogen peroxide levels. Samples collected from cells E17-S11, E17-S13 and E17-S14 came back below site sampling criteria levels. Collected soil samples from 10 cells treated the previous day (E11-S2, E10-S1, E9-S2, E8-S1, E7-S1, E6-S2, E5-S1, E5-S2, E3-S1 and E3-S2). Samples were collected from 2 depth intervals (at approximatelly 9, 11 and 13 ft bgs) at select cells to confirm adequate mixing occurred. Samples apperaed to be failrly consistent with one another and looked visually well mixed.

very well with the DAB being able to push down through the saturated soil matrix with little to no resistance and bubbling within the treated areas could be seen throughout the day. Approximately 1-2 feet of swelling was observed within treated rows during soil mixing. Cells identified by Weston as having historical soil impacts (E4-S3 and E5-S3) were mixed longer than other treated cells. Cell E9-S2 was remixed (withouth extra reagent) in the morning at the request of Weston.

Health and Safety Items Covered:

General site safety topics and review of working around the excavation areas during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall, Allie Balter). Delivery truck driver on-site for chemical delivery.

Unforeseen Site Conditions:

List of Deliveries:

Received 16 totes of 34% hydrogen peroxide (~4,000 gallons or 38,400 lbs).

Other Comments (Work delays, inspections results, etc.):

Article in the Conway Daily Sun newspaper about the project.

DATE: 16-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 Volume (gal)	Reagent Flow Rate (gal/min)	Total Volume	Catalyst (lbs)	34% H2O2 (lbs)	Cell Dimensions
E1-S1	7:40	8:10	30	100	320	14.0	420	20.5	1920	10' x 10'
E2-S2	8:10	8:36	26	100	320	16.2	420	20.5	1920	10' x 10'
E1-S2	8:38	9:03	25	100	320	16.8	420	20.5	1920	10' x 10'
E16-S15	9:06	9:21	15	50	160	14.0	210	10.25	960	5' x 10'
E16-S14	9:22	9:46	24	100	320	17.5	420	20.5	1920	10' x 10'
E16-S13	9:46	10:07	21	100	320	20.0	420	20.5	1920	10' x 10'
E16-S12	10:07	10:28	21	100	320	20.0	420	20.5	1920	10' x 10'
E16-S11	10:28	10:28	20	100	320	21.0	420	20.5	1920	10' x 10'
E16-S10	10:48	11:08	20	100	320	21.0	420	20.5	1920	10' x 10'
E16-S9	11:09	11:28	19	100	320	22.1	420	20.5	1920	10' x 10'
E16-S8	11:28	11:48	20	100	320	21.0	420	20.5	1920	10' x 10'
E16-S7	11:48	12:08	20	100	320	21.0	420	20.5	1920	10' x 10'
E16-S6	12:33	12:54	21	100	320	20.0	420	20.5	1920	10' x 10'
E16-S5	12:54	13:18	24	100	320	17.5	420	20.5	1920	10' x 10'
E16-S4	13:18	13:43	25	100	320	16.8	420	20.5	1920	10' x 10'
E16-S3	13:43	14:08	25	100	320	16.8	420	20.5	1920	10' x 10'
E1-S3	14:15	14:30	15	50	160	14.0	210	10.25	960	5' x 10'
E2-S3	14:30	14:54	24	100	320	17.5	420	20.5	1920	10' x 10'
E3-S3	14:54	15:19	25	100	320	16.8	420	20.5	1920	10' x 10'
E4-S3	15:20	15:50	30	100	320	14.0	420	20.5	1920	10' x 10'
E5-S3	15:50	16:20	30	100	320	14.0	420	20.5	1920	10' x 10'
DAY TOTAL/ AVERAGE			_	2000	6400		8400	410	38400	

ISOTEC				DAIL	Y FIELD REP	ORT		11 Princess F Lawrencevill	e, NJ 08648	
In-Situ Oxidative Technologi	es							(609) 275-85		
Date:		17-Sep-15		Client:	Wes		Personnel:		Kevin, Bill L, Bill	O, Cody, Dave
Project:	KN	AC Site, Conwa		Job Number:			Weather:	Sunny, 58-86		
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other
Personnel Names		ime	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)
	Start	Stop	Job Site			Analysis			Time	
Mike Temple	7:00 AM	7:45 PM	0.25	0.25	0.75		9.5	1.00	1.0	0.5
Mark Ratner	7:00 AM	6:45 PM	0.25	0.25	0.75	2.0	7.5	1.00		0.5
Kevin O'Neal	7:00 AM	7:45 PM	0.25	0.25	0.75	4.0	5.5	1.00	1.0	0.5
Bill Lang	7:00 AM	6:45 PM	0.25	0.25	0.75		9.5	1.0		0.5
Bill Oberloier	7:00 AM	6:45 PM	0.25	0.25	0.75		9.5	1.0		0.5
Dave Roe	7:00 AM	6:45 PM	0.25	0.25	0.75		9.5	1.0		0.5
Cody Shell	7:00 AM	6:45 PM	0.25	0.25	0.75		9.5	1.0		0.5
TOTAL HOURS =	1	1.25	TOTA	L MIXING HOU	JRS =			9.5	50	
Support Equipment and Services	Quantity	Hours	Catalyst	Volume	H2O2 V	olume	Catalys	t Volume	H2O	2 Volume
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume
Pumps			E6-S3	100	E6-S3	320	E15-S8	50	E15-S8	160
Generator			E7-S3	100	E7-S3	320	E15-S9	50	E15-S9	160
Mixers			E8-S3	100	E8-S3	320	E15-S10	100	E15-S10	320
Equipment Set			E9-S3	100	E9-S3	320	E15-S11	100	E15-S11	320
Vehicle(s) utilized			E10-S3	100	E10-S3	320	E15-S12	100	E15-S12	320
Raw Materials Used			E11-S3	100	E11-S3	320	E15-S13	100	E15-S13	320
Powder Catalyst	445.9	lbs.	E12-S3	100	E12-S3	320	E14-S12	50	E14-S12	160
Liquid Catalyst	2175	Gallons	E13-S3	100	E13-S3	320	E14-S13	50	E14-S13	160
34% H2O2	4350	Gallons	E14-S3	100	E14-S3	320	E15-S14	100	E15-S14	320
Diluted H2O2	6960	Gallons	E15-S3	100	E15-S3	320	E14-S14	25	E14-S14	80
34% H2O2	41760	lbs.	E12-S1 (R)	50	E12-S1 (R)	160	E13-S2 (R)	100	E13-S2 (R)	320
			E12-S2 (R)	100	E12-S2 (R)	320	E14-S1 (R)	50	E14-S1 (R)	160
			E13-S1 (R)	50	E13-S1 (R)	160	E14-S2 (R)	100	E14-S2 (R)	320
			TOTAL INJECT	ION VOLUME :	=	9135				

Daily safety meeting. Equipment preparation, received 16 totes of hydrogen peroxide, soil mixing into 20 cells and re-mixing into 6 cells. Sampling of the down-gradient catch basin for iron and hydrogen peroxide levels. Samples collected from cells E13-S2 and E14-S1 came back above site criteria and were subsequently re-mixed. All other samples collected during previous days came back below site sampling criteria levels. Collected soil samples from 8 cells treated the previous day (E4-S3, E5-S3, E16-S14, E16 S11, E1-S2, E16-S6, E16-S9 and E16-S3). Samples were collected from 2 depth intervals (at approximately 11 and 13 ft bgs) at select cells to confirm adequate mixing occurred. Samples appeared to be fairly consistent with one another and looked visually well mixed. Similar to previous days, mixing proceeded very well with the DAB being able to push down through the saturated soil matrix with little to no resistance and bubbling within the treated areas could be seen throughout the day. Approximately 1-2 feet of swelling was observed within treated rows during soil mixing. Cells identified by Weston as having historical soil impacts (E13-S3 and E14-S3) were mixed longer than other treated cells.

Health and Safety Items Covered:

General site safety topics during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall, Allie Balter). Delivery truck driver on-site for chemical delivery.

Unforeseen Site Conditions:

List of Deliveries:

Received 16 totes of 34% hydrogen peroxide (~4,000 gallons or 38,400 lbs).

Other Comments (Work delays, inspections results, etc.):

Re-mixed cells E12-S1, E12-S2, E13-S1, E13-S2, E14-S1 and E14-S2.

DATE: 17-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 Volume (gal)	Reagent Flow Rate (gal/min)	Total Volume	Catalyst (lbs)	34% H2O2 (lbs)	Cell Dimensions
E6-S3	7:58	8:22	24	100	320	17.5	420	20.5	1920	10' x 10'
E7-S3	8:22	8:48	26	100	320	16.2	420	20.5	1920	10' x 10'
E8-S3	8:51	9:20	29	100	320	14.5	420	20.5	1920	10' x 10'
E9-S3	9:21	9:47	26	100	320	16.2	420	20.5	1920	10' x 10'
E10-S3	9:48	10:17	29	100	320	14.5	420	20.5	1920	10' x 10'
E11-S3	10:18	10:42	24	100	320	17.5	420	20.5	1920	10' x 10'
E12-S3	10:43	11:06	23	100	320	18.3	420	20.5	1920	10' x 10'
E13-S3	11:07	11:37	30	100	320	14.0	420	20.5	1920	10' x 10'
E14-S3	11:37	12:06	29	100	320	14.5	420	20.5	1920	10' x 10'
E15-S3	12:33	12:59	26	100	320	16.2	420	20.5	1920	10' x 10'
E15-S8	13:02	13:14	12	50	160	17.5	210	10.25	960	5' x 10'
E15-S9	13:14	13:26	12	50	160	17.5	210	10.25	960	5' x 10'
E15-S10	13:27	13:50	23	100	320	18.3	420	20.5	1920	10' x 10'
E15-S11	13:50	14:11	21	100	320	20.0	420	20.5	1920	10' x 10'
E15-S12	14:11	14:37	26	100	320	16.2	420	20.5	1920	10' x 10'
E15-S13	14:37	14:59	22	100	320	19.1	420	20.5	1920	10' x 10'
E14-S12	14:59	15:11	12	50	160	17.5	210	10.25	960	5' x 10'
E14-S13	15:11	15:23	12	50	160	17.5	210	10.25	960	5' x 10'
E15-S14	15:23	15:50	27	100	320	15.6	420	20.5	1920	10' x 10'
E14-S14	15:50	15:58	8	25	80	13.1	105	5.125	480	5' x 5'
E12-S1 (Re-mix)	17:47	17:59	12	50	160	17.5	210	10.25	960	5' x 10'
E12-S2 (Re-mix)	17:24	17:47	23	100	320	18.3	420	20.5	1920	10' x 10'
E13-S1 (Re-mix)	17:14	17:24	10	50	160	21.0	210	10.25	960	5' x 10'
E13-S2 (Re-mix)	16:50	17:14	24	100	320	17.5	420	20.5	1920	10' x 10'
E14-S1 (Re-mix)	16:37	16:50	13	50	160	16.2	210	10.25	960	5' x 10'
E14-S2 (Re-mix)	16:06	16:37	31	100	320	13.5	420	20.5	1920	10' x 10'
DAY TOTAL/ AVERAGE				2175	6960		9135	445.9	41760	

ISOTEC In-Situ Oxidative Technolog	gies			DAIL	Y FIELD REP	ORT		11 Princess F Lawrencevill (609) 275-85	e, NJ 08648		
Date:		18-Sep-15		Client:	Wes	ton	Personnel:	Mike, Mark,	Kevin, Bill L, Bil	O, Cody, Dave	
Project:	KI	MC Site, Conwa	ıy, NH	Job Number:	8019	991	Weather:	Sunny, 52-85	5		
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other	
Personnel Names		Time	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)	
	Start	Stop	Job Site			Analysis			Time		
Mike Temple	7:00 AM	6:00 PM	0.25	0.25	0.75		8.5	0.5	0.5	0.5	
Mark Ratner	7:00 AM	5:30 PM	0.25	0.25	0.75	2.0	6.5	0.5		0.5	
Kevin O'Neal	7:00 AM	6:00 PM	0.25	0.25	0.75	4.0	4.5	0.5	0.5	0.5	
Bill Lang	7:00 AM	5:30 PM	0.25	0.25	0.75		8.5	0.5		0.5	
Bill Oberloier	7:00 AM	5:30 PM		0.5							
Dave Roe	7:00 AM	5:30 PM	0.25	0.25	0.75		8.5	0.5		0.5	
Cody Shell	7:00 AM	5:30 PM	0.25	0.25	0.75		8.5	0.5		0.5	
TOTAL HOURS =	1	10.00	TOTA	L MIXING HOU	JRS =			8.5	0		
Support Equipment and											
Services	Quantity	Hours		Volume	H2O2 V			t Volume		2 Volume	
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	
Pumps			E2-S5	50	E2-S5	160	E9-S5	50	E9-S5	160	
Generator			E2-S4	100	E2-S4	320	E10-S5	50	E10-S5	160	
Mixers			E3-S4	100	E3-S4	320	E11-S4	100	E11-S4	320	
Equipment Set			E4-S4	100	E4-S4	320	E12-S4	100	E12-S4	320	
Vehicle(s) utilized			E5-S4	100	E5-S4	320	E13-S4	100	E13-S4	320	
Raw Materials Used			E6-S4	100	E6-S4	320	E14-S4	100	E14-S4	320	
Powder Catalyst	379.3	lbs.	E7-S4	100	E7-S4	320	E15-S4	100	E15-S4	320	
Liquid Catalyst	1850	Gallons	E8-S4	100	E8-S4	320	E3-S5	100	E3-S5	320	
34% H2O2	3700	Gallons	E9-S4	100	E9-S4	320	E4-S5	100	E4-S5	320	
Diluted H2O2	5920	Gallons	E10-S4	100	E10-S4	320	E5-S5	100	E5-S5	320	
34% H2O2	35520	lbs.		0		0		0		0	
				0		0		0		0	
<u>l</u>				0		0		0		0	
			TOTAL INJECT	ION VOLUME :	=	7770					

Daily safety meeting. Equipment preparation, received 26 totes of hydrogen peroxide (returned 32 empty totes), soil mixing into 20 cells. Sampling of the down-gradient catch basin for iron and hydrogen peroxide levels. Each sample collected the previous day came back below site criteria. Collected soil samples from 10 cells treated the previous day (E14-S1, E14-S2, E10-S3, E13-S3, E14-S12, E14-S3, E15-S10, E15-S10, E15-S14 and E15-S3). Samples were collected from 2 depth intervals (at approximately 11 and 13 ft bgs) at select cells to confirm adequate mixing occurred. Samples appeared to be fairly consistent with one another and looked visually well mixed. Similar to previous days, mixing proceeded very well with the DAB being able to push down through the saturated soil matrix with little to no resistance and bubbling within the treated areas could be seen throughout the day. Approximately 1-2 feet of swelling was observed within treated rows during soil mixing. Cells identified by Weston as having historical soil impacts (E4-S4, E5-S4, E3-S5, E4-S5, E5-S5, E10-S4, E11-S4, E13-S4, E14-S4) were mixed longer than other treated cells.

Health and Safety Items Covered:

General site safety topics during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall, Allie Balter, Vinnie DelloRusso) and EPA (Darryl Luce). Delivery truck drivers on-site for chemical delivery.

Unforeseen Site Conditions:

List of Deliveries:

Received 26 totes of 34% hydrogen peroxide (~4,000 gallons or 62,400 lbs). Bathroom was serviced.

Other Comments (Work delays, inspections results, etc.):

DATE: 18-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 Volume (gal)	Reagent Flow Rate (gal/min)	Total Volume	Catalyst (lbs)	34% H2O2 (lbs)	Cell Dimensions
E2-S5	7:56	8:06	10	50	160	21.0	210	10.25	960	5' x 10'
E2-S4	8:06	8:37	31	100	320	13.5	420	20.5	1920	10' x 10'
E3-S4	8:50	9:15	25	100	320	16.8	420	20.5	1920	10' x 10'
E4-S4	9:15	9:46	31	100	320	13.5	420	20.5	1920	10' x 10'
E5-S4	9:47	10:16	29	100	320	14.5	420	20.5	1920	10' x 10'
E6-S4	10:16	10:37	21	100	320	20.0	420	20.5	1920	10' x 10'
E7-S4	10:37	11:02	25	100	320	16.8	420	20.5	1920	10' x 10'
E8-S4	11:02	11:26	24	100	320	17.5	420	20.5	1920	10' x 10'
E9-S4	11:26	11:47	21	100	320	20.0	420	20.5	1920	10' x 10'
E10-S4	11:47	12:13	26	100	320	16.2	420	20.5	1920	10' x 10'
E9-S5	12:40	12:50	10	50	160	21.0	210	10.25	960	5' x 10'
E10-S5	12:50	13:01	11	50	160	19.1	210	10.25	960	5' x 10'
E11-S4	13:01	13:32	31	100	320	13.5	420	20.5	1920	10' x 10'
E12-S4	13:34	13:57	23	100	320	18.3	420	20.5	1920	10' x 10'
E13-S4	13:57	14:26	29	100	320	14.5	420	20.5	1920	10' x 10'
E14-S4	14:26	14:56	30	100	320	14.0	420	20.5	1920	10' x 10'
E15-S4	14:56	15:18	22	100	320	19.1	420	20.5	1920	10' x 10'
E3-S5	15:19	15:49	30	100	320	14.0	420	20.5	1920	10' x 10'
E4-S5	15:50	16:18	28	100	320	15.0	420	20.5	1920	10' x 10'
E5-S5	16:18	16:47	29	100	320	14.5	420	20.5	1920	10' x 10'
DAY TOTAL/ AVERAGE				1850	5920		7770	379.3	35520	

ISOTEC In-Situ Oxidative Technologi	ies			DAIL	Y FIELD REP		11 Princess R Lawrenceville (609) 275-856	, NJ 08648		
Date:		19-Sep-15		Client:	Wes	ton	Personnel:	Mike, Mark,	Kevin, Bill L, Bil	O, Cody, Dave
Project:	KI	VIC Site, Conwa	ıy, NH	Job Number:	8019	991	Weather:	Sunny, 55-85	,	•
-			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other
Personnel Names	7	Гime	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)
	Start	Stop	Job Site			Analysis			Time	
Mike Temple	7:30 AM	1:00 PM	0.25	0.25	0.75	1.0	2.5	0.5	0.5	0.5
Mark Ratner	7:30 AM	1:00 PM	0.25	0.25	0.75	1.0	2.5	0.5		
Kevin O'Neal	7:30 AM	1:00 PM	0.25	0.25	0.75	1.0	2.5	0.5		
Bill Lang	7:30 AM	1:00 PM	0.25	0.25	0.75		4.25	0.5		0.5
Bill Oberloier	7:30 AM	1:00 PM	0.25	0.25	0.75		4.25	0.5		0.5
Dave Roe	7:30 AM	1:00 PM	0.25	0.25	0.75		4.25	0.5		0.5
Cody Shell	7:30 AM	1:00 PM	0.25	0.25	0.75		4.25	0.5		0.5
TOTAL HOURS		5.50	TOTA	L MANUALG LIGH	IDC		<u> </u>		_	
TOTAL HOURS = Support Equipment and		5.50	1012	L MIXING HOU	JKS =			4.2	5	
Services	Quantity	Hours	Catalyst	Volume	H2O2 V	olume	Catalys	t Volume	H2O	2 Volume
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume
Pumps			E6-S5	100	E6-S5	320		0		0
Generator			E7-S5	100	E7-S5	320		0		0
Mixers			E8-S5	100	E8-S5	320		0		0
Equipment Set			E4-S6	50	E4-S6	160		0		0
Vehicle(s) utilized			E5-S6	50	E5-S6	160		0		0
Raw Materials Used			E6-S6	50	E6-S6	160		0		0
Powder Catalyst	189.6	lbs.	E13-S5	100	E13-S5	320		0		0
Liquid Catalyst	925	Gallons	E12-S5	25	E12-S5	80		0		0
34% H2O2	1850	Gallons	E14-S5	100	E14-S5	320		0		0
Diluted H2O2	2960	Gallons	E14-S6	50	E14-S6	160		0		0
34% H2O2	17760	lbs.	E15-S5	100	E15-S5	320		0		0
			E15-S6	100	E15-S6	320		0		0
				0		0		0		0
			TOTAL INJECT	ION VOLUME :	=	3885				

Daily safety meeting. Equipment preparation, soil mixing into 12 cells. Sampling of the down-gradient catch basin for iron and hydrogen peroxide levels. Each sample collected the previous day came back below site criteria. Collected soil samples from 12 cells treated the previous day (E2-S4, E3-S5, E5-S4, E14-S4, E4-S5, E15-S4, E5-S5, E7-S4, E10-S4, E11-S4, E13-S4, and E4-S4). Samples were collected from 1 depth interval (at approximately 13 ft bgs) at select cells to confirm adequate mixing occurred.

Health and Safety Items Covered:

General site safety topics during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall, Allie Balter).

Unforeseen Site Conditions:

List of Deliveries:

Other Comments (Work delays, inspections results, etc.):

DATE: 19-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 Volume (gal)	Reagent Flow Rate (gal/min)	Total Volume	Catalyst (lbs)	34% H2O2 (lbs)	Cell Dimensions
E6-S5	8:45	9:15	30	100	320	14.0	420	20.5	1920	10' x 10'
E7-S5	9:25	9:45	20	100	320	21.0	420	20.5	1920	10' x 10'
E8-S5	9:45	10:15	30	100	320	14.0	420	20.5	1920	10' x 10'
E4-S6	8:19	8:32	13	50	160	16.2	210	10.25	960	5' x 10'
E5-S6	8:32	8:45	13	50	160	16.2	210	10.25	960	5' x 10'
E6-S6	9:15	9:25	10	50	160	21.0	210	10.25	960	5' x 10'
E13-S5	10:25	10:47	22	100	320	19.1	420	20.5	1920	10' x 10'
E12-S5	10:15	10:25	10	25	80	10.5	105	5.125	480	5' x 5'
E14-S5	10:47	11:10	23	100	320	18.3	420	20.5	1920	10' x 10'
E14-S6	11:10	11:20	10	50	160	21.0	210	10.25	960	5' x 10'
E15-S5	11:20	11:40	20	100	320	21.0	420	20.5	1920	10' x 10'
E15-S6	11:40	12:05	25	100	320	16.8	420	20.5	1920	10' x 10'
DAY TOTAL/ AVERAGE				925	2960		3885	189.6	17760	

ISOTEC				kd, Suite A e, NJ 08648						
In-Situ Oxidative Technologi	es							(609) 275-85		
Date:		21-Sep-15		Client:	Wes		Personnel:		Bill L, Bill O, Co	dy, Dave
Project:	KN	/IC Site, Conwa	•	Job Number:		991	Weather:	Overcast, 45		
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other
Personnel Names	1	ime	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)
	Start	Stop	Job Site			Analysis			Time	
Kevin O'Neal	7:00 AM	6:00 PM		0.25	8.25	1.00	0.50	0.50	0.50	0.50
Mark Ratner	7:00 AM	6:00 PM		0.25	8.25	1.00	0.50	0.50		0.50
Bill Lang	7:00 AM	2:00 PM		0.25	4.75	1.00	0.50	0.50		0.50
Bill Oberloier	7:00 AM	6:00 PM		0.25	8.25	1.00	0.50	0.50		0.50
Dave Roe	7:00 AM	2:00 PM		0.25	4.75	1.00	0.50	0.50		0.50
Cody Shell	7:00 AM 2:00 PM			0.25	4.75	1.00	0.50	0.50		0.50
TOTAL HOURS =	1	1.00	TOTA	L MIXING HOU	JRS =		<u> </u>	0.5	0	
Support Equipment and										
Services	Quantity	Hours	Catalyst	Volume	17% H2O2	2 Volume	Catalyst Volume		17% H2	2O2 Volume
Compressor	-		Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume
Pumps			E13-S4	100	E13-S4	320	0	0	0	0
Generator			0	0	0	0	0	0	0	0
Mixers			0	0	0	0	0	0	0	0
Equipment Set			0	0	0	0	0	0	0	0
Vehicle(s) utilized			0	0	0	0	0	0	0	0
Raw Materials Used			0	0	0	0	0	0	0	0
Powder Catalyst	20.5	lbs.	0	0	0	0	0	0	0	0
Liquid Catalyst	100	Gallons	0	0	0	0	0	0	0	0
34% H2O2	200	Gallons	0	0	0	0	0	0	0	0
Diluted H2O2	320	Gallons	0	0	0	0	0	0	0	0
34% H2O2	1902	lbs.								
			TOTAL INJECT	ION VOLUME :		420				

Daily safety meeting. Equipment preparation, re-mixing into 1 cell (E13-S4). Sampling of the down-gradient catch basin for iron and hydrogen peroxide levels. Collected a total of 6 soil samples from 4 cells treated on Saturday (E5-S6, E8-S5, E13-S5 and E15-S6), 1 cell treated today 9/21 (E13-S4) and a second sample of E8-S5 collected at ~17:00 to replace the damaged sample sent to the lab earlier in the day. Samples were collected from 1 depth interval (at approximately 13 ft bgs) at select cells to confirm adequate mixing occurred. Removed portions of the perimeter fence and silt fence to allow the bulldozer to push in bermed (clean/ dry overburden soils) soils back into the excavation area so that the eastern road was opened up again. Re-installed silt fence and preimeter fence.

Health and Safety Items Covered:

General site safety topics during the daily safety meeting between ISOTEC (Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall).

Unforeseen Site Conditions:

List of Deliveries:

Bathroom serviced.

Other Comments (Work delays, inspections results, etc.):

DATE: 21-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)		H2O2 (17%) Volume (gal)		Total Volume	Comments
E13-S4	12:38	13:12	34	100	320	12.35	420	
DAY TOTAL/ AVERAGE				100	320		420	

ISOTEC				DAII	Y FIELD REP	∩PT		11 Princess R	Rd, Suite A	
				DAIL	I FIELD KEP	OKI		Lawrenceville	e, NJ 08648	
In-Situ Oxidative Technologi	ies							(609) 275-85		
Date:		22-Sep-15		Client:	Wes	ton	Personnel:	Kevin, Mark,	Bill L, Bill O, Co	dy, Dave
Project:	KN	/IC Site, Conwa	ıy, NH	Job Number:	8019	991	Weather:	Overcast, 45	-70	
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other
Personnel Names	1	<u> Time</u>	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)
	Start	Stop	Job Site			Analysis			Time	
Kevin O'Neal	7:00 AM	6:15 PM		0.25	9.75			0.50	0.25	0.50
Mark Ratner	7:00 AM	6:15 PM		0.25	9.75			0.50		0.50
Bill Lang	7:00 AM	6:15 PM		0.25	9.75			0.50		0.50
Bill Oberloier	7:00 AM	6:15 PM		0.25	9.75	0.50		0.50		
Dave Roe	7:00 AM	6:15 PM		0.25	0.50		0.50			
Cody Shell	7:00 AM	6:15 PM		0.25	9.75			0.50		0.50
TOTAL HOURS =	1	1.00	TOTA	L MIXING HOL	IPS -			0.0	10	
Support Equipment and		1.00	1017	L WIIXING 1100	761.5					
Services	Quantity	Hours	Catalyst	Volume	17% H2O2	2 Volume	Catalys	t Volume	17% H2	2O2 Volume
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume
Pumps			0	0	0	0	0	0	0	0
Generator			0	0	0	0	0	0	0	0
Mixers			0	0	0	0	0	0	0	0
Equipment Set			0	0	0	0	0	0	0	0
Vehicle(s) utilized			0	0	0	0	0	0	0	0
Raw Materials Used			0	0	0	0	0	0	0	0
Powder Catalyst		lbs.	0	0	0	0	0	0	0	0
Liquid Catalyst		Gallons	0	0	0	0	0	0	0	0
34% H2O2		Gallons	0	0	0	0	0	0	0	0
Diluted H2O2		Gallons	0	0	0	0	0	0	0	0
34% H2O2		lbs.								
	ĺ		TOTAL INJECT	ION VOLUME :	<u> </u> =	0				

Daily safety meeting. Decon equipment, installed the rest of the snow fence, cleaned up trash around the site, loaded all of Lang's equipment and machinery for demobilization tomorrow morning (9/23).

Health and Safety Items Covered:

General site safety topics during the daily safety meeting between ISOTEC (Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall).

Unforeseen Site Conditions:

List of Deliveries:

None

Other Comments (Work delays, inspections results, etc.):

ISOTEC				DAIL	Y FIELD REP	ORT		11 Princess F Lawrencevill (609) 275-85	e, NJ 08648	
In-Situ Oxidative Technologi	ies	22 Com 45		ol: ·	14/		D 1			de Barra
Date:		23-Sep-15		Client:	Wes		Personnel:		, Bill L, Bill O, Co	dy, Dave
Project:	KN	AC Site, Conwa		Job Number:			Weather:	Overcast, 45		
	_		Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other
Personnel Names		Time	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)
	Start	Stop	Job Site			Analysis			Time	
Kevin O'Neal	7:00 AM	1:30 PM		0.25	5.25			0.50		0.50
Mark Ratner	7:00 AM	1:30 PM		0.25	5.25			0.50		0.50
Bill Lang	7:00 AM	9:00 AM		0.25	1.25			0.50		
Bill Oberloier	7:00 AM	9:00 AM		0.25	1.25			0.50		
Dave Roe	7:00 AM	9:00 AM		0.25	1.25			0.50		
Cody Shell	7:00 AM	9:00 AM		0.25	1.25			0.50		
TOTAL HOURS =		1	TOTA	L AL MIXING HOU	JRS =		L	0.0	00	
Support Equipment and										
Services	Quantity	Hours	Catalyst	Volume	17% H2O2	2 Volume	Catalys	t Volume	17% H2	2O2 Volume
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume
Pumps			0	0	0	0	0	0	0	0
Generator			0	0	0	0	0	0	0	0
Mixers			0	0	0	0	0	0	0	0
Equipment Set			0	0	0	0	0	0	0	0
Vehicle(s) utilized			0	0	0	0	0	0	0	0
Raw Materials Used			0	0	0	0	0	0	0	0
Powder Catalyst		lbs.	0	0	0	0	0	0	0	0
Liquid Catalyst		Gallons	0	0	0	0	0	0	0	0
34% H2O2		Gallons	0	0	0	0	0	0	0	0
Diluted H2O2		Gallons	0	0	0	0	0	0	0	0
34% H2O2		lbs.								
			TOTAL INJECT	ION VOLUME	<u> </u>	0				

Daily safety meeting. Decon equipment, installed the rest of the snow fence, cleaned up trash around the site, loaded all of Lang's equipment and machinery for demobilization. Packed remaining equipment in Box truck. Loaded empty totes and 6 remaining totes of peroxide on truck.

Health and Safety Items Covered:

General site safety topics during the daily safety meeting between ISOTEC (Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall).

Unforeseen Site Conditions:

List of Deliveries:

Empty tote and extra peroxide pickup.

Other Comments (Work delays, inspections results, etc.):

Phone (989) 435-9864 Fax (989) 435-4311

www.langtool.com bill@langtool.com

September 14, 2015

Metering Plunge Point Coordinates

Easting Northing Elevation ,1126162.134898,537277.287358,446.898010 ,1126159.545314,537281.615606,446.858002 ,1126157.968069,537274.354449,446.641083 ,1126154.704453,537278.718240,446.833954 ,1126156.505243,537285.795285,446.842529,1126152.843938,537289.709883,446.611755 ,1126152.191434,537283.365100,446.935455 ,1126149.124242,537287.292540,446.671844 ,1126150.026321,537294.087929,446.742798 ,1126146.732078,537291.153762,446.753998 ,1126147.477845,537297.859040,446.776306 ,1126143.604348,537295.030919,446.864258 ,1126140.661822,537299.773595,446.901459 ,1126144.985707,537302.610048,446.436523 ,1126137.751252,537303.890592,446.919189 ,1126141.817278,537306.263669,446.488464 ,1126134.900115,537307.558927,446.808807 ,1126131.911773,537311.807611,446.723541 ,1126128.949903,537315.874084,446.859802 ,1126126.273698,537319.546096,446.928223 ,1126123.612128,537323.419553,446.910583 ,1126127.299855,537326.160409,446.436951 ,1126120.234609,537328.111493,446.699524 ,1126124.372028,537330.368276,446.747986 ,1126117.692199,537332.203008,446.690247

Easting Northing Elevation ,1126114.648772,537336.248685,446.806885 ,1126121.574710,537334.337911,446.884399 ,1126118.342515,537338.552076,446.720398 .1126111.798995,537340.063987,446.636902 ,1126116.026349,537342.180837,446.535126 ,1126108.820560,537344.216661,446.795471 ,1126112.932518,537346.720163,446.751251 ,1126105.935026,537347.955152,447.425629 ,1126106.226817,537347.329684,446.544556 ,1126109.842525,537350.994385,446.571014 ,1126102.928404,537352.040450,446.834381 ,1126106.576251,537355.196580,446.863708 ,1126100.326705,537355.806579,446.730164 ,1126104.737243,537358.517858,446.767670 ,1126096.786195,537360.377118,446.878021 ,1126101.127601,537363.430043,446.541992 ,1126064.488410,537379.919719,446.639496 ,1126060.562640,537377.286796,446.674072 ,1126056.730030,537374.168391,446.732910 ,1126051.916047,537371.327846,447.028076 ,1126053.015170,537371.606342,446.799500 ,1126067.781642,537375.717887,446.623535 ,1126063.756478,537372.562217,446.421143 ,1126070.056260,537372.515956,446.809082 ,1126066.010679,537368.841033,446.586456

Easting Northing Elevation ,1126059.321531,537370.082641,446.883911 ,1126054.977889,537367.587081,446.794006 ,1126062.239631,537365.760360,446.634705 ,1126058.531968,537363.113280,446.596161 ,1126048.019169,537368.469951,447.138000,1126043.617692,537365.518491,447.105988 ,1126043.557357,537365.219608,446.688446, 1126039.936085, 537362.765374, 446.695435,1126036.074702,537359.595636,446.778839 ,1126050.736428,537364.275428,446.420746 ,1126047.497759,537361.193349,446.605652 ,1126054.142539,537360.079404,446.896606 ,1126049.908060,537357.443822,446.768311

Parcix St 1,902	117	E16	E15	E14	E13	E12	E11	E10	E9	E8	E7	E6	E5	E4	E3	E2	El	
Catalyst S1 80 80 80 80 80 80 80 80 80 80 80 80 80	0			-61	-61	- 61		Later Control of the	The second secon		The same of	NAME OF TAXABLE PARTY.	1000000	- 1000	A CONTRACTOR OF THE PARTY OF TH		The second secon	
Solution Gal 320 320 320 320 320 320 320 320 320 320	0		40	40	1001	1001				and the second								
H2O S2	0	670	100	100	Legan	100	a history from	1930	1007.00		10 X X X	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		14 CM	7 July 11 /	1000	1. (A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	The second secon
Catalyst S1 S0	0	_	122	122	122		10/2/20		1000			1000		100000000000000000000000000000000000000	100.000		100000	
Solution Gal 320 320 320 320 320 320 320 320 320 320	0	0	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	PerOX S1
H2O S3 61 122 12	0	0	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	Catalyst S1
Part	0	_														320	320	
Catalynt S1 40 80 80 80 80 80 80 80 80 80 80 80 80 80	0			AND STREET	THE PARTY OF THE P		and the latest the same	A CONTRACTOR OF THE PARTY OF TH	1 1 1 D S 1 D S 1	100 March 1986		The state of the second	The second second second		All Professional	CONTRACTOR OF STREET	100000000000000000000000000000000000000	
Solution Gal 160 320 320 320 320 320 320 320 320 320 32	0			Alma and the same	3.000	1770 800 1701 1700 170		1700,0000000000000000000000000000000000		Company of the Compan		The Marie Control			The Maria Control		40000000	
Rico S4	0						-											
Catalyst S1 0 80 80 80 80 80 80 80 80 80 80 80 80 8	0															-		
Solution Gal 0 320 320 320 320 320 320 320 320 320 3	0	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	0	PerOX S1
H2O S5	0	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	0	Catalyst S1
ParOX S1 0 951 1,902 1,902 1,902 1,902 1,902 951 951 0 476 1,902 1	0	320		320			320										0	
Catalyst S1 0 40 80 80 80 80 80 80 80 80 40 40 0 20 80 80 80 80 80 80 80 80 80 80 80 80 80	122	(Company	(Alaman)	-	THE SHAREST SALES	(-		1000					C. Contraction (c.	(1000000)		-	
Solution Gal 0 160 320 320 320 320 320 320 160 160 0 80 320 320 320 320 320 320 320 320 320 32	962		100000000000000000000000000000000000000		100	1,000						120717-000	0.00		1000	7.5		
H2O S6	20	117037011	177.77	1175	(2000 II	97713780		10.00		(2017)	7.77		1,700.70	70.00	70.77	75.77	77.0	THE RESERVE TO THE PERSON NAMED IN
PerOX S1 0 0 0 951 951 951 0 0 0 0 0 951 1,902	12.0																	
Catalyst S1 0 0 0 40 40 40 0 0 0 0 0 0 0 0 0 40 80 80 80 8 Solution Gal 0 0 0 0 160 160 160 0 0 0 0 0 0 0 0 0 0	902	-	100,000	THE PARTY OF THE P	- 100			- 75	-56"	-	-	100000000000000000000000000000000000000		The state of the s				The state of the s
H2O S7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90	C09200000000000000000000000000000000000	NAME OF TAXABLE PARTY.	40	0	0	0	0	0	0	0	40	40	40	0	0	0	
ParOX S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	120	320	320	160	0	0		0	0	0	0	160	160	160	0	0	0	-
Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.2	122	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	H2O S7
Solution Gal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	902		_	7	_	-	0		-	_		_	_	_	-			
H2O S8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80			- 37				15										
ParOX S1 0<	120				_	_		_							7.7	- 7	_	
Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	002					-	-		-	_		_	_	_	-	-	-	
Solution Gal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90						- 5 -		- 5				- 20	No.	-	5.5		
ParOX S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	120		7.2.3				- 5		550	155	7.7	7.7	270	1,510	107		177	
Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22	122	61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	H2O S9
Solution Gal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	902	1,902	951	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	PerOX S1
H2O S10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20			0	0	0	9	0	0	0	0	0	0	0	0	0	0	Catalyst S1
PurOX S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,902 1,902 9	120																	
	61 191	The second second		-			9	1.77					7.0				73	
Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40.1	80	80	0	0	0			350	1000	- 7	-	-	1100	0.70		-	A STATE OF THE STA
Solution Gal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 320 320 320	100					_			_								_	
	101	C. C. C. C.		270	-	_			-		_		57.1	_	270			
ParOX S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,902 1,902 9	151	1,902	1,902	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PerOX S1
Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 80 50	10	80	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Catalyst S1
	100			_	_	_	_	_	_	-	_	_	-	_	_	_	_	
	102	The second second	The second second				-				-	- X	-	- 5	-	- 1	-	The second secon
PerOX SI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 951 1,902 1,902 1,600 Catalyst SI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	002		Contract of the Contract of th	0.00000	77.5	1.00	120	(3)	72.5	17.00	1000	(100		100	1970	1000		
Solution Gal 0 0 0 0 0 0 0 0 0 0 0 0 0 160 320 320 4	180	788922	The state of the s	10.00	1,00				11,100	0.000	11.00		1000	1000	45.47	100	150	The second second
H2O S13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61 122 122 2	102																	
	902	100000000000000000000000000000000000000		1,25,31			-	- 3	100	7				1.00	5.00	- 2		
Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 40 80 80 2	100			40	0	0	0	0	0	0	0	0	0	0	0	0	0	Catalyst S1
	100									_								
	162			11001001		-	-						-			1100		
	002	the second second second	The second second		100.00						1.0						* A	
الله Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100	1000	1000		223		497	100	200	1/12/	1,727	2001	271		221	25	350	
	102																	
	902			-		_	-	_					-		12.00		-	
Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 40	100	49.00	-		77.4	- 7			100	- 33	100	12	- FI	75	V211	17.5		
Solution Gal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 160	100	160	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

www.langtool.com

bill@langtool.com

Phone (989) 435-9864 Fax (989) 435-4311

September 14, 2015

Metering Plunge Point Coordinates

Easting Northing Elevation ,1126043.250890,537346.311765,461.286591 ,1126043.389012,537358.278842,446.754944 ,1126039.222311,537355.097293,446.721771 ,1126045.548803,537354.564544,446.823944 ,1126041.739738,537351.615182,446.769196 ,1126029.091333,537360.903556,446.764404 ,1126024.642492,537357.591424,446.850861 ,1126032.128951,537357.027089,446.460388 ,1126027.338115,537353.387456,446.748718 ,1126021.510724,537354.802680,446.277100 ,1126016.576745,537352.037043,446.867920 ,1126023.893361,537350.925840,446.677490 ,1126019.923680,537348.210967,446.721283 ,1126034.703235,537352.778020,446.854614,1126030.996995,537349.511021,446.758942 ,1126037.375158,537348.664149,446.807159 ,1126034.221872,537345.707502,446.958038 ,1126026.626031,537347.281237,446.855957 ,1126022.188884,537343.885219,446.796051 ,1126029.886146,537343.016704,446.796173 ,1126025.824594,537340.084376,446.643433 ,1126013.449643,537349.807322,446.533966 ,1126013.392785,537349.693029,446.517059

Easting Northing Elevation ,1126008.899213,537346.016748,446.913208 ,1126015.870389,537345.548484,446.549866 ,1126012.090055,537341.224875,446.520477 ,1126019.514509,537340.862107,446.315094 ,1126017.825430,537340.488948,446.518311 ,1126014.058767,537337.742540,446.380157 ,1126014.089530,537337.725566,446.337219 ,1126022.065301,537336.631440,446.529144 ,1126022.150224,537336.664849,446.537811 ,1126017.420561,537333.638515,446.721191 ,1126004.549705,537342.672944,446.764618 ,1125999.459460,537339.432311,446.974243 , 1125999.560476, 537339.429561, 446.828217,1126004.507510,537335.271758,446.807159 ,1126007.825858,537338.344327,446.644043 ,1126011.787391,537335.042340,446.660339 ,1126006.013815,537331.234479,445.944763 ,1126009.813491,537326.319245,446.704285 ,1126008.877824,537327.459840,446.813171 ,1126014.806735,537330.729444,446.740540 ,1125995.773250,537336.815889,446.838043 ,1125995.793850,537336.792188,446.761475 ,1125991.021234,537333.292768,446.772614

Easting Northing Elevation ,1125995.985487,537329.448629,446.733826 ,1125997.871528,537333.057641,446.755371 ,1125998.300047,537333.028882,446.702271 ,1126002.547380,537327.787172,446.914612 ,1125998.751970,537325.020444,446.746674 ,1126005.099736,537324.061959,446.840637 ,1126000.809607,537320.682561,446.716248 ,1125989.209850,537331.101171,446.845245 ,1125989.177356,537331.046746,446.794708 ,1125983.944743,537327.589219,446.880646 ,1125988.143521,537323.512597,446.860931 ,1125991.303540,537327.246579,446.196838 ,1125993.542344,537322.015287,446.337372 ,1125990.060233,537319.592767,446.393890 ,1125992.584316,537316.583909,446.762512 ,1125996.192106,537318.743062,446.425507 ,1125979.878312,537324.279195,446.758789 ,1125976.222097,537322.004308,446.782959 ,1125984.105041,537322.137267,446.484009 ,1125978.960891,537317.618423,446.772888 ,1125986.385003,537316.528476,446.699219 ,1125981.164540,537313.978450,446.751007 ,1125988.799207,537312.631677,446.620697 ,1125983.539357,537311.822665,446.738922 ,1125970.870427,537318.451974,446.837494 ,1125968.302335,537316.764249,446.797455 ,1125974.995397,537315.008149,446.869690 ,1125974.956319,537314.982307,446.876251,1125971.721234,537312.827853,446.479248 ,1125978.560556,537310.846746,446.625092 ,1125981.166433,537306.233590,446.679596 ,1125977.188951,537304.463718,446.687103 ,1125974.747728,537307.773671,446.603668 ,1125966.139536,537313.950441,446.729370 ,1125960.975841,537310.528455,446.706665 ,1125963.197609,537306.987849,446.915253 ,1125967.157520,537308.949063,446.614014 ,1125970.523973,537305.496608,446.888641 ,1125966.329964,537301.104564,446.767395 ,1125973.389704,537300.320838,446.606110 ,1125969.671035,537297.085120,446.868195 ,1125958.371279,537309.207120,446.634460 ,1125953.203267,537305.294505,446.878387 ,1125959.086132,537303.326339,446.840454 ,1125959.087921,537303.293272,446.841217 ,1125955.656343,537301.339065,446.762756

	El	E2	E3	E4	E5	E6	E7	ES	E9	E10	E11	E12	E13	E14	E15	E16	E17
H2O S1	122	12.2	122	122	122	122	122	121	122	122	122	-61	-61	-61	-61	0	0
PerOX S1	1,902	1,002	1,002	1,002	1,902	1,002	1,002	1,982	1,002	1,902	1,002	951	951	951	951	0	0
Catalyst S1	100	100	100	100	100	100	100	100	100	100	LINU	100		10		0	0
Solution Gal	320	320	120	120	320	320	120	320	320	320	320	100	100	100	100	0	0
PerOX S1	1.902	1.902	1.000	1.057	1.055	1 000	1 000	1.001	1.001	1.053	1 000	1.055	122	122	122	0	0
Catalyst S1	100	100	1002	1902	1001	1002	1002	100	1002	1002	1002	1002	20	90.2	20	0	0
Solution Gal	320	320	320	320	320	320	120	326	320	320	3145	320	320	320	330	0	0
H2O S3	61	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	0
PerOX S1	951	1,902	1.902	1,902	1,902	1,902	1.902	1,902	1.902	1.902	1.902	1,902	1,902	1.902	1,902	1,902	0
Catalyst S1	50	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0
Solution Gal	160	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	0
H2O S4	0	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	0
PerOX S1	0	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	0
Catalyst S1	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0
Solution Gal	0	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	0
H2O S5	0	61	122	122	122	122	122	122	61	61	0	31	122	122	122	122	122
PerOX S1	0	951	1,902	1,902	1,902	1,902	1,902	1,902	951	951	- 0	476	1,902	1,902	1,902	1,902	1,902
Catalyst S1	0	50	100	100	100	100	100	100	50	50	.0	25	100	100	100	100	86
Solution Gal	0	160	320	320	320	320	320	320	160	160	9	80	320	320	320	320	320
H2O S6	0	0	0	61	61	61	0	0	0	0	0	0	0	61	122	122	122
PerOX S1	0	0	0	951	951	951	0	0	0	0		0	0	951	1,902	1,902	1,902
Catalyst S1	0	0	0	50	50	50	0	0	0	0	- 0	0	0	50	100	100	80
Solution Gal	0	0	0	160	160	160	0	0	0	0	. 0	0	0	160	320	320	320
H2O S7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	122
PerOX S1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	20
Solution Gal	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	320	120
H2O S8 PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61 951	122	1.002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	1,902	.80
Solution Gal	0	0	0	0	0	0	0	0	0	0	ŏ	0	0	0	160	320	320
H2O S9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61	122	122
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	951	1.902	1.002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	100	30
Solution Gal	0	ō	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320
H2O S10	ō	ō	0	0	0	0	0	ő	0	0	0	0	0	0	122	122	52
PerOX S1	0	0	0	0	0	0	0	0	0	0	.0	0	0	0	1,902	1,902	991
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	40
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320	100
H2O S11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	122	101
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,902	1,902	951
Catalyst S1	0	0	0	0	0	0	0	0	0	0		0	0	0	100	100	50
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320	200
H2O S12	0	0	0	0	0	0	0	0	0	0	0	0	0	61	122	122	102
PerOX S1	0	0	0	0	0	0	0	0	0	0		0	0	951	1,902	1,902	7000
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	50	100	100	100
Solution Gal H2O S13	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320 122	182
PerOX S1	0		160		120		140	10	100	100	16	0	100	61	122	1,902	1,002
Catalyst S1		0	0	0	0	0	0	0	0	0	0		0	951	1,902	1,902	1002
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	50 160	100 320	320	400
H2O S14	0	0	0	0	0	0	0	0	0	0	0	0	0	31	122	122	202
PerOX 51	0	0	0	0	0	0	0	0	0	0		0	0	476	1,902	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	25	100	100	100
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	80	320	320	400
H2O S15	Ö	ō	Ö	ŏ	Ů.	ō	0	ő	ő	Ö	0	ő	ő	0	0	61	202
PerOX S1	0	0	0	0	0	0	0	0	0	0	.0	0	0	0	0	951	1,902
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	
Solution Gal	110	0	0	0	0	0	0	0	0	0		0	0	0	0	160	190 400
			7.8	-		-			• · · · · · · · · · · · · · · · · · · ·	-	- 1						

Phone (989) 435-9864 Fax (989) 435-4311

bill@langtool.com
September 14, 2015

Metering Plunge Point Coordinates

Easting Northing Elevation ,1125947.925972,537301.711670,446.840698 ,1125944.214240,537299.277020,446.730560 ,1125947.070352,537294.900431,446.694885 ,1125950.480647,537297.975043,446.831970 ,1125961.586507,537299.335799,446.610016 ,1125958.596284,537296.627694,446.757996 ,1125964.493183,537295.625432,446.596954 ,1125960.660005,537293.411929,446.829163 ,1125949.783607,537291.732772,446.614929 ,1125954.662099,537294.061311,446.878113 ,1125956.151915,537290.691020,446.681702 ,1125952.701023,537287.384375,446.697571 ,1126151.259711,537276.114547,446.736511 ,1126146.577512,537272.903703,446.667694 ,1126148.026876,537280.376673,446.808960 ,1126145.169667,537283.473888,446.793884 ,1126143.803519,537277.380387,446.744812 ,1126141.392410,537281.088514,446.606506 ,1126141.443616,537288.642828,446.689270 ,1126139.260820,537291.354856,446.745239 ,1126134.709050,537289.188242,446.907867 ,1126137.751180,537285.828235,446.429932 ,1126135.945264,537297.223984,446.618225 ,1126133.440076,537300.348807,446.612976 ,1126129.754453,537297.125644,446.831451

Elevation **Easting** Northing ,1126132.397588,537293.985722,446.270660 ,1126132.171434,537294.009320,446.196075 ,1126131.001744,537305.152752,446.623047 ,1126128.382154,537306.954606,446.180237 ,1126127.162080,537308.556152,446.749054 ,1126123.836499,537305.144890,446.364990 ,1126127.056848,537301.386581,446.045898 ,1126124.666274,537313.231607,446.149323 ,1126121.604488,537316.336497,446.667419 ,1126118.450748,537313.782224,446.739716 ,1126120.414396,537309.966304,446.505280 ,1126118.398864,537320.539434,446.485565 , 1126115.271728, 537325.025945, 446.861481,1126115.631368,537316.466897,446.277283 ,1126111.533260,537321.326680,446.699646 ,1126113.192124,537329.621987,446.724457 ,1126110.557360,537333.413316,446.825104 ,1126106.265173,537329.212709,446.959290 ,1126109.170812,537326.406163,445.277222 ,1126108.259677,537337.482698,446.678741 ,1126105.021173,537340.868411,446.772552 ,1126100.686392,537337.789311,446.529785 ,1126103.875829,537334.573896,446.627228 ,1126101.322055,537344.828012,446.348267 ,1126098.820283,537348.396174,446.770172

Easting Northing Elevation ,1126095.131422,537345.542253,446.850342 ,1126097.671560,537342.825259,446.000580 ,1126095.279996,537352.705962,446.581665 ,1126092.246862,537356.472196,446.459869 ,1126089.267278,537353.614669,446.352448 ,1126091.537534,537350.585673,446.631165 ,1126089.700055,537361.433456,446.488068 ,1126087.122632,537365.618266,446.824371 ,1126083.306737,537362.136785,446.629395 ,1126086.041455,537358.757434,446.575195 ,1126081.529836,537373.224044,446.774963 ,1126083.818246,537369.008826,446.551025 ,1126077.884751,537370.002078,446.689758 ,1126079.994952,537365.332328,446.707489 ,1125959.782376,537287.140108,446.847229 ,1125962.321273,537282.046743,446.810791 ,1125964.225766,537290.492781,446.438843 ,1125967.541021,537291.737822,446.718201 ,1125967.561818,537291.688661,446.686218 ,1125966.414113,537285.886470,446.487305 ,1125970.764615,537288.914023,446.533234 ,1125972.159703,537296.384765,446.748199 ,1125975.809777,537298.495183,446.709106

	El	E2	E3	E4	E5	E6	E7	ES	E9	E10	El1	E12	E13	E14	E15	E16	E17
H2O S1	12.2	122	122	122	12.2	122	122	122	122	122	122	-61	-61	-61	-61	0	0
PerOX S1	1,002	1,002	1,002	1,002	1,962	1,002	1,002	1,962	1,002	1,902	1,002	951	951	951	951	0	0
Catalyst S1 Solution Gal	320	200	100	200	200	300	100	200	200	200	2100	100	160	100	100	0	0
H2O 82	100	100	140	190	10-1	100	100	100	100	100	120	100	122	122	122	0	0
PerOX S1	1.002	1.902	1.902	1.002	1.902	1.902	1.002	1.902	1.902	1.902	1.802	1.902	1.002	1,902	1.902	0	0
Catalyst S1	100	100	180	180	100	100	100	100	100	195	140	180	88	.88	. 80	0	0
Solution Gal	320	320	320	320	320	320	320	326	320	320	310	320	320	320	320	0	0
H2O S3	61	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	0
PerOX S1	991	1,902	1,002	1,902	1,002	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	0
Catalyst S1	50	100	100	100	180	100	100	100	100	100	100	100	100	100	100	100	0
Solution Gal H2O S4	160	126	120	320	320 122	320 122	320 122	320	320 122	320 122	320	320 122	320 122	320 122	320	120	0
PerOX S1	0	1.902	1.902	1.902	1,902	1,902	1.902	1.902	1.902	1,902	1.902	1.902	1.902	1,902	1.902	1.002	0
Catalyst S1	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	1002	0
Solution Gal	0	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	0
H2O S5	0	61	122	122	122	122	122	122	61	61	0	31	122	122	122	122	122
PerOX S1	0	951	1,902	1,902	1,902	1,902	1,902	1,902	951	951		476	1,902	1,902	1,902	1,002	1,902
Catalyst S1	0	50	100	100	100	100	100	100	50	50	0	25	100	100	100	180	80
Solution Gal	0	160	320	320	320	320	320	320	160	160	0	80	320	320	320	320	320
H2O S6	0	0	0	61	61	61	0	0	0	0	0	0	0	61	122	1111	12.2 1.002
PerOX S1	0	0	0	951 50	951 50	951 50	0	0	0	0	0	0	0	951 50	1,902	1,902	1,962
Catalyst S1 Solution Gal	0	0	0	160	160	160	0	0	0	0	0	0	0	160	320	320	32.0
H2O S7	0	0	0	0	100	100	0	0	0	0	,	0	0	0	0	101	101
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,902	1,002
Catalyst S1	ő	o	0	0	0	0	0	o	0	o	0	0	0	0	0	100	80
Solution Gal	0	0	0	0	0	0	0	0	0	0		0	0	0	0	320	320
H2O S8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61	122	127
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	951	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	100	200
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320
H2O S9	0	0	0	0	0	0	0	0	0	0	9	0	0	0	61	122	127
PerOX S1	0	0	0	0	0	0	0	0	0	0		0	0	0	951	1,002	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	100	200
Solution Gal H2O S10	0	0	0	0	0	0	0	0	0	0	9	0	0	0	160	320	320
PerOX S1	0	0	0	0	0	0	0	0	0	0		0	0	0	1.902	1.002	991
Catalyst S1	0	0	0	0	0	0	0	0	0	0		0	0	0	100	100	All
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320	100
H2O S11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	12.2	101
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,902	1,902	951
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	30
Solution Gal	0	0	0	0	0	0	0	0	0	0		0	0	0	320	320	200
H2O S12	0	0	0	0	0	0	0	0	0	0	9	0	0	61	122	122	202
PerOX S1 Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	951 50	1,902 100	1002	1002
Solution Gal		0	0	0	0	0	0	0	0	0	,	0	0	160	320	320	490
H2O S13	0	0	0	0	0	0	0	0	0	0	,	0	0	61	122	122	207
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	951	1,902	1,002	1,902
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	50	100	100	100
Solution Gal	10.77	0	0	0	0	0	0	0	0	0		0	0	160	320	320	400
H2O S14	0	0	0	0	0	0	0	0	0	0	0	0	0	31	122	122	202
PerOX S1	0	0	0	0	0	0	0	0	0	0		0	0	476	1,902	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	25	100	100	100
Solution Gal		0	0	0	0	0	0	0	0	0	0	0	0	80	320	320	400
H2O S15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	GI OSE	262 1902
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	951	1002
Catalyst S1 Solution Gal		0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	400
Soution Gal			U		u		U			0		u u	u .	U		100	950

Phone (989) 435-9864 Fax (989) 435-4311

bill@langtool.com

September 17, 2015

Metering Plunge Point Coordinates

Easting Northing Elevation ,1125996.779084,537312.807222,446.725494 ,1125996.819381,537312.836679,446.729553 ,1125997.086167,537312.638246,446.525757 ,1126000.046736,537314.933894,446.807220 ,1126000.450747,537308.914674,446.694916 ,1126003.325637,537311.414191,446.808380 ,1126005.711383,537318.629926,446.617218 ,1126004.577958,537318.467981,446.538025 ,1126008.425817,537320.806497,446.635010 ,1126006.856059,537315.094087,446.839600 ,1126011.676526,537317.073133,446.785400 ,1126013.118970,537324.647642,446.678589 ,1126015.927850,537327.139280,446.955322 ,1126015.820779,537320.223367,446.555328 ,1126019.235036,537322.986466,446.757050 ,1126021.564256,537329.325098,446.805634 ,1126024.607904,537332.249612,446.746521 ,1126023.907668,537326.715495,446.568268 ,1126023.891774,537326.608615,446.535858 ,1126026.973939,537329.042531,446.035278 ,1126028.850314,537336.274057,446.751038 ,1126032.248889,537338.171296,446.810486 ,1126031.312871,537331.460830,446.821381 ,1126035.880014,537334.153247,446.579315 ,1126035.867618,537334.135368,446.609283

Easting Northing Elevation ,1126035.944413,537334.108007,446.578094 ,1126035.259967,537333.458721,446.782532 ,1126037.515744,537341.933277,446.302948 ,1126041.062979,537344.438809,446.785980 ,1126041.087524,537344.477002,446.828888 ,1126039.806050,537337.880058,446.836121 ,1126043.827402,537340.175591,446.855560 ,1126044.835073,537347.540245,446.597260 ,1126047.556647,537343.740739,446.872009 ,1126047.606999,537343.799132,446.910065 ,1126047.687070,537343.846870,446.909851 ,1126051.468212,537346.169963,446.696259 ,1126048.758509,537350.668704,446.806763 ,1126053.370296,537352.771398,446.739227 ,1126053.265064,537352.716041,446.764404 ,1126057.320213,537355.340661,446.605560 ,1126055.858174,537349.509999,446.571991 ,1126059.418379,537352.155387,446.692017 .1126060.928777,537359.176770,446.677795 ,1126064.032933,537354.699109,446.572021 ,1126064.228845,537354.853385,446.601349 ,1126064.056169,537354.658063,446.608673 ,1126067.920200,537357.000787,446.646088 ,1126065.496728,537361.556636,446.705719 ,1126073.645532,537368.052474,446.708893

Easting Northing Elevation ,1126069.473338,537365.302959,446.357513 ,1126071.991986,537360.304502,446.148407 ,1126076.424028,537363.505187,446.503815 ,1126102.353930,537326.933400,446.906677 ,1126105.716033,537323.482591,446.661072 ,1126108.881029,537318.891208,446.505859 ,1126110.454565,537314.927848,446.659607 ,1126110.588780,537308.183288,445.968719 ,1126116.787269,537306.435728,446.545471 ,1126116.830125,537306.396692,446.557922 ,1126112.596831,537304.997722,446.504700 ,1126112.585344,537304.989423,446.484772 ,1126112.584457,537304.993855,446.490509 ,1126112.624790,537304.992310,446.520477 ,1126112.611936,537304.992019,446.499786 ,1126120.305066,537301.654662,446.482941 ,1126122.837558,537298.011433,446.308167 ,1126116.190683,537299.193242,446.034790 ,1126118.319659,537295.500964,445.799408 ,1126125.815526,537294.868583,446.096619 ,1126128.073354,537290.068807,446.657898 ,1126121.120937,537290.359084,446.415131 ,1126124.215436,537287.980317,446.804718

	El	E2	E3	E4	E5	E6	E7	ES	E9	E10	E11	E12	E13	E14	E15	E16	E17
H2O S1	12.2	122	122	122	12.7	1902	122	1902	122	122	122	25	25	()	051	0	0
PerOX S1 Catalyst S1	1,002	1,002	1,002	1,002	1,902	1,002	1,002	1,002	1,002	1,962	1,902	~~>			Mar	0	0
Solution Gal	320	320	320	390	320	320	320	320	320	390	300				100	0	0
H2O S2	107	107	107	107	10.7	100	127	107	107	107	107	-	102	192	122	0	0
PerOX S1	1.902	1.902	1.902	1.002	1,902	1.902	1.902	1.902	1.902	1,902	1.902	10002	1.002	12002	1.902	0	0
Catalyst S1	100	100	180	180	100	105	100	190	100	190	190	>80	98	90	90	0	0
Solution Gal	320	320	120	320	320	320	320	320	320	320	320	380	380	3	320	0	0
H2O S3	61	122	122	122	12.2	127	122	122	122	122	12.2	122	12.2	122	122	122	0
PerOX S1	991	1,802	1,902	1,902	1,002	1,002	1,002	1,002	1,002	1,802	1,002	1,802	1,002	1,902	1,902	1,002	0
Catalyst S1	50	100	100	100	100	100	100	100	100	180	180	100	100	180	100	100	0
Solution Gal	160	320	120	320	320	320	320	320	320	320	326	326	326	320	120	120	0
H2O S4	0	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	0
PerOX S1	0	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1002	0
Catalyst S1 Solution Gal	0	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	0
H2O S5	0	61	122	122	122	122	122	122	61	61	0	31	122	122	122	123	122
PerOX S1	0	951	1.902	1,902	1,902	1,902	1.902	1,902	951	951	0	476	1,902	1.902	1.902	1.002	1.002
Catalyst S1	0	50	100	100	100	100	100	100	50	50	0	25	100	100	100	180	200
Solution Gal	0	160	320	320	320	320	320	320	160	160	0	80	320	320	320	320	320
H2O S6	0	0	0	61	61	61	0	0	0	0	0	0	0	61	122	122	122
PerOX S1	0	0	0	951	951	951	0	0	0	0	0	0	0	951	1,902	1,902	1,962
Catalyst S1	0	0	0	50	50	50	0	0	0	0	0	0	0	50	100	180	20
Solution Gal	0	0	0	160	160	160	0	0	0	0	0	0	0	160	320	320	320
H2O S7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	122
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	80
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	120
H2O S8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61	122	127
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	991	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	330
Solution Gal H2O S9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	120	120
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.01	1.071	1.0412
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	591	100	24
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	140	320	320
H2O S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	121	63
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.002	1.002	931
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160	150	45
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320	100
H2O S11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	122	101
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,902	1,902	951
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	180	180	20
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320	200
H2O S12	0	0	0	0	0	0	0	0	0	0	0	0	0	-61	122	122	202
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	.091	1,902	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	1000	200	200	400
Solution Gal H2O S13	0	0	0	0	0	0	0	0	0	0	0	0	0	200	100	122	200
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	091	1,902	1,902	1.000
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	59	1002	1002	1002
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320	400
H2O S14	0	0	0	0	0	0	0	0	0	0	0	0	0	33	125	122	202
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	476	1,002	1,002	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	. 25	100	100	100
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	80	320	320	400
H2O S15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	63	202
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	951	1,902
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		180
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	180	400

bill@langtool.com

September 18, 2015

Metering Plunge Point Coordinates

Easting Northing Elevation ,1125969.647168,537280.959132,446.785034 ,1125973.200074,537283.491365,446.681183 ,1125972.011872,537277.604179,446.664673 ,1125972.023885,537277.708491,446.685944 ,1125975.111470,537280.179906,446.901672 ,1125975.306516,537273.227931,446.691101 ,1125978.337341,537275.520559,446.497833 ,1125977.880033,537287.329148,446.549255 ,1125981.609651,537289.509229,447.042267 ,1125981.842178,537289.401565,446.717621 ,1125980.958509,537283.143387,446.710114 ,1125984.320266,537286.005864,446.741821 ,1125985.960982,537292.630172,446.891602 ,1125989.461711,537289.502530,446.915710 ,1125989.472722,537289.480327,446.912537 ,1125989.493238,537289.464708,446.945770 ,1125989.451987,537289.416558,446.933075 ,1125989.476390,537289.415210,446.894836 ,1125992.654460,537291.359189,446.854370 ,1125990.432101,537295.789794,446.610107 ,1125994.739644,537298.981520,446.685120 ,1125997.895166,537301.144004,446.752045 ,1125996.533912,537295.094217,446.825806 ,1126000.636176,537297.631108,446.877686 ,1125995.891254,537294.886358,446.812500

Northing Elevation **Easting** ,1126001.381878,537304.641881,446.710083 ,1126005.769346,537307.402211,446.938354 ,1126004.467013,537301.444269,446.755829 ,1126008.391258,537303.795105,446.854492 ,1126010.001886,537309.862519,446.723236 ,1126013.585849,537312.492692,446.158661 ,1126012.723083,537305.677414,446.806641 ,1126016.730244,537308.629464,446.744629 ,1126018.968656,537316.074899,446.483521 ,1126022.350682,537319.058459,446.578766 ,1126021.140943,537311.872672,446.710846 ,1126024.757463,537314.743228,446.802704 ,1126024.757726,537314.721561,446.800598 ,1126024.620698,537314.690467,446.770630 ,1126026.491059,537321.563039,446.523346 ,1126030.055118,537324.698301,446.834778 ,1126032.943912,537320.245046,446.871582 ,1126029.322862,537318.359227,446.421967 ,1126035.136171,537327.205800,446.721497 ,1126038.303615,537330.061814,446.909882 ,1126038.324678,537330.032010,446.852173 ,1126040.631852,537326.762757,446.666473 ,1126037.212835,537323.849046,446.736053 ,1126032.317195,537313.641721,446.573395 ,1126036.141078,537316.651433,446.882996

Easting Northing Elevation ,1126040.187605,537319.520911,446.854584 ,1126043.929862,537322.424865,446.569824 ,1126043.984060,537322.347058,446.463806 ,1126043.983007,537322.348828,446.460327 ,1126043.047893,537333.127935,446.910828 ,1126046.152333,537336.231393,446.615662 ,1126049.481970,537332.808767,446.632782 ,1126049.488996,537332.793634,446.639191 ,1126049.525715,537332.724061,446.568634 ,1126045.824767,537330.142644,446.902710 ,1126051.523534,537339.019433,446.888367 ,1126054.932529,537341.646509,446.887299 ,1126053.208923,537335.963813,446.595215

Easting Northing Elevation ,1126057.191871,537338.147944,446.616516 ,1126058.840872,537345.374586,446.909912 ,1126062.874862,537347.195781,446.885376 ,1126062.216429,537341.445643,446.899597 ,1126065.245783,537343.912300,446.542145 ,1126061.567808,537341.290133,446.809204 ,1126067.461929,537350.823456,446.811493 ,1126071.353753,537353.172603,446.464935 ,1126073.825744,537349.791577,446.884033 ,1126069.501385,537347.268373,446.348969 .1126069.373771,537347.334718,446.321594 ,1126069.364699,537347.280772,446.296417 ,1126079.045501,537359.086723,446.709076 ,1126081.690257,537356.413102,446.639954

	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	Ell	E12	E13	E14	E15	E16	E17
H2O S1	122	12.2	122	122	11.7	12.2	122	127	122	122	122	25	×8.	×.	-61	0	0
PerOX S1	1,002	1,002	1,002	1,002	1,902	1,002	1,002	1,002	1,902	1,902	1,502		*		951	0	0
Catalyst S1 Solution Gal	320	12/1	120	2001	3017	320	120	324	300	2047	2347				140	0	0
H2O 82	100	100	100	192	102	100	192	100	100	192	100		192	192	122	0	0
PerOX S1	1,002	1,902	1,902	1,002	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1002	10902	1002	1,902	0	0
Catalyst S1	100	100	100	180	100	100	100	100	100	100	110	70	90	3	99	0	0
Solution Gal	320	320	320	320	320	320	320	324	320	320	330	381	380	×	320	0	0
H2O S3	-61	127	122	122	12.2	122	122	122	122	122	12.2	122	122	122	122	122	0
PerOX S1	991	1,902	1,902	1,802	1,902	1,902	1,802	1,802	1,002	1,802	1,802	1,802	1,002	1,902	1,902	1,902	0
Catalyst S1	- 50	100	100	100	100	100	100	180	100	180	110	100	100	100	100	100	0
Solution Gal	160	126	120	320	320	320	120	326	320	320	326	320	326	326	320	120	0
PerOX S1	0	1,002	1.002	1.001	1951	1.002	1.002	1.007	1.002	1,997	1.507	1.002	1.001	1.962	1.001	1.002	0
Catalyst S1	0	100	100	100	1001	140	100	100	100	1002	180	1002	1001	100	1007	100	0
Solution Gal	0	320	290	290	39.0	320	320	320	320	320	360	320	320	320	720	390	0
H2O S5	0	61	122	122	122	122	122	122	61	61	0	31	122	122	122	121	122
PerOX S1	0	951	1,002	1,002	1,002	1,902	1,902	1,902	951	951	0	476	1,902	1,902	1,902	1,902	1.902
Catalyst S1	0	50	180	190	180	100	100	100	50	50	0	25	100	100	100	190	20
Solution Gal	0	1.00	320	320	320	320	320	320	160	160	9	80	320	320	320	320	320
H2O S6	0	0	0	61	61	61	0	0	0	0	0	0	0	61	122	122	112
PerOX S1	0	0	0	951	951	951	0	0	0	0	0	0	0	951	1,902	1,902	1.002
Catalyst S1	0	0	0	50	50	50	0	0	0	0		0	0	50	100	100	86
Solution Gal H2O S7	0	0	0	160	160	160	0	0	0	0	0	0	0	160	320	320	320
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.902	1,002
Catalyst S1	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	100	20
Solution Gal	0	ō	0	0	0	ō	0	ō	0	o	0	0	0	0	0	320	320
H2O S8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61	122	122
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	991	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	30	100	20
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320
H2O S9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.63	122	122
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	991	1,962	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 30	100	200
Solution Gal H2O S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	120	320
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.002	1.002	991
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	180	Ab
Solution Gal	0	0	0	0	0	0	0	0	0	0		0	0	0	320	320	100
H2O S11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	122	101
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,002	1,002	951
Catalyst S1	0	0	0	0	0	0	0	0	0	0		0	0	0	100	100	35
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320	280
H2O S12	0	0	0	0	0	0	0	0	0	0	0	0	0	61	1.902	1.000	202
PerOX S1 Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	291	1002	1,902	1002
Solution Gal	0	0	0	0	0	0	0	0	0	0	,	0	0	Licer	320	320	490
E20 S13	0	0	0	0	0	0	0	0	0	0	0	0	0	AV	105	127	202
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	991	1,902	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	35	180	100	100
Solution Gal	1000	0	0	0	0	0	0	0	0	0	•	0	0	160	320	320	400
H2O S14	0	0	0	0	0	0	0	0	0	0	0	0	0	21	122	122	202
PerOX 51	0	0	0	0	0	0	0	0	0	0		0	0	470	1,902	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	9	0	0	25	100	100	100
Solution Gal		0	0	0	0	0	0	0	0	0	0	0	0	-80	320	320	400
H2O S15	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	951	1902
PerOX S1 Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	501	1002
Solution Gal		0	0	0	0	0	0	0	0	0		0	0	0	0	100	400
Sourion Gal											. 🥌			u u		- 50	WU

Phone (989) 435-9864 Fax (989) 435-4311

bill@langtool.com

September 18, 2015

Metering Plunge Point Coordinates

Northing **Easting** Elevation ,1125996.784053,537276.647099,446.506226 ,1126000.271217,537279.758424,446.727051 ,1126000.271163,537279.627843,446.677521 ,1126005.516511,537282.464107,446.728577 ,1126009.143693,537285.824884,446.848602 ,1126007.590364,537296.639462,446.855743 ,1126011.838324,537299.470743,446.766022 ,1126011.137288,537292.491990,446.810364 ,1126014.377355,537295.561201,446.684052 ,1126013.546075,537290.174972,446.449371 ,1126013.673764,537290.401372,446.317932 ,1126014.259656,537288.913101,449.773102 ,1126018.183072,537292.147833,446.863678 ,1126016.861383,537303.182891,446.812744 ,1126019.731824,537304.788985,446.562531 , 1126019.058740, 537298.531272, 446.562500,1126021.646978,537300.826827,446.603394 ,1126023.774266,537308.412347,446.694977 ,1126028.185373,537310.844653,446.842743 ,1126026.705964,537304.604489,446.866760 ,1126030.904227,537307.066911,447.012207 ,1126059.946342,537334.376760,446.584778 ,1126064.684007,537337.291963,446.680573 ,1126068.906216,537339.798362,446.604614 ,1126071.040929,537336.368585,446.673645

Easting Northing Elevation ,1126068.354427,537333.686048,446.621521 ,1126079.169557,537342.035405,446.258209 ,1126079.204969,537342.060599,446.365356,1126082.568687,537337.281898,446.807922 ,1126078.813087,537334.640186,446.668152 ,1126078.856038,537334.627105,446.677368 ,1126078.874231,537334.614286,446.664673 ,1126078.882787,537334.607757,446.660767,1126078.701917,537334.702548,446.716400 ,1126076.222173,537338.537021,446.654114 ,1126076.086177,537338.610713,446.638184 ,1126072.558662,537343.019710,446.648773 ,1126085.411600,537351.086702,446.723633 ,1126081.533502,537348.131652,446.926697 ,1126084.336967,537344.388499,446.646301 ,1126087.225291,537346.568939,446.621582 ,1126087.275174,537346.563084,446.632721 ,1126093.179122,537339.406774,446.601013 ,1126090.384534,537343.621839,446.498596 ,1126089.557180,537336.884198,446.714355 ,1126086.643387,537340.402255,446.928314

	El	E2	E3	E4	E5	E6	E 7	ES	E9	E10	E11	E12	E13	E14	E15	E16	E17
H2O S1	122	122	122	122	122	122	122	122	122	122	122	XX	26%	XX.	-61	0	0
PerOX S1	1,002	1,002	1,002	1,902	1,902	1,902	1,002	1,002	1,902	1,002	1,902	*		× 10	051	0	0
Catalyst S1	320	320	120	390	320	320	320	320	320	390	390				100	0	0
Solution Gal H2O S2	107	107	107	107	10.7	101	107	107	107	197	107		202	702	122	0	0
PerOX S1	1.002	1.902	1.902	1.002	1.902	1.902	1,002	1.902	1,902	1.902	1.902	1000	1.000	1.002	1.902	0	0
Catalyst S1	100	100	100	100	100	100	100	100	100	100	100	285	398	98	80	0	0
Solution Gal	320	320	120	320	320	320	320	320	320	320	320	×	786	8	120	0	0
H2O S3	61	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	0
PerOX S1	991	1,902	1,902	1,902	1,902	1,002	1,902	1,902	1,802	1,902	1,902	1,902	1,902	1,902	1,902	1,002	0
Catalyst S1	- 50	100	100	100	100	100	100	180	180	100	100	100	100	180	100	100	0
Solution Gal	160	326	120	320	320	320	120	320	320	320	320	320	320	320	120	320	0
H2O S4	0	122	1.00	1.000	1000	122	1.002	1.00	100	1.00	1000	102	1.00	100	100	1.002	0
PerOX S1	0	1,902	1,002	1002	1,002	1,002	1,002	1,002	1,002	1,002	1,002	1,002	1002	1,002	1,002	1,002	0
Catalyst S1 Solution Gal	0	120	120	200	391	320	120	320	320	220	220	320	200	200	120	320	0
H2O S5	0	61	122	122	127	122	122	122	63	63	0	33	122	122	122	122	132
PerOX S1	0	951	1.002	1.002	1.902	1,902	1,002	1.002	951	951	0	476	1.002	1.002	1.902	1.002	1.952
Catalyst S1	0	-50	180	180	100	180	180	180			0	25	180	180	180	180	20
Solution Gal	0	180	320	320	320	320	320	320	180	100	0	86	320	320	320	320	320
H2O S6	0	0	0	- 61	-61	-61	0	0	0	0	0	0	0	-61	122	122	127
PerOX S1	0	0	0	051	951	951	0	0	0	0	0	0	0	951	1,002	1,002	1.002
Catalyst S1	0	0	0			50	0	0	0	0	0	0	0	-10	180	100	200
Solution Gal	0	0	0	180	100	160	0	0	0	0	0	0	0	190	320	320	320
H2O S7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	122
PerOX S1 Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,902	900
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320
H2O S8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61	122	127
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	991	1,002	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	100	80
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320
H2O S9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G.	122	122
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	991	1,962	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	190	20
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	320	320
H2O S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.007	1.007	مين
PerOX S1 Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1002	1,002	451
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	390	201	100
H2O S11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	127	101
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.002	1.002	951
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	190	190	30
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320	260
H2O S12	0	0	0	0	0	0	0	0	0	0	0	0	0	-GY	122	122	302
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	991	1,902	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0		180	100	100
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320	400
H2O S13	0	0	0	0	0	0	0	0	0	0	0	0	0	941	1000	1.002	1.02
PerOX S1 Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	150	1,902	1001	1,002
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	160	120	320	400
H2O S14	0	0	0	0	0	0	0	0	0	0	0	0	0	33	125	122	202
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	476	1,002	1.902	1.002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	25	180	100	100
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	80	320	320	400
H2O S15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61	202
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	951	1,962
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	100
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	400

www.langtool.com

bill@langtool.com

Phone (989) 435-9864 Fax (989) 435-4311

September 21, 2015

Total remixed soil volume as of 9/21 is 163 cubic yards.

Site Preparation Photos

Mulching machine

Cleared Area

Soil Stockpile Area 2

Area after Top Soil Removed

Treatment Area looking from southern corner

Treatment area cleared

Soil Mixing

Mixing Platform

Starting of the soil mixing in E17

Mixing of E17 row 2

Mixing of E17 Row 4

Reaction while mixing

S1 and S2 Rows just prior to mixing in them

Soil Mixing

Starting S1 Row

S2 Row

Completed cells on the east side

Treated area next to excavated area

Finishing the last remaining cells

Completed treatment area

Sampling

Sampling tool

Taking sampling from selected row

Going down to depth

Raising sample from selected location

Collecting of sample from tool

View of sample going into bucket

Site Restoration

Starting of the site restoration

Clearing the eastern road and installation of perimeter and excavation fencing

Fence installation on the eastern road

Completion of site restoration

Site identification sign

Field crew

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

 Report No. : 1
 Prepared By:

 Date : 9/10/15
 Erik Hall

Weather:Site Hours:Partly Cloudy 80°F0630-1830

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
NHDES	Andrew Hoffman	Project Manager	Pre-Construction Meeting	3.5
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	12
Weston Solutions	Vinnie Dello Russo	Project Manager	Pre-Construction Meeting	3.5
Weston Solutions	Fred Symmes	Sr. Tech. Manager	Pre-Construction Meeting	3.5
ISOTEC	Mike Temple	Project Manager	Remediation Prep. Work	10
ISOTEC	Mark Ratner	Site Manager	Remediation Prep. Work	10
LTC	Bill Lang	Project Manager	Remediation Prep. Work	10
LTC	Bill Oberloier	Site Assistant	Remediation Prep. Work	10
LTC	Dave Roe	Equipment Operator	Remediation Prep. Work	3
LTC	Cody Shell	Equipment Operator	Remediation Prep. Work	3
Land & Mowing	Faun Koplovsky	Equipment Operator	Clearing and Grubbing	5
<u>Visitor:</u>				
Company:	<u>Name:</u>	<u>Title:</u>	Work Description:	Hours:
Town of Conway	Earl Sires	Town Manager	Pre-Construction Meeting	0.5
Town of Conway	Paul DegliAngeli	PW Director	Pre-Construction Meeting	0.5
Hurteau Towing & Recovery	John Hurteau	Property Owner	Pre-Construction Meeting	1

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

PROJECT EQUIPMENT (Company Name – Description)

- **WESTON** (1) POV and (1) Chevy Express Cargo Van
- **ISOTEC** (1)Penske Box Truck with various project tools and supplies
- LTC (1)Caterpillar D5K2 Bulldozer, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer, (1) Mack mixing truck, (1) JLC 8042 fork lift, (2) utility trucks, (1) office/utility trailer
- Land and Mowing (1) Excavator with mulching head
- **NHDES** (1) SUV

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

- All equipment listed above in Project Equipment section was mobilized to the site.
- (6) precast concrete well tiles were delivered by American Concrete Industries to be placed around MWs to be protected with the work area.
- (1) portable bathroom
- (1) project sign was delivered

TEST DATA

(List type and location of tests performed and results)

None.

SAFETY COMMENTS/VIOLATIONS

- 1. Rock was projected from the excavator with mulching head which cracked the rear window of the bulldozer.
- 2. Monitoring Well MW-3005 was accidently knocked over by the bulldozer.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

- 1. The bulldozer should not have been parked within 300 ft of the operating excavator with mulching head.
- 2. A spotter should have stayed with the bulldozer instead of walking over to check the location of another monitoring well.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

WORK COMPLETED- BY WESTON

Construction oversight; conduct Pre-Construction Meeting

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

- Attend Pre-construction meeting
- Set up GPS coordinates
- Clear the majority of the work area
- Inserted siltation sacks in storm drain inlets (CB 7-8 and CB 8-9)
- Removed monitoring wells (MWs-3006, 3008, 3009, 3010 and 3011)
- Placed precast concrete well tiles around select wells (MW-3004, MW-203A, MWS-205, MWS-114, MWS-215 and EW-13B)
- Video documentation of existing conditions of buildings/fence/access road. Denoted leaking hydrant after water meter install by water precinct, existing damage to former water treatment building and the fence surrounding Hurteau HVAC and Towing.
- Fire hydrant adapter hooked up by the water precinct and checked the access inside of the culvert beneath Hobbs Street where the water line will be run. Reading of the water meter at time of install was 430182 gallons.
- M. Temple spoke to dig safe representative who had marked out behind the building (left flags near the propane tank) and said there were no known utilities in the wooded area that they would need to mark out

AGREEMENTS

(Company Name – task description)

- D. Hoffman of NHDES agreed to remove MW-3005 after it was accidently hit and damaged. Future discussions between Weston, NHDES and EPA will determine if the MW-3005 will be replaced.
- D. Hoffman notified Carl Thibodeau of the existing erosion along storm drain; not caused by NHDES, Weston, or this project. The erosion was video documented.

Notes:

ISOTEC = In-Situ Oxidative Technologies, Inc LTC = Lang Tool Company Land & Mowing = Land and Mowing Solutions

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

Photographs (continued)

Site looking East from parking lot upon arrival.

Water precinct installed meter on fire hydrant.

Siltation bag installed in catch basin

DAB arrived at the site.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Precast concrete collar protecting MW

Removal of MWs within the treatment area

Tree clearing

Site at the end of the day from access road looking northwest

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street] In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Report No.: 2 **Prepared By**: Erik Hall Date: 9/11/15

Site Hours: Weather: 0700-1700

Showers AM; Partly Cloudy 65°F

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	10
ISOTEC	Mike Temple	Project Manager	Remediation Prep. Work	10
ISOTEC	Mark Ratner	Site Manager	Remediation Prep. Work	10
LTC	Bill Lang	Project Manager	Remediation Prep. Work	10
LTC	Bill Oberloier	Site Assistant	Remediation Prep. Work	10
LTC	Dave Roe	Equipment Operator	Remediation Prep. Work	10
LTC	Cody Shell	Equipment Operator	Remediation Prep. Work	10
Land & Mowing	Faun Koplovsky	Equipment Operator	Clearing and Grubbing	2

PROJECT EQUIPMENT

(Company Name – Description)

- WESTON (1) POV and (1) Chevy Express Cargo Van
- **ISOTEC** (1)Penske Box Truck with various project tools and supplies
- LTC (1)Caterpillar D5K2 Bulldozer, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer, (1) Mack mixing truck, (1) JLC 8042 fork lift, (2) utility trucks, (1) office/utility trailer
- Land and Mowing -(1) Excavator with mulching head

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

None

(List type and location of tests performed and results) **TEST DATA**

None.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

SAFETY COMMENTS/VIOLATIONS

All work completed in a safe manner.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Delivered MSDSs and emergency contact info to Conway Fire Department. Delivered emergency contact info to Conway Police Department.

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

- Daily safety meeting
- Cleared remainder of the work area (mulching, tree removal)
- Moved precast concrete well tile from MWS-215 to CB 7-8
- Provided additional coverage of the culverts beneath Hobbs Street where the water line is run through
- Tested the water line and wet tested the chemical preparation truck
- Installed the silt fence
- Scraped off top soil across the site and placed into stockpiles
- Prepared equipment for soil mixing
- Excavated portions of the overburden in the treatment area. Excavated to approx. Elevation 456.5 ft. above mean sea level (or approximately 1.5 ft. above the soil mixing zone). The soil was dry and used to create a berm.

AGREEMENTS

(Company Name – task description)

None.

Notes:

 $ISOTEC = In\mbox{-}Situ\ Oxidative\ Technologies,\ Inc.$

LTC = Lang Tool Company

Land & Mowing = Land and Mowing Solutions

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

Photographs (continued)

Tree mulcher regrinds tree shreddings into topsoil

Water line installed from fire hydrant to mixing area

Installing silt fence

Bulldozer scraping and stockpile topsoil

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Typical silt fence installation

Topsoil stockpile partially covered and excavating overburden material in preparation for soil mixing on Monday

Creating berm using overburden material

Excavation of overburden. Dry soil approximately 5.5' below original grade

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street] In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Prepared By: Report No.: 3 Lee Baronas Date: Sat. 9/12/15

Site Hours: Weather: 0700-1400

Foggy 54°F to Sunny 75°F

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
Weston Solutions	Lee Baronas	Covering Site Supt	Construction Oversight	7
ISOTEC	Mike Temple	Project Manager	Remediation Prep. Work	7
ISOTEC	Mark Ratner	Site Manager	Remediation Prep. Work	7
LTC	Bill Lang	Project Manager	Remediation Prep. Work	7
LTC	Bill Oberloier	Site Assistant	Remediation Prep. Work	7
LTC	Dave Roe	Equipment Operator	Remediation Prep. Work	7
LTC	Cody Shell	Equipment Operator	Remediation Prep. Work	7
B-Quip Temp Fence	Mike Guild	Foreman	Fence Installation	3.5
B-Quip Temp Fence	Todd Nalette	Foreman	Fence Installation	3.5
PROJECT	(Company Name – Descr	iption)		
EQUIPMENT				

- **WESTON** (1) POV and (1) Chevy Express Cargo Van
- **ISOTEC** (1)Penske Box Truck with various project tools and supplies
- LTC (1)Caterpillar D5K2 Bulldozer, (1) Caterpillar 320E Excavator, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer*, (1) Mack mixing truck, (1) JLC 8042 fork lift, (2) utility trucks, (1) office/utility trailer
- **Land and Mowing** (1) Excavator with mulching head*
- **B-Quip** Ford F550 stake body with trailer

DEVIATIONS FROM PROPOSED SCHEDULE

None. Completed preparations for soil mixing. Anticipate delivery of peroxide on Mon 14 Sep and start of soil mixing.

EOUIPMENT/MA' **DELIVERED/PICKED-UP**

Temporary fence delivered and erected: 6-ft high wire fencing using 75 panels, 72 anchor bases, and 70 clamps.

^{*}on-site but not used during day.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

TEST DATA

(List type and location of tests performed and results)

None.

SAFETY COMMENTS/VIOLATIONS

All work completed in a safe manner.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None.

WORK COMPLETED- BY WESTON

Construction oversight.

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

- Daily safety meeting
- Complete placement of cover on north topsoil stockpile and cover the south topsoil stockpile with poly sheeting and sandbags.
- Test and troubleshoot controls and monitor on mixing truck. Prepare equipment for soil mixing.
- Test GPS system and layout boundary of treatment area.
- Prepare ground surface and setup temporary secondary containment basin for reagent storage (12' x 50' x 10")
- Complete excavation of the overburden in rows S1, S2, and E17 of the treatment area. Excavated rows S1 and S2 to approx. elevation 456.3 ft. above mean sea level (or approximately 1.3 ft. above soil mixing zone). Row E17 excavated to approx. elevation 456.0 at north end to 455.3 at south end. The excavated soils were dry and used to create a berm. Base of excavation became wet with 1-2 inches of standing water in deepest portions.
- Encounter and sever two conduit and one tubing between EW-13B and former GWTP during excavation of overburden. Items were no longer in use and disconnected and were cleared to enable soil mixing.
- Grade and compact top of berm adjacent to row S1 of treatment area.

WORK COMPLETED- BY B-QUIP TEMPORARY FENCE

- Daily safety meeting
- Furnished and erected temporary 6-ft high wire fencing around perimeter of working area of site.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

AGREEMENTS

(Company Name – task description)

Location of temporary fence and gates at site entrance was reviewed and acceptable by Jon Hurteau (property owner).

ISOTEC requested a straight alignment for the secondary barricade for the excavations to enclose a larger area and simplify daily removal and re-placement. WESTON agreed on a temporary basis subject to review by the Field Safety Officer.

Notes:

ISOTEC = In-Situ Oxidative Technologies, Inc. LTC = Lang Tool Company Land & Mowing = Land and Mowing Solutions B-Quip = B-Quip Temporary Fence LLC

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

Excavation of overburden for row S1 and S2, looking west, with berm on right

North topsoil stockpile covered and grading berm

Temporary secondary containment for reagent storage

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs (continued)

Excavation of overburden of row E17, looking south

South topsoil stockpile covered

Excavation of overburden of row E17, looking north, with berm on right

Arrangement of temporary fence and gates at site entrance

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

 Report No.: 3
 Prepared By:

 Date: Sat. 9/14/15
 Erik Hall

Weather: Site Hours:

Showers 59°F to Sunny 64°F 0700-1700

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	10
ISOTEC	Mike Temple	Project Manager	Remediation Prep. Work	10
ISOTEC	Mark Ratner	Site Manager	Remediation Prep. Work	10
LTC	Bill Lang	Project Manager	Remediation Prep. Work	10
LTC	Bill Oberloier	Site Assistant	Remediation Prep. Work	10
LTC	Dave Roe	Equipment Operator	Remediation Prep. Work	10
LTC	Cody Shell	Equipment Operator	Remediation Prep. Work	10
Weston Solutions	Steve O' Brien	Div. Safety Manager	Safety Audit	5

PROJECT EQUIPMENT

(Company Name - Description)

- **WESTON** (2) POV and (1) Chevy Express Cargo Van
- **ISOTEC** (1)Penske Box Truck with various project tools and supplies
- LTC (1)Caterpillar D5K2 Bulldozer, (1) Caterpillar 320E Excavator, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer*, (1) Mack mixing truck, (1) JLC 8042 fork lift, (2) utility trucks, (1) office/utility trailer

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

- Land and Mowing's excavator with tree mulcher demobilized from site
- Received 16 totes of 34% hydrogen peroxide (~4,000 gallons or 38,400 lbs) and 2,000 lbs of stabilizing agents.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

TEST DATA

(List type and location of tests performed and results)

• Aqueous samples collected from CB5-6 for VOCs, hydrogen peroxide (H2O2) and total iron. VOC results expected on Wednesday 9/16/15 from off-site laboratory. Field test kit results from sample collected at 08:15: H2O2 = 0 parts per million (ppm) and total iron = 1 ppm. Field test kit results from sample collected at 16:30: H2O2 = 0 ppm and total iron = 0.8 ppm.

SAFETY COMMENTS/VIOLATIONS

Steve O'Brien from Weston conducted safety audit. Site team working to resolve safety audit findings.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

Comments based on the safety audit:

- ISOTEC 2 personnel will obtain certificates to operate forklift
- Weston/ ISOTEC will place warning fence, and/or rope to signify that that open excavation exist beyond the barrier
- Weston will review certificates for 1st aid, CPR, competent person training for excavations for subcontractors
- Lang Tool to fix step into office trailer
- Lang Tool to use safety can for filling generator.
- ISOTEC to procure fire extinguishers for bulldozer and JLG forklift.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Conduct safety oversight
- Perform review of erosion controls after weekend rain. Erosion controls are intact and working properly
- Collect aqueous samples from CB 5-6 for VOSs, H2O2 and total iron.
- Perimeter air monitoring with MultiRae. None of the action limits were triggered.
- Installed project sign at main gate
- Installed "Hard Hat Required", Restricted Area" and "Construction Site Keep Out" sign at all gates on temporary fence.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

- Daily safety meeting and review of major AHA topics
- Equipment preparation
- Received 16 totes of hydrogen peroxide
- Soil mixing into 18 cells,
- Excavated overburden from portions of Row E16 in preparation of subsequent soil mixing.

AGREEMENTS

(Company Name – task description)

Gary Kraus of Mann Chemical confirmed via email H2O2 totes do not need to be triple rinsed prior to return, but they do need to empty.

Notes:

ISOTEC = In-Situ Oxidative Technologies, Inc.

LTC = Lang Tool Company

$\begin{array}{l} TREATMENT\ PROGRAM-MIXING\\ SUMMARY \end{array}$

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 Volume (gal)	Reagent Flow Rate (gal/min)	Total Volume	Catalyst (lbs)	34% H2O2 (lbs)	Cell Dimensions
E12-S2	7:46	8:03	17	80	320	23.5	400	20.5	1920	10' x 10'
E11-S1	8:03	8:20	17	80	320	23.5	400	20.5	1920	10' x 10'
E10-S1	8:38	8:59	21	80	320	19.0	400	20.5	1920	10' x 10'
E11-S2	9:00	9:18	18	80	320	22.2	400	20.5	1920	10' x 10'
E10-S2	9:19	9:39	20	80	320	20.0	400	20.5	1920	10' x 10'
E9-S1	10:25	10:45	20	80	320	20.0	400	20.5	1920	10' x 10'
E9-S2	10:46	11:08	22	80	320	18.2	400	20.5	1920	10' x 10'
E8-S1	11:09	11:31	22	80	320	18.2	400	20.5	1920	10' x 10'
E8-S2	11:43	12:04	21	80	320	19.0	400	20.5	1920	10' x 10'
E7-S1	12:05	12:22	17	80	320	23.5	400	20.5	1920	10' x 10'
E7-S2	12:22	12:49	27	80	320	14.8	400	20.5	1920	10' x 10'
E6-S1	13:17	13:36	19	80	320	21.1	400	20.5	1920	10' x 10'
E6-S2	13:37	13:57	20	80	320	20.0	400	20.5	1920	10' x 10'
E5-S1	13:58	14:18	20	80	320	20.0	400	20.5	1920	10' x 10'
E5-S2	14:19	14:39	20	80	320	20.0	400	20.5	1920	10' x 10'
E4-S1	14:40	14:57	17	80	320	23.5	400	20.5	1920	10' x 10'
E4-S2	14:58	15:16	18	80	320	22.2	400	20.5	1920	10' x 10'
E3-S1	15:20	15:40	20	80	320	20.0	400	20.5	1920	10' x 10'
E3-S2	15:41	16:03	22	80	320	18.2	400	20.5	1920	10' x 10'
E2-S1	16:05	16:25	20	80	320	20.0	400	20.5	1920	10' x 10'
DAY TOTAL/ AVERAGE				1600	6400		8000	410	38400	

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

The S2 row with rain water in excavation prior to mixing looking west.

The E17 row with rain water in excavation prior to mixing looking south.

Soil mixing in cell E17 S15 (notice bubbling from chemical reaction)

Soil mixing in cell E17 S15

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs (continued)

Soil Mixing

Project sign mounted

H2O2 storage with totes covered to minimize degradation

Excavating overburden in Row E16

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

 Report No.: 5
 Prepared By:

 Date: Tues 9/15/15
 Erik Hall

 Weather:
 Site Hours:

 Sunny 71°F
 0700-1745

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
NHDES	Andrew Hoffman	Project Manager	Escort Conway Daily Sun	3.5
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	10.5
Weston Solutions	Allie Balter	Field Technician	Sampling	10.5
ISOTEC	Mike Temple	Project Manager	Soil Mixing	10.5
ISOTEC	Mark Ratner	Site Manager	Soil Mixing	10.5
ISOTEC	Kevin O'Neil	Site Manger	Soil Mixing	10.5
LTC	Bill Lang	Project Manager	Soil Mixing	10.5
LTC	Bill Oberloier	Site Assistant	Soil Mixing	10.5
LTC	Dave Roe	Equipment Operator	Soil Mixing	10.5
LTC	Cody Shell	Equipment Operator	Soil Mixing	10.5
Conway Daily Sun	Daymond Steer	Reporter	Met with Andrew Hoffman	1
Conway Daily Sun	Jamie Gemmiti	Photographer	Met with Andrew Hoffman	1

PROJECT EQUIPMENT

(Company Name - Description)

- **WESTON** (1) POV and (1) Chevy Express Cargo Van
- **ISOTEC** (1)Penske Box Truck with various project tools and supplies
- LTC (1)Caterpillar D5K2 Bulldozer, (1) Caterpillar 320E Excavator, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer*, (1) Mack mixing truck, (1) JLC 8042 fork lift, (2) utility trucks, (1) office/utility trailer

DEVIATIONS FROM PROPOSED SCHEDULE

None.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

Received 16 totes of 34% hydrogen peroxide (~4,000 gallons or 38,400 lbs).

TEST DATA

(List type and location of tests performed and results)

- Aqueous samples collected from CB5-6 for hydrogen peroxide (H2O2) and total iron at 08:15: H2O2 = 0 parts per million (ppm) and total iron = 1 ppm.
- See attached spreadsheets for analytical results of soil mix cells and field test data for CB 5-6.

SAFETY COMMENTS/VIOLATIONS

- None.
- Weston confirmed that Mark Ratner and Kevin O' Neil of ISOTEC have a Class VI forklift operator's certificate.
- Barrier cone system was set-up to signify that an open excavation exists. The system was discussed at daily tailgate meeting.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

Repair silt fence where fence was bent over by excavator bucket.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Perform review of erosion controls. Erosion controls are intact and working properly
- Collect aqueous samples from CB 5-6 for H2O2 and total iron at 15:54. H2O2 = 0 ppm and total iron was 1 ppm.
- Perimeter air monitoring with MultiRae. None of the action limits were triggered.

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

- Received 16 totes of hydrogen peroxide,
- Soil mixing into 20 cells,
- Peroxide and total iron field test kits of collected soil samples from 10 cells treated the previous day (E13-S2, E14-S1, E15-S2, E17-S5, E17-S6, E17-S7, E17-S9, E17-S11, E17-S13 and E17-S14).
- For more details refer attached Daily Reports from ISOTEC and Lang Tool.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

AGREEMENTS

(Company Name – task description)

Andrew Hoffman was on site today to escort Conway Daily Sun on-site. Conway Daily Sun requested access to take photos of soil mixing project and interview Mr. Hoffman for an article in the newspaper.

Notes:

ISOTEC = In-Situ Oxidative Technologies, Inc.

LTC = Lang Tool Company

TREATMENT PROGRAM – MIXING SUMMARY

See attached Daily Reports from ISOTEC and Lang Tool

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

The excavation from the southeast corner of the site looking north.

The excavation from the northwest corner of the excavation looking east

Typical soil sample collected from approximately 11 feet below ground surface

Typical soil sample collected from approximately 13 feet below ground surface

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street]
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs (continued)

Collecting the soil mixing samples

Soil mixing

Steel plate found in the excavation; now being used to minimize rutting near the soil mix truck

More soil mixing

ISOTEC	DAILY FIELD REPORT 11 Princess Rd, Suite A Lawrenceville, NJ 08648									
In-Situ Oxidative Technologi	ies							(609) 275-85	00	
Date:		15-Sep-15		Client:	Wes	ton	Personnel:	Mike, Mark,	Kevin, Bill L, Bil	O, Cody, Dave
Project:	KN	MC Site, Conwa	ıy, NH	Job Number:	8019	991	Weather:	Sunny, 59-83	3	
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other
Personnel Names	1	Гime	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)
	Start	Stop	Job Site			Analysis			Time	
Mike Temple	7:00 AM	5:45 PM	0.25	0.25	0.5		7.5	0.75	0.5	0.25
Mark Ratner	7:00 AM	5:15 PM	0.25	0.25	0.5	3.0	4.5	0.75		0.25
Kevin O'Neal	7:00 AM	5:45 PM	0.25	0.25	0.5	4.0	3.5	0.75	0.5	0.25
Bill Lang	7:00 AM	5:30 PM	0.25	0.25	0.5		7.5	1.0		0.25
Bill Oberloier	7:00 AM	5:30 PM	0.25	0.25	0.5		7.5	1.0		0.25
Dave Roe	7:00 AM	5:30 PM	0.25	0.25	0.5		7.5	1.0		0.25
Cody Shell	7:00 AM	5:30 PM	0.25	0.25	0.5		7.5	1.0		0.25
TOTAL HOURS =	1	10.00	TOTA	AL MIXING HOURS =			7.50			
Support Equipment and Services	Quantity	Hours	Catalyst	: Volume	H2O2 V	2 Volume Catalyst Volume		t Volume	ume H2O2 Volume	
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume
Pumps			E12-S2	80	E12-S2	320	E7-S2	80	E7-S2	320
Generator			E11-S1	80	E11-S1	320	E6-S1	80	E6-S1	320
Mixers			E10-S1	80	E10-S1	320	E6-S2	80	E6-S2	320
Equipment Set			E11-S2	80	E11-S2	320	E5-S1	80	E5-S1	320
Vehicle(s) utilized			E10-S2	80	E10-S2	320	E5-S2	80	E5-S2	320
Raw Materials Used			E9-S1	80	E9-S1	320	E4-S1	80	E4-S1	320
Powder Catalyst	410.0	lbs.	E9-S2	80	E9-S2	320	E4-S2	80	E4-S2	320
Liquid Catalyst	1600	Gallons	E8-S1	80	E8-S1	320	E3-S1	80	E3-S1	320
34% H2O2	4000	Gallons	E8-S2	80	E8-S2	320	E3-S2	80	E3-S2	320
Diluted H2O2	6400	Gallons	E7-S1	80	E7-S1	320	E2-S1	80	E2-S1	320
34% H2O2	38400	lbs.							·	
			TOTAL INJECT	ION VOLUME	=	8000		•		

Major Work Activities Performed:

Daily safety meeting and review of safety audit topics mentioned by Steve O'Brien from the day before (Steve spoke with Tom Andrews (ISOTEC DHS) about updating the AHA for excavation protection. We submitted an updated version to Steve via email). Equipment preparation, received 16 totes of hydrogen peroxide, soil mixing into 20 cells, sampling of the down-gradient catch basin for iron and hydrogen peroxide levels.

Collected soil samples from 10 cells

treated the previous day (E13-S2, E14-S1, E15-S2, E17-S5, E17-S5, E17-S7, E17-S9, E17-S1, E17-S13 and E17-S14). Samples were collected from 3 depth intervals at approximatelly 9, 11 and 13 ft bgs. Samples from each depth showed similar charteristics from samples collected across the treated areas (9' samples were very wet and showed little to no solid soils; 11' samples were similar but occasionally showed a piece of clay within the samples; 13' samples were also very wet and showed some clay sediments mixed in which can be part of the deeper geologic matrix or just the heavier sediments that fell to the bottom of the cell during mixing operations). Pictures of select soil samples were taken by Erik during sample analysis and packaging.

mixing proceeded very well with the DAB being able to push down through the saturated soil matrix with little to no resistance and bubbling within the treated areas could be seen throughout the day. Approximately 1-2 feet of swelling was observed within the S1 and S2 rows during soil mixing in those cells.

Health and Safety Items Covered:

General site safety topics and review of safety audit topics. Added fire extinguishers to each of the rental machines that didn't come equipped with one. Mark and Kevin completed an online sfaty class on fork-lift operation and received a permit for operation. Special attention to watching the sides of the excavation areas for cracks/ sliding of materials during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall, Ally). Delivery truck driver on-site for chemical delivery.

Unforeseen Site Conditions:

List of Deliveries:

Received 16 totes of 34% hydrogen peroxide (~4,000 gallons or 38,400 lbs) and 2,000 lbs of stabilizing agents.

Other Comments (Work delays, inspections results, etc.):

Drew Hoffman (NHDES) on-site to speak with local reporters about treatment program activities. Reporters snapped photos that were approved by Weston.

TREATMENT PROGRAM - MIXING VOLUME SUMMARY KMC Site, Conway, New Hampshire ISOTEC PROJECT #801991

DATE: 15-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 Volume (gal)	Reagent Flow Rate (gal/min)	Total Volume	Catalyst (lbs)	34% H2O2 (lbs)	Cell Dimensions
E12-S2	7:46	8:03	17	80	320	23.5	400	20.5	1920	10' x 10'
E11-S1	8:03	8:20	17	80	320	23.5	400	20.5	1920	10' x 10'
E10-S1	8:38	8:59	21	80	320	19.0	400	20.5	1920	10' x 10'
E11-S2	9:00	9:18	18	80	320	22.2	400	20.5	1920	10' x 10'
E10-S2	9:19	9:39	20	80	320	20.0	400	20.5	1920	10' x 10'
E9-S1	10:25	10:45	20	80	320	20.0	400	20.5	1920	10' x 10'
E9-S2	10:46	11:08	22	80	320	18.2	400	20.5	1920	10' x 10'
E8-S1	11:09	11:31	22	80	320	18.2	400	20.5	1920	10' x 10'
E8-S2	11:43	12:04	21	80	320	19.0	400	20.5	1920	10' x 10'
E7-S1	12:05	12:22	17	80	320	23.5	400	20.5	1920	10' x 10'
E7-S2	12:22	12:49	27	80	320	14.8	400	20.5	1920	10' x 10'
E6-S1	13:17	13:36	19	80	320	21.1	400	20.5	1920	10' x 10'
E6-S2	13:37	13:57	20	80	320	20.0	400	20.5	1920	10' x 10'
E5-S1	13:58	14:18	20	80	320	20.0	400	20.5	1920	10' x 10'
E5-S2	14:19	14:39	20	80	320	20.0	400	20.5	1920	10' x 10'
E4-S1	14:40	14:57	17	80	320	23.5	400	20.5	1920	10' x 10'
E4-S2	14:58	15:16	18	80	320	22.2	400	20.5	1920	10' x 10'
E3-S1	15:20	15:40	20	80	320	20.0	400	20.5	1920	10' x 10'
E3-S2	15:41	16:03	22	80	320	18.2	400	20.5	1920	10' x 10'
E2-S1	16:05	16:25	20	80	320	20.0	400	20.5	1920	10' x 10'
DAY TOTAL/ AVERAGE		•		1600	6400		8000	410	38400	-

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

 Report No.: 6
 Prepared By:

 Date: Wed 9/16/15
 Erik Hall

 Weather:
 Site Hours:

 Sunny 71°F
 0700-1745

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	10.5
Weston Solutions	Allie Balter	Field Technician	Sampling	10.5
ISOTEC	Mike Temple	Project Manager	Soil Mixing	10.5
ISOTEC	Mark Ratner	Site Manager	Soil Mixing	10.5
ISOTEC	Kevin O'Neil	Site Manger	Soil Mixing	10.5
LTC	Bill Lang	Project Manager	Soil Mixing	10.5
LTC	Bill Oberloier	Site Assistant	Soil Mixing	10.5
LTC	Dave Roe	Equipment Operator	Soil Mixing	10.5
LTC	Cody Shell	Equipment Operator	Soil Mixing	10.5

PROJECT EQUIPMENT

(Company Name – Description)

- **WESTON** (1) POV and (1) Chevy Express Cargo Van
- **ISOTEC** (1)Penske Box Truck with various project tools and supplies
- LTC (1)Caterpillar D5K2 Bulldozer, (1) Caterpillar 320E Excavator, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer*, (1) Mack mixing truck, (1) JLC 8042 fork lift, (2) utility trucks, (1) office/utility trailer

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

Received 16 totes of 34% hydrogen peroxide (~4,000 gallons or 38,400 lbs).

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

TEST DATA

(List type and location of tests performed and results)

- Aqueous samples collected from CB5-6 for hydrogen peroxide (H2O2) and total iron at 08:15: H2O2 = 0 parts per million (ppm) and total iron = 1 ppm.
- See attached spreadsheets for analytical results of soil mix cells and field test data for CB 5-6.

SAFETY COMMENTS/VIOLATIONS

- Weston confirmed that Mark Ratner and Kevin O' Neil of ISOTEC have a Class VI forklift operator's certificate.
- Barrier cone system was set-up to signify that an open excavation exists. The system was discussed at daily tailgate meeting.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

Repair silt fence where fence was bent over by excavator bucket.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Perform review of erosion controls. Erosion controls are intact and working properly
- Collect aqueous samples from CB 5-6 for H2O2 and total iron. Refer to attached spreadsheet for results.
- Perimeter air monitoring with MultiRae. None of the action limits were triggered.

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

- Received 16 totes of hydrogen peroxide,
- Soil mixing into 20 cells,
- Peroxide and total iron field test kits of collected soil samples from 10 cells treated the previous day. Refer to attached spreadsheet for results.
- For more details refer attached Daily Reports from ISOTEC and Lang Tool.

AGREEMENTS

(Company Name – task description)

Conway Daily Sun had an article on its cover regarding the site.

Notes:

ISOTEC = In-Situ Oxidative Technologies, Inc. LTC = Lang Tool Company

LTC = Lang Tool Company

TREATMENT PROGRAM – MIXING

SUMMARY

See attached Daily Reports from ISOTEC and Lang Tool

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

GPS tracking of blender head as seen from chemical mixing truck

The soil sampling tool collecting a confirmation sample

Collecting a soil confirmation sample

Soil mixing

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs (continued)

Looking north from the northeast corner of the excavation

Soil mixing

Excavating for the next row of cells

Chemical mixing truck

TABLE 1 STORM DRAIN MONITORING FIELD DATASHEET KEARSARGE METALLURGICAL CORP. SUPERFUND SITE CONWAY, NH

Catch Basin Location	Date	Time	Collected By	Hydrogen Peroxide Concentration (ppm)	Dissolved Iron Concentration (ppm)	Notes
CB5-6	9/15/2015	1630	AB	0	1.0	
	9/16/2015	1115	AB	0	0.4	
CB6-7	9/16/2015	1115	AB	0	1.0	
	9/16/2015	1643	AB	0	0.5	

Notes:

ppm = Parts per million

ISOTEC				DAIL	Y FIELD REP	ORT		11 Princess R	,		
In-Situ Oxidative Technologi	ies							(609) 275-85	•		
Date:		16-Sep-15		Client:	Wes	ton	Personnel:	Mike, Mark,	Kevin, Bill L, Bil	O, Cody, Dave	
Project:	KN	AC Site, Conwa	ıy, NH	Job Number:	8019	991	Weather:	Sunny, 58-86	i		
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other	
Personnel Names	1	Гime	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)	
	Start	Stop	Job Site			Analysis			Time		
Mike Temple	7:00 AM	5:45 PM	0.25	0.25	0.5		8.0	1.00	0.5	0.5	
Mark Ratner	7:00 AM	5:15 PM	0.25	0.25	0.5	2.0	6.0	1.00		0.5	
Kevin O'Neal	7:00 AM	5:45 PM	0.25	0.25	0.5	3.0	5.0	1.00	0.5	0.5	
Bill Lang	7:00 AM	5:15 PM	0.25	0.25	0.5		8.0	1.0		0.5	
Bill Oberloier	7:00 AM	5:15 PM	0.25	0.25	0.5		8.0	1.0		0.5	
Dave Roe	7:00 AM	5:15 PM	0.25	0.25	0.5		8.0	1.0		0.5	
Cody Shell	7:00 AM	5:15 PM	0.25	0.25	0.5		8.0	1.0		0.5	
TOTAL HOURS =	9	9.75	TOTA	AL MIXING HOU	JRS =			8.0	8.00		
Support Equipment and											
Services	Quantity	Hours	Catalyst	Volume	H2O2 V	olume	Catalys	t Volume	H2O	2 Volume	
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	
Pumps			E1-S1	100	E1-S1	320	E16-S8	100	E16-S8	320	
Generator			E2-S2	100	E2-S2	320	E16-S7	100	E16-S7	320	
Mixers			E1-S2	100	E1-S2	320	E16-S6	100	E16-S6	320	
Equipment Set			E16-S15	50	E16-S15	160	E16-S5	100	E16-S5	320	
Vehicle(s) utilized			E16-S14	100	E16-S14	320	E16-S4	100	E16-S4	320	
Raw Materials Used			E16-S13	100	E16-S13	320	E16-S3	100	E16-S3	320	
Powder Catalyst	410.0	lbs.	E16-S12	100	E16-S12	320	E1-S3	50	E1-S3	160	
Liquid Catalyst	2000	Gallons	E16-S11	100	E16-S11	320	E2-S3	100	E2-S3	320	
34% H2O2	4000	Gallons	E16-S10	100	E16-S10	320	E3-S3	100	E3-S3	320	
Diluted H2O2	6400	Gallons	E16-S9	100	E16-S9	320	E4-S3	100	E4-S3	320	
34% H2O2	38400	lbs.	E5-S3	100	E5-S3	320					
	•		TOTAL INJECT	ION VOLUME :	=	8400		·		·	

Major Work Activities Performed:

Daily safety meeting and discussed safety while working around the excavation areas. Bill Oberloier from LTC has the required competent person training for working around excavations (certificate emailed to steve O'Brien on Wednesday night). Equipment preparation, received 16 totes of hydrogen peroxide (returned 35 totes), soil mixing into 21 cells, sampling of the down-gradient catch basin for iron and hydrogen peroxide levels. Samples collected from cells E17-S11, E17-S13 and E17-S14 came back below site sampling criteria levels. Collected soil samples from 10 cells treated the previous day (E11-S2, E10-S1, E9-S2, E8-S1, E7-S1, E6-S2, E5-S1, E5-S2, E3-S1 and E3-S2). Samples were collected from 2 depth intervals (at approximatelly 9, 11 and 13 ft bgs) at select cells to confirm adequate mixing occurred. Samples apperaed to be failrly consistent with one another and looked visually well mixed.

very well with the DAB being able to push down through the saturated soil matrix with little to no resistance and bubbling within the treated areas could be seen throughou the day. Approximately 1-2 feet of swelling was observed within treated rows during soil mixing. Cells identified by Weston as having historical soil impacts (E4-S3 and E5-S3) were mixed longer than other treated cells. Cell E9-S2 was remixed (withouth extra reagent) in the morning at the request of Weston.

Health and Safety Items Covered:

General site safety topics and review of working around the excavation areas during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall, Allie Balter). Delivery truck driver on-site for chemical delivery.

Unforeseen Site Conditions:

List of Deliveries:

Received 16 totes of 34% hydrogen peroxide (\sim 4,000 gallons or 38,400 lbs).

Other Comments (Work delays, inspections results, etc.):

Article in the Conway Daily Sun newspaper about the project.

TREATMENT PROGRAM - MIXING VOLUME SUMMARY KMC Site, Conway, New Hampshire ISOTEC PROJECT #801991

DATE: 16-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 Volume (gal)	Reagent Flow Rate (gal/min)	Total Volume	Catalyst (lbs)	34% H2O2 (lbs)	Cell Dimensions
E1-S1	7:40	8:10	30	100	320	14.0	420	20.5	1920	10' x 10'
E2-S2	8:10	8:36	26	100	320	16.2	420	20.5	1920	10' x 10'
E1-S2	8:38	9:03	25	100	320	16.8	420	20.5	1920	10' x 10'
E16-S15	9:06	9:21	15	50	160	14.0	210	10.25	960	5' x 10'
E16-S14	9:22	9:46	24	100	320	17.5	420	20.5	1920	10' x 10'
E16-S13	9:46	10:07	21	100	320	20.0	420	20.5	1920	10' x 10'
E16-S12	10:07	10:28	21	100	320	20.0	420	20.5	1920	10' x 10'
E16-S11	10:28	10:28	20	100	320	21.0	420	20.5	1920	10' x 10'
E16-S10	10:48	11:08	20	100	320	21.0	420	20.5	1920	10' x 10'
E16-S9	11:09	11:28	19	100	320	22.1	420	20.5	1920	10' x 10'
E16-S8	11:28	11:48	20	100	320	21.0	420	20.5	1920	10' x 10'
E16-S7	11:48	12:08	20	100	320	21.0	420	20.5	1920	10' x 10'
E16-S6	12:33	12:54	21	100	320	20.0	420	20.5	1920	10' x 10'
E16-S5	12:54	13:18	24	100	320	17.5	420	20.5	1920	10' x 10'
E16-S4	13:18	13:43	25	100	320	16.8	420	20.5	1920	10' x 10'
E16-S3	13:43	14:08	25	100	320	16.8	420	20.5	1920	10' x 10'
E1-S3	14:15	14:30	15	50	160	14.0	210	10.25	960	5' x 10'
E2-S3	14:30	14:54	24	100	320	17.5	420	20.5	1920	10' x 10'
E3-S3	14:54	15:19	25	100	320	16.8	420	20.5	1920	10' x 10'
E4-S3	15:20	15:50	30	100	320	14.0	420	20.5	1920	10' x 10'
E5-S3	15:50	16:20	30	100	320	14.0	420	20.5	1920	10' x 10'
DAY TOTAL/ AVERAGE				2000	6400		8400	410	38400	

Phone (989) 435-9864 Fax (989) 435-4311

September 14, 2015

bill@langtool.com

Areas mixed to 447 MSL area colored green by the Dual Axis Blender on board computer. Areas mixed below 447 are colored red.

Metering Plunge Point Coordinates

Easting Northing Elevation ,1125947.925972,537301.711670,446.840698 ,1125944.214240,537299.277020,446.730560 ,1125947.070352,537294.900431,446.694885 ,1125950.480647,537297.975043,446.831970 ,1125961.586507,537299.335799,446.610016 ,1125958.596284,537296.627694,446.757996 ,1125964.493183,537295.625432,446.596954 ,1125960.660005,537293.411929,446.829163 ,1125949.783607,537291.732772,446.614929 ,1125954.662099,537294.061311,446.878113 ,1125956.151915,537290.691020,446.681702 ,1125952.701023,537287.384375,446.697571 ,1126151.259711,537276.114547,446.736511 ,1126146.577512,537272.903703,446.667694 ,1126148.026876,537280.376673,446.808960 ,1126145.169667,537283.473888,446.793884 ,1126143.803519,537277.380387,446.744812 ,1126141.392410,537281.088514,446.606506 ,1126141.443616,537288.642828,446.689270 ,1126139.260820,537291.354856,446.745239 ,1126134.709050,537289.188242,446.907867 ,1126137.751180,537285.828235,446.429932 ,1126135.945264,537297.223984,446.618225 ,1126133.440076,537300.348807,446.612976 ,1126129.754453,537297.125644,446.831451

Elevation **Easting** Northing ,1126132.397588,537293.985722,446.270660 ,1126132.171434,537294.009320,446.196075 ,1126131.001744,537305.152752,446.623047 , 1126128.382154, 537306.954606, 446.180237,1126127.162080,537308.556152,446.749054 ,1126123.836499,537305.144890,446.364990 ,1126127.056848,537301.386581,446.045898 ,1126124.666274,537313.231607,446.149323 ,1126121.604488,537316.336497,446.667419 ,1126118.450748,537313.782224,446.739716 ,1126120.414396,537309.966304,446.505280 ,1126118.398864,537320.539434,446.485565 , 1126115.271728, 537325.025945, 446.861481,1126115.631368,537316.466897,446.277283 ,1126111.533260,537321.326680,446.699646 ,1126113.192124,537329.621987,446.724457 ,1126110.557360,537333.413316,446.825104 ,1126106.265173,537329.212709,446.959290 ,1126109.170812,537326.406163,445.277222 ,1126108.259677,537337.482698,446.678741 ,1126105.021173,537340.868411,446.772552,1126100.686392,537337.789311,446.529785 ,1126103.875829,537334.573896,446.627228 ,1126101.322055,537344.828012,446.348267 ,1126098.820283,537348.396174,446.770172

Easting Northing Elevation ,1126095.131422,537345.542253,446.850342 ,1126097.671560,537342.825259,446.000580 ,1126095.279996,537352.705962,446.581665 ,1126092.246862,537356.472196,446.459869 ,1126089.267278,537353.614669,446.352448 ,1126091.537534,537350.585673,446.631165 ,1126089.700055,537361.433456,446.488068 ,1126087.122632,537365.618266,446.824371 ,1126083.306737,537362.136785,446.629395 ,1126086.041455,537358.757434,446.575195 ,1126081.529836,537373.224044,446.774963 ,1126083.818246,537369.008826,446.551025 ,1126077.884751,537370.002078,446.689758 ,1126079.994952,537365.332328,446.707489 ,1125959.782376,537287.140108,446.847229 ,1125962.321273,537282.046743,446.810791 ,1125964.225766,537290.492781,446.438843 ,1125967.541021,537291.737822,446.718201 ,1125967.561818,537291.688661,446.686218 ,1125966.414113,537285.886470,446.487305 ,1125970.764615,537288.914023,446.533234 ,1125972.159703,537296.384765,446.748199 ,1125975.809777,537298.495183,446.709106

	El	E2	E3	E4	E5	E6	E7	ES	E9	E10	El1	E12	E13	E14	E15	E16	E17
H2O S1	12.2	122	122	122	12.2	122	122	122	122	122	122	-61	-61	-61	-61	0	0
PerOX S1	1,002	1,002	1,002	1,002	1,962	1,002	1,002	1,962	1,002	1,902	1,002	951	951	951	951	0	0
Catalyst S1 Solution Gal	320	200	100	200	200	300	100	200	200	200	2100	100	160	100	100	0	0
H2O 82	100	100	140	190	10-7	100	100	100	100	100	120	100	122	122	122	0	0
PerOX S1	1.002	1.902	1.902	1.002	1.902	1.902	1.002	1.902	1.902	1.902	1.802	1.902	1.002	1,902	1.902	0	0
Catalyst S1	100	100	100	180	100	100	100	100	100	195	140	180	88	.88	. 80	0	0
Solution Gal	320	320	320	320	320	320	320	326	320	320	310	320	320	320	320	0	0
H2O S3	61	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	0
PerOX S1	991	1,902	1,002	1,902	1,002	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	0
Catalyst S1	50	100	180	100	180	100	100	100	100	100	100	100	100	100	100	100	0
Solution Gal H2O S4	160	126	120	320	320 122	320 122	320 122	320	320 122	320 122	320	320 122	320 122	320 122	320	120	0
PerOX S1	0	1.902	1,902	1.902	1,902	1,902	1.902	1.902	1.902	1,902	1.902	1.902	1.902	1,902	1.902	1.002	0
Catalyst S1	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	1002	0
Solution Gal	0	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	0
H2O S5	0	61	122	122	122	122	122	122	61	61	0	31	122	122	122	122	122
PerOX S1	0	951	1,902	1,902	1,902	1,902	1,902	1,902	951	951		476	1,902	1,902	1,902	1,002	1,902
Catalyst S1	0	50	100	100	100	100	100	100	50	50	0	25	100	100	100	180	80
Solution Gal	0	160	320	320	320	320	320	320	160	160	0	80	320	320	320	320	320
H2O S6	0	0	0	61	61	61	0	0	0	0	0	0	0	61	122	1111	12.2 1.002
PerOX S1	0	0	0	951 50	951 50	951 50	0	0	0	0	0	0	0	951 50	1,902	1,902	1,962
Catalyst S1 Solution Gal	0	0	0	160	160	160	0	0	0	0	0	0	0	160	320	320	32.0
H2O S7	0	0	0	0	100	100	0	0	0	0	,	0	0	0	0	101	101
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,902	1,002
Catalyst S1	ő	o	0	0	0	0	0	o	0	o	0	0	0	0	0	100	80
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320
H2O S8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61	122	127
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	951	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	100	200
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320
H2O S9	0	0	0	0	0	0	0	0	0	0	9	0	0	0	61	122	127
PerOX S1	0	0	0	0	0	0	0	0	0	0		0	0	0	951	1,002	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	100	200
Solution Gal H2O S10	0	0	0	0	0	0	0	0	0	0	9	0	0	0	160	320	320
PerOX S1	0	0	0	0	0	0	0	0	0	0		0	0	0	1.902	1.002	991
Catalyst S1	0	0	0	0	0	0	0	0	0	0		0	0	0	100	100	All
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320	100
H2O S11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	12.2	101
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,902	1,902	951
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	30
Solution Gal	0	0	0	0	0	0	0	0	0	0		0	0	0	320	320	200
H2O S12	0	0	0	0	0	0	0	0	0	0	9	0	0	61	122	122	202
PerOX S1 Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	951 50	1,902 100	1002	1002
Solution Gal		0	0	0	0	0	0	0	0	0	,	0	0	160	320	320	490
H2O S13	0	0	0	0	0	0	0	0	0	0	,	0	0	61	122	122	207
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	951	1,902	1,002	1,902
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	50	100	100	100
Solution Gal	10.77	0	0	0	0	0	0	0	0	0		0	0	160	320	320	400
H2O S14	0	0	0	0	0	0	0	0	0	0	0	0	0	31	122	122	202
PerOX S1	0	0	0	0	0	0	0	0	0	0		0	0	476	1,902	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	25	100	100	100
Solution Gal		0	0	0	0	0	0	0	0	0	0	0	0	80	320	320	400
H2O S15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G OS	262 1902
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	951	1002
Catalyst S1 Solution Gal		0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	400
Soution Gal			U		u		U			0		u u	u .	U		100	950

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

 Report No.: 7
 Prepared By:

 Date: Thurs 9/17/15
 Erik Hall

 Weather:
 Site Hours:

 Sunny 53-87°F
 0700-1745

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	12.5
Weston Solutions	Allie Balter	Field Technician	Sampling	12.5
ISOTEC	Mike Temple	Project Manager	Soil Mixing	12.5
ISOTEC	Mark Ratner	Site Manager	Soil Mixing	11.5
ISOTEC	Kevin O'Neil	Site Manger	Soil Mixing	12.5
LTC	Bill Lang	Project Manager	Soil Mixing	11.5
LTC	Bill Oberloier	Site Assistant	Soil Mixing	11.5
LTC	Dave Roe	Equipment Operator	Soil Mixing	11.5
LTC	Cody Shell	Equipment Operator	Soil Mixing	11.5

PROJECT EQUIPMENT

(Company Name – Description)

- **WESTON** (1) POV and (1) Chevy Express Cargo Van
- **ISOTEC** (1)Penske Box Truck with various project tools and supplies
- LTC (1)Caterpillar D5K2 Bulldozer, (1) Caterpillar 320E Excavator, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer*, (1) Mack mixing truck, (1) JLC 8042 fork lift, (2) utility trucks, (1) office/utility trailer

DEVIATIONS FROM PROPOSED SCHEDULE

Retreated cells E12S1, E12S2, E13S1, E13S2, E14S1 and E14S2 after analytical results for E13S2 and E14S1 exceeded project goals.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

• Received 16 totes of 34% hydrogen peroxide (~4,000 gallons or 38,400 lbs).

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

TEST DATA

(List type and location of tests performed and results)

 See attached spreadsheets for analytical results of soil mixing cells and field test data for catch basins CB 5-6 and CB 6-7.

SAFETY COMMENTS/VIOLATIONS

None

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

Repaired silt fence where fence was bent over by excavator bucket.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Perform review of erosion controls. Erosion controls are intact and working properly
- Collect aqueous samples from catch basins CB 5-6 and CB 6-7 for H2O2 and total iron. Refer to attached spreadsheet for results.
- Perimeter air monitoring with MultiRae. None of the action limits were triggered.

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

- Received 16 totes of hydrogen peroxide
- Soil mixing into 20 cells
- Retreatment of 6 cells; apply a full dose to each retreated cell
- Peroxide and total iron field test kits of collected soil samples from 8 cells treated the previous day. Refer to attached spreadsheet for results.
- For more details refer attached Daily Reports from ISOTEC and Lang Tool.

AGREEMENTS

(Company Name – task description)

NHDES, WESTON, and ISOTEC agreed to retreat cells E12S1, E12S2, E13S1, E13S2, E14S, and E14S2 today and resample cells tomorrow.

Notes:

ISOTEC = In-Situ Oxidative Technologies, Inc.

LTC = Lang Tool Company

TREATMENT PROGRAM – MIXING SUMMARY

See attached Daily Reports from ISOTEC and Lang Tool

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

Soil mixing (showing the barrier warning system)

Excavating for next row of cells

The excavation from the southeast corner of the excavation looking north

Soil mixing

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs (continued)

Monitoring the chemical injections from the soil mixing truck

Washing the blender at the end of the work day

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
						9		0.0	0	20.0	NA	NA	
E17-S14	14-Sep	10:45	11:04	19	15-Sep	11	Next Day	0.0	0	14.0	NA	NA	
						13		0.0	0	28.0	100 U	40 U	Sample Sent to Lab 9/15. Results received 9/16.
						9		0.0	0	12.0	NA	NA	
E17-S13	14-Sep	11:05	11:20	15	15-Sep	11	Next Day	0.0	0	63.0	NA	NA	
						13		0.0	0	32.0	50 U	20 U	Sample Sent to Lab 9/15. Results received 9/16.
						9		0.0	0	10.0	NA	NA	
E17-S11	14-Sep	11:36	11:42	7	15-Sep	11	Next Day	0.0	0	12.0	NA	NA	
						13		0.0	0	18.0	100 U	40 U	Sample Sent to Lab 9/15. Results received 9/16.
						9		0.0	0	14.0	NA	NA	
E17-S9	14-Sep	11:52	12:17	25	15-Sep	11	Next Day	0.0	0	9.0	NA	NA	
						13		0.0	0	15.0	100 U	40 U	Sample Sent to Lab 9/16. Results received 9/17.
						9		0.0	0	14.0	NA	NA	
E17-S7	14-Sep	13:07	13:22	15	15-Sep	11	Next Day	0.0	0	8.0	NA	NA	
						13		0.0	0	5.0	100 U	40 U	Sample Sent to Lab 9/16. Results received 9/17.
						9		0.0	0	11.0	NA	NA	
E17-S6	14-Sep	13:23	13:38	15	15-Sep	11	Next Day	0.0	0	6.0	NA	NA	
						13		0.0	0	12.0	100 U	30 U	Sample Sent to Lab 9/16. Results received 9/17.
						9		0.0	0	6.0	NA	NA	
E17-S5	14-Sep	13:39	14:08	29	15-Sep	11	Next Day	0.0	0	4.0	NA	NA	
						13		0.0	0	6.0	100 U	40 U	Sample Sent to Lab 9/16. Results received 9/17.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
						9		0.0	0	12.0	NA	NA	
E13-S2	14-Sep	16:16	16:33	17	15-Sep	11	Next Day	0.0	0	8.0	NA	NA	
E13-32	14-зер	16.16	10.55		15-зер	13	Next Day	0.0	0	8.0	200	110	Sample Sent to Lab 9/16. Results received 9/17. Exceedance detected. Cell retreated on 9/17.
						9		0.0	0	6.0	NA	NA	
				14		11		0.0	0	12.0	NA	NA	
E14-S1	14-Sep	15:05	15:19		15-Sep	13	Next Day	0.0	0	8.0	100 U	160	Sample Sent to Lab 9/16. Results received 9/17. Exceedance detected. Cell retreated on 9/17.
						9		0.0	0	14.0	NA	NA	
E15-S2	14-Sep	15:20	15:35	15	15-Sep	11	Next Day	0.0	0	10.0	NA	NA	
						13		0.0	0	8.0	100 U	50	Sample Sent to Lab 9/16. Results received 9/17.
544.60	45.0		0.40	40	46.6	11		0.0	0	5.0	NA	NA	
E11-S2	15-Sep	9:00	9:18	18	16-Sep	13	Next Day	0.0	0	10.0	100	60	Sample Sent to Lab 9/16. Results received 9/17.
E7-S1	15-Sep	12:05	12:22	17	16-Sep	13	Next Day	0.0	1	12.0	100	30	Sample Sent to Lab 9/16. Results received 9/17.
						9		0.0	0.0	4.0	NA	NA	
E9-S2	15-Sep	10:46	11:08	22	16-Sep	11	Next Day	0.0	0.0	9.0	100	50	
						13		0.0	0.8	6.0	NA	NA	Sample Sent to Lab 9/16. Results received 9/17.
E10-S1	15-Sep	8:38	8:59	21	16-Sep	13	Next Day	0.0	0.0	6.0	100	30	Sample Sent to Lab 9/16. Results received 9/17.
E8-S1	15-Sep	11:09	11:31	22	16-Sep	13	Next Day	0.0	0.0	7.0	100	60	Sample Sent to Lab 9/16. Results received 9/17.
E6-S2	15-Sep	13:37	13:57	20	16-Sep	13	Next Day	0.1	0.0	4.0	100	30 J	Sample Sent to Lab 9/16. Results received 9/17.
E5-S2	15-Sep	14:19	14:39	20	16-Sep	13	Next Day	0.1	0.0	10.0	50 J	20 J	Sample Sent to Lab 9/16. Results received 9/17.
E5-S1	15-Sep	13:58	14:18	20	16-Sep	13	Next Day	0.0	0.0	5.0	100	30	Sample Sent to Lab 9/16. Results received 9/17.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
E3-S2	15-Sep	15:41	16:03	22	16-Sep	13	Next Day	0.1	0.0	4.0	100 U	2011	Sample Sent to Lab 9/16. Results received 9/17.
E3-S1	15-Sep	15:20	15:40	20	16-Sep	13	Next Day	0.1	0.0	8.0	100 U	2011	Sample Sent to Lab 9/16. Results received 9/17.
E4-S3	16-Sep	15:20	15:50	30	17-Sep	11	Next Day	0.0	1.0	5.0			Sample Sent to Lab 9/17.
L4-33	10-Зер	13.20	13.30	30	17-3ер	13	Next Day	0.0	0.0	10.0			
E5-S3	16-Sep	15:50	16:20	30	17-Sep	11	Next Day	0.0	1.0	3.0			
L3-33	10-Зер	13.30	10.20	30	17-Зер	13	Next Day	0.0	0.0	6.0			Sample Sent to Lab 9/17.
E16-S14	16-Sep	9:22	9:46	24	17-Sep	11	Next Day	0.1	0.0	9.0			Sample Sent to Lab 9/17.
110-314	10-3ер	3.22	3.40	24	17-3ер	13	Next Day	0.1	0.0	5.0			
E16-S11	16-Sep	10:28	10:48	20	17-Sep	13	Next Day	0.0	0.0	8.0			Sample Sent to Lab 9/17.
E1-S2	16-Sep	8:10	8:36	26	17-Sep	13	Next Day	0.0	0.0	7.0			Sample Sent to Lab 9/17.
E16-S6	16-Sep	12:33	12:54	21	17-Sep	13	Next Day	0.1	0.0	2.0			Sample Sent to Lab 9/17.
E16-S9	16-Sep	11:09	11:28	19	17-Sep	13	Next Day	0.1	0.0	9.0			Sample Sent to Lab 9/17.
E16-S3	16-Sep	13:43	14:08	25	17-Sep	13	Next Day	0.1	0.0	7.0		· · · · · · · · · · · · · · · · · · ·	Sample Sent to Lab 9/17.

Note:

Cell Locations = ID locations of the treatment cells that were sampled after the cell was mixed/blended.

FT BGS = Feet below ground surface.

PPM = Parts per million

NA = Not Analyzed

μg/kg = Micrograms per kilogram

Sample Collection Time = Samples collected the morning after day of mixing.

1,1-DCE = 1,1-Dichloroethene (criteria of ≤60 µg/kg)

1,1,1-TCA = 1,1,1-Trichloroethane (criteria of ≤150 μ g/kg)

U=Compound was not detected and the reporting limit is shown.

Blue shading indicates results were nondetect for the compounds indicated.

Yellow highlighting indicates detection at or below the criteria for the compound indicated.

Red highlighting indicates detection above the crietria for the compound indicated.

Field testing for hydrogen peroxide was conducted using Quantofix Peroxide 100 test strips.

TABLE 1
STORM DRAIN MONITORING FIELD DATASHEET
KEARSARGE METALLURGICAL CORP. SUPERFUND SITE
CONWAY, NH

Catch Basin Location	Date	Time	Collected By	Hydrogen Peroxide Concentration (ppm)	Dissolved Iron Concentration (ppm)	Notes
CB5-6	9/15/2015	1630	AB	0	1.0	
	9/16/2015	1115	AB	0	0.4	
	9/16/2015	1643	AB	0	0.1	
	9/17/2015	1021	AB	0	1.4	
	9/17/2015	1610	AB	0	0.3	
CB6-7	9/16/2015	1115	AB	0	1.0	
	9/16/2015	1643	AB	0	0.5	
	9/17/2015	1011	AB	0	1.0	
	9/17/2015	1620	AB	0	0.2	

Notes:

ppm = Parts per million

ISOTEC			DAILY FIELD REPORT 11 Princess Rd, Suite A Lawrenceville, NJ 08648							
In-Situ Oxidative Technolog	ies							(609) 275-85	00	
Date:		17-Sep-15		Client:	Wes	ton	Personnel:	Mike, Mark,	Kevin, Bill L, Bil	O, Cody, Dave
Project:	KI	VIC Site, Conwa	y, NH	Job Number:	8019	991	Weather:	Sunny, 58-86	5	
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other
Personnel Names	-	Time	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)
	Start	Stop	Job Site			Analysis			Time	
Mike Temple	7:00 AM	7:45 PM	0.25	0.25	0.75		9.5	1.00	1.0	0.5
Mark Ratner	7:00 AM	6:45 PM	0.25	0.25	0.75	2.0	7.5	1.00		0.5
Kevin O'Neal	7:00 AM	7:45 PM	0.25	0.25	0.75	4.0	5.5	1.00	1.0	0.5
Bill Lang	7:00 AM	6:45 PM	0.25	0.25	0.75		9.5	1.0		0.5
Bill Oberloier	7:00 AM	6:45 PM	0.25	0.25	0.75		9.5	1.0		0.5
Dave Roe	7:00 AM	6:45 PM	0.25	0.25	0.75		9.5	1.0		0.5
Cody Shell	7:00 AM	6:45 PM	0.25	0.25	0.75		9.5	1.0		0.5
TOTAL HOURS =	1	1.25	TOTA	L MIXING HOU	JRS =	9.5	50			
Support Equipment and Services	Quantity	Hours	Catalyst	Volume	H2O2 V	H2O2 Volume		t Volume	H2O	2 Volume
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume
Pumps			E6-S3	100	E6-S3	320	E15-S8	50	E15-S8	160
Generator			E7-S3	100	E7-S3	320	E15-S9	50	E15-S9	160
Mixers			E8-S3	100	E8-S3	320	E15-S10	100	E15-S10	320
Equipment Set			E9-S3	100	E9-S3	320	E15-S11	100	E15-S11	320
Vehicle(s) utilized			E10-S3	100	E10-S3	320	E15-S12	100	E15-S12	320
Raw Materials Used			E11-S3	100	E11-S3	320	E15-S13	100	E15-S13	320
Powder Catalyst	445.9	lbs.	E12-S3	100	E12-S3	320	E14-S12	50	E14-S12	160
Liquid Catalyst	2175	Gallons	E13-S3	100	E13-S3	320	E14-S13	50	E14-S13	160
34% H2O2	4350	Gallons	E14-S3	100	E14-S3	320	E15-S14	100	E15-S14	320
Diluted H2O2	6960	Gallons	E15-S3	100	E15-S3	320	E14-S14	25	E14-S14	80
34% H2O2	41760	lbs.	E12-S1 (R)	50	E12-S1 (R)	160	E13-S2 (R)	100	E13-S2 (R)	320
			E12-S2 (R)	100	E12-S2 (R)	320	E14-S1 (R)	50	E14-S1 (R)	160
			E13-S1 (R)	50	E13-S1 (R)	160	E14-S2 (R)	100	E14-S2 (R)	320
			TOTAL INJECTION VOLUME = 9135							

Major Work Activities Performed:

Daily safety meeting. Equipment preparation, received 16 totes of hydrogen peroxide, soil mixing into 20 cells and re-mixing into 6 cells. Sampling of the down-gradient catch basin for iron and hydrogen peroxide levels. Samples collected from cells E13-S2 and E14-S1 came back above site criteria and were subsequently re-mixed. All other samples collected during previous days came back below site sampling criteria levels. Collected soil samples from 8 cells treated the previous day (E4-S3, E5-S3, E16-S14, E16-S11, E1-S2, E16-S6, E16-S9 and E16-S3). Samples were collected from 2 depth intervals (at approximately 9, 11 and 13 ft bgs) at select cells to confirm adequate mixing occurred. Samples appeared to be fairly consistent with one another and looked visually well mixed. Similar to previous days samples, mixing proceeded very well with the DAB being able to push down through the saturated soil matrix with little to no resistance and bubbling within the treated areas could be seen throughout the day. Approximately 1-2 feet of swelling was observed within treated rows during soil mixing. Cells identified by Weston as having historical soil impacts (E13-S3 and E14-S3) were mixed longer than other treated cells.

Health and Safety Items Covered:

General site safety topics during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall, Allie Balter). Delivery truck driver on-site for chemical delivery.

Unforeseen Site Conditions:

List of Deliveries:

Received 16 totes of 34% hydrogen peroxide (~4,000 gallons or 38,400 lbs).

Other Comments (Work delays, inspections results, etc.):

Re-mixed cells E12-S1, E12-S2, E13-S1, E13-S2, E14-S1 and E14-S2.

TREATMENT PROGRAM - MIXING VOLUME SUMMARY KMC Site, Conway, New Hampshire ISOTEC PROJECT #801991

DATE: 17-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 Volume (gal)	Reagent Flow Rate (gal/min)	Total Volume	Catalyst (lbs)	34% H2O2 (lbs)	Cell Dimensions
E6-S3	7:58	8:22	24	100	320	17.5	420	20.5	1920	10' x 10'
E7-S3	8:22	8:48	26	100	320	16.2	420	20.5	1920	10' x 10'
E8-S3	8:51	9:20	29	100	320	14.5	420	20.5	1920	10' x 10'
E9-S3	9:21	9:47	26	100	320	16.2	420	20.5	1920	10' x 10'
E10-S3	9:48	10:17	29	100	320	14.5	420	20.5	1920	10' x 10'
E11-S3	10:18	10:42	24	100	320	17.5	420	20.5	1920	10' x 10'
E12-S3	10:43	11:06	23	100	320	18.3	420	20.5	1920	10' x 10'
E13-S3	11:07	11:37	30	100	320	14.0	420	20.5	1920	10' x 10'
E14-S3	11:37	12:06	29	100	320	14.5	420	20.5	1920	10' x 10'
E15-S3	12:33	12:59	26	100	320	16.2	420	20.5	1920	10' x 10'
E15-S8	13:02	13:14	12	50	160	17.5	210	10.25	960	5' x 10'
E15-S9	13:14	13:26	12	50	160	17.5	210	10.25	960	5' x 10'
E15-S10	13:27	13:50	23	100	320	18.3	420	20.5	1920	10' x 10'
E15-S11	13:50	14:11	21	100	320	20.0	420	20.5	1920	10' x 10'
E15-S12	14:11	14:37	26	100	320	16.2	420	20.5	1920	10' x 10'
E15-S13	14:37	14:59	22	100	320	19.1	420	20.5	1920	10' x 10'
E14-S12	14:59	15:11	12	50	160	17.5	210	10.25	960	5' x 10'
E14-S13	15:11	15:23	12	50	160	17.5	210	10.25	960	5' x 10'
E15-S14	15:23	15:50	27	100	320	15.6	420	20.5	1920	10' x 10'
E14-S14	15:50	15:58	8	25	80	13.1	105	5.125	480	5' x 5'
E12-S1 (Re-mix)	17:47	17:59	12	50	160	17.5	210	10.25	960	5' x 10'
E12-S2 (Re-mix)	17:24	17:47	23	100	320	18.3	420	20.5	1920	10' x 10'
E13-S1 (Re-mix)	17:14	17:24	10	50	160	21.0	210	10.25	960	5' x 10'
E13-S2 (Re-mix)	16:50	17:14	24	100	320	17.5	420	20.5	1920	10' x 10'
E14-S1 (Re-mix)	16:37	16:50	13	50	160	16.2	210	10.25	960	5' x 10'
E14-S2 (Re-mix)	16:06	16:37	31	100	320	13.5	420	20.5	1920	10' x 10'
DAY TOTAL/ AVERAGE				2175	6960		9135	445.9	41760	

Phone (989) 435-9864 Fax (989) 435-4311

www.langtool.com bill@langtool.com

September 17, 2015

Areas mixed to 447 MSL area colored green by the Dual Axis Blender on board computer. Areas mixed below 447 are colored red.

Metering Plunge Point Coordinates

Easting Northing Elevation ,1125996.779084,537312.807222,446.725494 ,1125996.819381,537312.836679,446.729553 ,1125997.086167,537312.638246,446.525757 ,1126000.046736,537314.933894,446.807220 ,1126000.450747,537308.914674,446.694916 ,1126003.325637,537311.414191,446.808380 ,1126005.711383,537318.629926,446.617218 ,1126004.577958,537318.467981,446.538025 ,1126008.425817,537320.806497,446.635010 ,1126006.856059,537315.094087,446.839600 ,1126011.676526,537317.073133,446.785400 ,1126013.118970,537324.647642,446.678589 ,1126015.927850,537327.139280,446.955322 ,1126015.820779,537320.223367,446.555328 ,1126019.235036,537322.986466,446.757050 ,1126021.564256,537329.325098,446.805634 ,1126024.607904,537332.249612,446.746521 ,1126023.907668,537326.715495,446.568268 ,1126023.891774,537326.608615,446.535858 ,1126026.973939,537329.042531,446.035278 ,1126028.850314,537336.274057,446.751038 ,1126032.248889,537338.171296,446.810486 ,1126031.312871,537331.460830,446.821381 ,1126035.880014,537334.153247,446.579315 ,1126035.867618,537334.135368,446.609283

Easting Northing Elevation ,1126035.944413,537334.108007,446.578094 ,1126035.259967,537333.458721,446.782532 ,1126037.515744,537341.933277,446.302948 ,1126041.062979,537344.438809,446.785980 ,1126041.087524,537344.477002,446.828888 ,1126039.806050,537337.880058,446.836121 ,1126043.827402,537340.175591,446.855560 ,1126044.835073,537347.540245,446.597260 ,1126047.556647,537343.740739,446.872009 ,1126047.606999,537343.799132,446.910065 ,1126047.687070,537343.846870,446.909851 ,1126051.468212,537346.169963,446.696259 ,1126048.758509,537350.668704,446.806763 ,1126053.370296,537352.771398,446.739227 ,1126053.265064,537352.716041,446.764404 ,1126057.320213,537355.340661,446.605560 ,1126055.858174,537349.509999,446.571991 ,1126059.418379,537352.155387,446.692017 .1126060.928777,537359.176770,446.677795 ,1126064.032933,537354.699109,446.572021 ,1126064.228845,537354.853385,446.601349 ,1126064.056169,537354.658063,446.608673 ,1126067.920200,537357.000787,446.646088 ,1126065.496728,537361.556636,446.705719 ,1126073.645532,537368.052474,446.708893

Easting Northing Elevation ,1126069.473338,537365.302959,446.357513 ,1126071.991986,537360.304502,446.148407 ,1126076.424028,537363.505187,446.503815 ,1126102.353930,537326.933400,446.906677 ,1126105.716033,537323.482591,446.661072 ,1126108.881029,537318.891208,446.505859 ,1126110.454565,537314.927848,446.659607 ,1126110.588780,537308.183288,445.968719 ,1126116.787269,537306.435728,446.545471 ,1126116.830125,537306.396692,446.557922 ,1126112.596831,537304.997722,446.504700 ,1126112.585344,537304.989423,446.484772 ,1126112.584457,537304.993855,446.490509 ,1126112.624790,537304.992310,446.520477 ,1126112.611936,537304.992019,446.499786 ,1126120.305066,537301.654662,446.482941 ,1126122.837558,537298.011433,446.308167 ,1126116.190683,537299.193242,446.034790,1126118.319659,537295.500964,445.799408 ,1126125.815526,537294.868583,446.096619 ,1126128.073354,537290.068807,446.657898 ,1126121.120937,537290.359084,446.415131 ,1126124.215436,537287.980317,446.804718

	El	E2	E3	E4	E5	E6	E7	ES	E9	E10	E11	E12	E13	E14	E15	E16	E17
H2O S1	12.2	122	122	122	12.7	1902	122	1902	122	122	122	25	25	%	051	0	0
PerOX S1 Catalyst S1	1,002	1,002	1,002	1,002	1,902	1,002	1,002	1,002	1,002	1,902	1,002				Mar	0	0
Solution Gal	320	320	320	390	320	320	320	320	320	390	300				107	0	0
H2O S2	107	107	107	107	10.7	100	127	107	107	107	107	-	102	102	122	0	0
PerOX S1	1.902	1.902	1.902	1.002	1,902	1.902	1.902	1.902	1.902	1,902	1.902	D002	1.002	12902	1.902	0	0
Catalyst S1	100	100	180	180	100	105	100	190	100	100	100	385	98	90	90	0	0
Solution Gal	320	320	120	320	320	320	320	320	320	320	320	386	380	386	320	0	0
H2O S3	61	122	122	122	12.2	127	122	122	122	122	12.2	122	12.2	122	122	122	0
PerOX S1	991	1,802	1,902	1,902	1,002	1,002	1,002	1,002	1,002	1,002	1,002	1,002	1,002	1,902	1,902	1,002	0
Catalyst S1	50	100	100	100	100	100	100	100	100	100	100	100	100	180	100	100	0
Solution Gal	160	320	120	320	320	320	320	320	320	320	320	326	326	320	120	120	0
H2O S4	0	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	0
PerOX S1	0	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1002	0
Catalyst S1 Solution Gal	0	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	0
H2O S5	0	61	122	122	122	122	122	122	61	61	0	31	122	122	122	123	122
PerOX S1	0	951	1.902	1,902	1,902	1,902	1.902	1,902	951	951	0	476	1,902	1.902	1.902	1.002	1.002
Catalyst S1	0	50	100	100	100	100	100	100	50	50	0	25	100	100	100	180	200
Solution Gal	0	160	320	320	320	320	320	320	160	160	0	80	320	320	320	320	320
H2O S6	0	0	0	61	61	61	0	0	0	0	0	0	0	61	122	122	122
PerOX S1	0	0	0	951	951	951	0	0	0	0	0	0	0	951	1,902	1,902	1,962
Catalyst S1	0	0	0	50	50	50	0	0	0	0	0	0	0	50	100	180	20
Solution Gal	0	0	0	160	160	160	0	0	0	0	0	0	0	160	320	320	320
H2O S7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	122
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	80
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	120
H2O S8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61	122	127
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	991	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	330
Solution Gal H2O S9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	120	120
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.01	1.071	1.0412
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	591	100	24
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	140	320	320
H2O S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	121	62
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.002	1.002	931
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160	150	45
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320	100
H2O S11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	122	101
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,902	1,902	951
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	180	180	-30
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320	200
H2O S12	0	0	0	0	0	0	0	0	0	0	0	0	0	- GY	122	122	202
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	2991	1,902	1,902	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	1000	200	200	400
Solution Gal H2O S13	0	0	0	0	0	0	0	0	0	0	0	0	0	200	100	122	200
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	091	1,902	1,902	1.000
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	391	1002	1002	1002
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320	400
H2O S14	0	0	0	0	0	0	0	0	0	0	0	0	0	31	125	122	202
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	476	1,002	1,002	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	.25	100	100	100
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	80	320	320	400
H2O S15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	63	202
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	951	1,902
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		180
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	180	400

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Report No.: 8Prepared By:Date: Friday 9/18/15Erik Hall

 Weather:
 Site Hours:

 Sunny 53-86°F
 0700-1800

PROJECT PERSONNEL

Employer:	Employee:	Trade:	Work Description:	Hours:
U.S. EPA	Darryl Luce	Remedial Proj. Manager	Site Visit	3.5
Weston Solutions	Vinnie DelloRusso	Project Manager	Site Visit	6
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	11
Weston Solutions	Allie Balter	Field Technician	Sampling	11
ISOTEC	Mike Temple	Project Manager	Soil Mixing	11
ISOTEC	Mark Ratner	Site Manager	Soil Mixing	10
ISOTEC	Kevin O'Neil	Site Manger	Soil Mixing	11
LTC	Bill Lang	Project Manager	Soil Mixing	10
LTC	Bill Oberloier	Site Assistant	Soil Mixing	10
LTC	Dave Roe	Equipment Operator	Soil Mixing	10
LTC	Cody Shell	Equipment Operator	Soil Mixing	10

PROJECT EQUIPMENT

(Company Name – Description)

- **WESTON** (2) POV and (1) Chevy Express Cargo Van
- **ISOTEC** (1)Penske Box Truck with various project tools and supplies
- LTC (1)Caterpillar D5K2 Bulldozer, (1) Caterpillar 320E Excavator, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer*, (1) Mack mixing truck, (1) JLC 8042 fork lift, (2) utility trucks, (1) office/utility trailer

DEVIATIONS FROM PROPOSED SCHEDULE

None.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

- Received 26 totes of 34% hydrogen peroxide.
- Returned 32 empty totes to Mann Chemical.

TEST DATA

(List type and location of tests performed and results)

 See attached spreadsheets for analytical results of soil mixing cells and field test data for catch basins CB 5-6 and CB 6-7.

SAFETY COMMENTS/VIOLATIONS

None

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None

WORK COMPLETED- BY WESTON

- Construction oversight.
- Perform review of erosion controls. Erosion controls are intact and working properly
- Collect aqueous samples from catch basins CB 5-6 and CB 6-7 for H2O2 and total iron. Refer to attached spreadsheet for results.
- Collected soil samples from 10 cells treated the previous day. Refer to attached spreadsheet for results.
- Review analytical data received from off-site laboratory.
- Perimeter air monitoring with MultiRae. None of the action limits were triggered.

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

- Soil mixing into 20 cells
- Received 26 totes of hydrogen peroxide (returned 32 empty totes), soil mixing into 20 cells.
- Peroxide and total iron field test kits of collected soil samples from 10 cells treated the previous day. Refer to attached spreadsheet for results.
- For more details refer attached Daily Reports from ISOTEC and Lang Tool.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

AGREEMENTS

(Company Name – task description)

None.

Notes:

ISOTEC = In-Situ Oxidative Technologies, Inc. LTC = Lang Tool Company

TREATMENT PROGRAM - MIXING **SUMMARY**

See attached Daily Reports from ISOTEC and Lang Tool

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

Stainless steel well casing found wrapped around blender head

Looking north from the southeast corner of the excavation

Soil mixing activities

Soil mixing

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Photographs (continued)

Typical soil sample (adequately mixed)

Looking south from the northeast corner of the excavation

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes			
						9		0.0	0	20.0	NA	NA				
E17-S14	14-Sep	10:45	11:04	19	15-Sep	11	Next Day	0.0	0	14.0	NA	NA				
						13		0.0	0	28.0	100 U	40 U	Sample sent to lab on 9/15. Results received on 9/16.			
						9		0.0	0	12.0	NA	NA				
E17-S13	14-Sep	11:05	11:20	15	15-Sep	11	Next Day	0.0	0	63.0	NA	NA				
						13		0.0	0	32.0	50 U		Sample sent to lab on 9/15. Results received on 9/16.			
									9		0.0	0	10.0	NA	NA	
E17-S11	14-Sep	11:36	11:42	7	15-Sep	11	Next Day	0.0	0	12.0	NA	NA				
				13		0.0	0	18.0	100 U	40 U	Sample sent to lab on 9/15. Results received on 9/16.					
						9		0.0	0	14.0	NA	NA				
E17-S9	14-Sep	11:52	12:17	25	15-Sep	11	Next Day	0.0	0	9.0	NA	NA				
						13		0.0	0	15.0	100 U	40 U	Sample sent to lab on 9/16. Results received on 9/17.			
						9		0.0	0	14.0	NA	NA				
E17-S7	14-Sep	13:07	13:22	15	15-Sep	11	Next Day	0.0	0	8.0	NA	NA				
						13		0.0	0	5.0	100 U	40 U	Sample sent to lab on 9/16. Results received on 9/17.			
						9		0.0	0	11.0	NA	NA				
E17-S6	14-Sep	13:23	13:38	15	15-Sep	11	Next Day	0.0	0	6.0	NA	NA				
				13		0.0	0	12.0	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.					
						9		0.0	0	6.0	NA	NA				
E17-S5	14-Sep	13:39	14:08	29	15-Sep	11	Next Day	0.0	0	4.0	NA	NA				
						13		0.0	0	6.0	100 U	40 U	Sample sent to lab on 9/16. Results received on 9/17.			

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes	
						9		0.0	0	12.0	NA	NA		
				17		11]	0.0	0	8.0	NA	NA		
E13-S2	14-Sep	16:16	16:33		15-Sep	13	Next Day	0.0	0	8.0	200	110	Sample sent to lab on on 9/16. Results received on 9/17. Exceedance detected. Cell retreated on 9/17. Analytical data received on 9/19/15 with results below	
						9		0.0	0	6.0	NA	NA		
				14		11		0.0	0	12.0	NA	NA		
E14-S1	14-Sep	15:05	15:19		15-Sep	13	Next Day	0.0	0	8.0	100 U	160	Sample sent to lab on on 9/16. Results received on 9/17. Exceedance detected. Cell retreated on 9/17. Analytical data received on 9/19/15 with results below	
						9		0.0	0	14.0	NA	NA		
E15-S2	14-Sep	15:20	15:35	15	15	15-Sep	11	Next Day	0.0	0	10.0	NA	NA	
						13		0.0	0	8.0	100 U	50	Sample sent to lab on 9/16. Results received on 9/17.	
F44.63	45.6	2.22	0.40	10	46.6	11		0.0	0	5.0	NA	NA		
E11-S2	15-Sep	9:00	9:18	18	16-Sep	13	Next Day	0.0	0	10.0	100	60	Sample sent to lab on 9/16. Results received on 9/17.	
E7-S1	15-Sep	12:05	12:22	17	16-Sep	13	Next Day	0.0	1	12.0	100	30	Sample sent to lab on 9/16. Results received on 9/17.	
						9		0.0	0.0	4.0	NA	NA		
E9-S2	15-Sep	10:46	11:08	22	16-Sep	11	Next Day	0.0	0.0	9.0	100	50		
						13		0.0	0.8	6.0	NA	NA	Sample sent to lab on 9/16. Results received on 9/17.	
E10-S1	15-Sep	8:38	8:59	21	16-Sep	13	Next Day	0.0	0.0	6.0	100	30	Sample sent to lab on 9/16. Results received on 9/17.	
E8-S1	15-Sep	11:09	11:31	22	16-Sep	13	Next Day	0.0	0.0	7.0	100	60	Sample sent to lab on 9/16. Results received on 9/17.	
E6-S2	15-Sep	13:37	13:57	20	16-Sep	13	Next Day	0.1	0.0	4.0	100	30 J	Sample sent to lab on 9/16. Results received on 9/17.	
E5-S2	15-Sep	14:19	14:39	20	16-Sep	13	Next Day	0.1	0.0	10.0	50 J	20 J	Sample sent to lab on 9/16. Results received on 9/17.	
E5-S1	15-Sep	13:58	14:18	20	16-Sep	13	Next Day	0.0	0.0	5.0	100	30	Sample sent to lab on 9/16. Results received on 9/17.	

									1				
Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
E3-S2	15-Sep	15:41	16:03	22	16-Sep	13	Next Day	0.1	0.0	4.0	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.
E3-S1	15-Sep	15:20	15:40	20	16-Sep	13	Next Day	0.1	0.0	8.0	100 U	3011	Sample sent to lab on 9/16. Results received on 9/17.
E4-S3	16-Sep	15:20	15:50	30	17-Sep	11	Next Day	0.0	1.0	5.0	100	40	Sample sent to lab on 9/17. Results received on 9/18.
E4-35	10-зер	15.20	15.50	30	17-Зер	13	Next Day	0.0	0.0	10.0	NA	NA	
E5-S3	16-Sep	15:50	16:20	30	17-Sep	11	Next Day	0.0	1.0	3.0	NA	NA	
E3-33	10-зер	15.50	16.20	30	17-Зер	13	Next Day	0.0	0.0	6.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S14	16-Sep	9:22	9:46	24	17-Sep	11	Next Day	0.1	0.0	9.0	100 U	3011	Sample sent to lab on 9/17. Results received on 9/18.
E10-314	10-зер	9.22	9.40	24	17-Зер	13	Next Day	0.1	0.0	5.0	NA	NA	
E16-S11	16-Sep	10:28	10:48	20	17-Sep	13	Next Day	0.0	0.0	8.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E1-S2	16-Sep	8:10	8:36	26	17-Sep	13	Next Day	0.0	0.0	7.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S6	16-Sep	12:33	12:54	21	17-Sep	13	Next Day	0.1	0.0	2.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S9	16-Sep	11:09	11:28	19	17-Sep	13	Next Day	0.1	0.0	9.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S3	16-Sep	13:43	14:08	25	17-Sep	13	Next Day	0.1	0.0	7.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E10-S3	17-Sep	9:48	10:17	29	18-Sep	13	Next Day	0.1	0.0	7.0			Sample sent to lab on 9/18.
E13-S3	17-Sep	11:07	11:37	20	18-Sep	13	Next Day	0.1	0.0	4.0			Sample sent to lab on 9/18.
E14-S12	17-Sep	14:59	15:11	12	18-Sep	13	Next Day	0.0	0.0	10.0			Sample sent to lab on 9/18.
E14-S3	17-Sep	11:37	12:00	23	18-Sep	13	Next Day	0.2	0.0	2.0			Sample sent to lab on 9/18.
E15-S8	17-Sep	13:02	13:14	12	18-Sep	13	Next Day	0.0	0.0	5.0			Sample sent to lab on 9/18.
E15-S10	17-Sep	13:27	13:50	23	18-Sep	13	Next Day	0.0	0.0	3.0			Sample sent to lab on 9/18.
E15-S14	17-Sep	15:23	15:50	27	18-Sep	13	Next Day	0.0	0.0	8.0			Sample sent to lab on 9/18.
E15-S3	17-Sep	12:33	12:59	26	18-Sep	13	Next Day	0.0	0.0	7.0			Sample sent to lab on 9/18.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
E12-S1	17-Sep	17:42	17:59	17	18-Sep	11	Next Day	0.0	0.0	3.0			Retreated cell on 9/17. Sample sent to lab on 9/18.
	17-5ер	17.42	17.55	17	10-3ер	13	Next Day	0.0	0.0	5.0			Retreated cell on 9/17.
E12-S2	17.5	17:24	17:42	18	10.5	11	11 Next Day	0.0	0.0	5.0			Retreated cell on 9/17.
E12-32	17-Sep	17:24	17:42	18	18-Sep	13		0.1	0.0	5.0			Retreated cell on 9/17. Sample sent to lab on 9/18.
542.64		10	40.0	11		0.0	0.0	3.0			Retreated cell on 9/17.		
E13-S1	17-Sep	17:14	17:24	10	18-Sep	13	Next Day	0.0	0.0	6.0			Retreated cell on 9/17. Sample sent to lab on 9/18.
-12.02	47.6	46.50	47.44	24	10.0	11		0.0	0.0	4.0			Retreated cell on 9/17.
E13-S2	17-Sep	16:50	17:14	24	18-Sep	13	Next Day	0.1	0.0	5.0			Retreated cell on 9/17. Sample sent to lab on 9/18.
E14-S1	17 Con	16.27	16,50	12	18-Sep	11	Next Day	0.1	0.0	6.0			Retreated cell on 9/17. Sample sent to lab on 9/18.
114-31	I-S1 17-Sep 16:37 16:50 13	15	10-зер	13	NEAL Day	0.0	0.0	8.0			Retreated cell on 9/17.		
F14.63	-S2 17-Sep 16:06 16:37 31	21	10.6	11	No. 4 D.	0.0	0.0	7.0			Retreated cell on 9/17.		
E14-S2		31	18-Sep	13	Next Day	0.0	0.0	3.0			Retreated cell on 9/17. Sample sent to lab on 9/18.		

Note:

Cell Locations = ID locations of the treatment cells that were sampled after the cell was mixed/blended.

FT BGS = Feet below ground surface.

PPM = Parts per million

NA = Not Analyzed

μg/kg = Micrograms per kilogram

Sample Collection Time = Samples collected the morning after day of mixing.

1,1-DCE = 1,1-Dichloroethene (criteria of ≤60 μg/kg)

1,1,1-TCA = 1,1,1-Trichloroethane (criteria of \leq 150 µg/kg)

U=Compound was not detected and the reporting limit is shown.

Blue shading indicates results were nondetect for the compounds indicated.

Yellow highlighting indicates detection at or below the criteria for the compound indicated.

Red highlighting indicates detection above the crietria for the compound indicated.

Field testing for hydrogen peroxide was conducted using Quantofix Peroxide 100 test strips.

TABLE 1
STORM DRAIN MONITORING FIELD DATASHEET
KEARSARGE METALLURGICAL CORP. SUPERFUND SITE
CONWAY, NH

Catch Basin Location	Date	Time	Collected By	Hydrogen Peroxide Concentration (ppm)	Dissolved Iron Concentration (ppm)	Notes
CB5-6	9/15/2015	1630	AB	0	1.0	
	9/16/2015	1115	AB	0	0.4	
	9/16/2015	1643	AB	0	0.1	
	9/17/2015	1021	AB	0	1.4	
	9/17/2015	1610	AB	0	0.3	
	9/18/2015	1102	AB	0	0.6	
	9/18/2015	1610	AB	0	0.2	
CB6-7	9/16/2015	1115	AB	0	1.0	
	9/16/2015	1643	AB	0	0.5	
	9/17/2015	1011	AB	0	1.0	
	9/17/2015	1620	AB	0	0.2	
	9/18/2015	1112	AB	0	0.8	
	9/18/2015	1603	AB	0	0.1	

Notes:

ppm = Parts per million

ISOTEC In-Situ Oxidative Technolog	ies			DAIL	Y FIELD REP	ORT		11 Princess R Lawrenceville (609) 275-85	e, NJ 08648		
Date:		18-Sep-15		Client:	Wes	ton	Personnel:	Mike, Mark,	Kevin, Bill L, Bill	O, Cody, Dave	
Project:	KN	AC Site, Conwa	ıy, NH	Job Number:	8019	991	Weather:	Sunny, 52-85			
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other	
Personnel Names	Time		To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)	
	Start	Stop	Job Site			Analysis			Time		
Mike Temple	7:00 AM	6:00 PM	0.25	0.25	0.75		8.5	0.5	0.5	0.5	
Mark Ratner	7:00 AM	5:30 PM	0.25	0.25	0.75	2.0	6.5	0.5		0.5	
Kevin O'Neal	7:00 AM	6:00 PM	0.25	0.25	0.75	4.0	4.5	0.5	0.5	0.5	
Bill Lang	7:00 AM	5:30 PM	0.25	0.25	0.75		8.5	0.5		0.5	
Bill Oberloier	7:00 AM	5:30 PM	0.25	0.25	0.75		8.5	0.5		0.5	
Dave Roe	7:00 AM	5:30 PM	0.25	0.25	0.75		8.5	0.5		0.5	
Cody Shell	7:00 AM	5:30 PM	0.25	0.25	0.75		8.5	0.5		0.5	
TOTAL HOURS = Support Equipment and	1	.0.00	1014	L MIXING HOL	JRS =			8.5	0		
Services	Quantity	Hours	Catalyst	Volume	H2O2 V	olume	Catalys	t Volume	H2O:	2 Volume	
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	
Pumps			E2-S5	50	E2-S5	160	E9-S5	50	E9-S5	160	
Generator			E2-S4	100	E2-S4	320	E10-S5	50	E10-S5	160	
Mixers			E3-S4	100	E3-S4	320	E11-S4	100	E11-S4	320	
Equipment Set			E4-S4	100	E4-S4	320	E12-S4	100	E12-S4	320	
Vehicle(s) utilized			E5-S4	100	E5-S4	320	E13-S4	100	E13-S4	320	
Raw Materials Used			E6-S4	100	E6-S4	320	E14-S4	100	E14-S4	320	
Powder Catalyst	379.3	lbs.	E7-S4	100	E7-S4	320	E15-S4	100	E15-S4	320	
Liquid Catalyst	1850	Gallons	E8-S4	100	E8-S4	320	E3-S5	100	E3-S5	320	
34% H2O2	3700	Gallons	E9-S4	100	E9-S4	320	E4-S5	100	E4-S5	320	
Diluted H2O2	5920	Gallons	E10-S4	100	E10-S4	320	E5-S5	100	E5-S5	320	
34% H2O2	35520	lbs.		0		0		0		0	
				0		0		0		0	
Ì				0		0		0		0	
			TOTAL INJECT	ION VOLUME :	=	7770	-				

Major Work Activities Performed:

Daily safety meeting. Equipment preparation, received 26 totes of hydrogen peroxide (returned 32 empty totes), soil mixing into 20 cells. Sampling of the down-gradient catch basin for iron and hydrogen peroxide levels. Each sample collected the previous day came back below site criteria. Collected soil samples from 10 cells treated the previous day (E14-S1, E14-S2, E10-S3, E13-S3, E14-S12, E14-S3, E15-S8, E15-S10, E15-S14 and E15-S3). Samples were collected from 2 depth intervals (at approximately 11 and 13 ft bgs) at select cells to confirm adequate mixing occurred. Samples appeared to be fairly consistent with one another and looked visually well mixed. Similar to previous days, mixing proceeded very well with the DAB being able to push down through the saturated soil matrix with little to no resistance and bubbling within the treated areas could be seen throughout the day. Approximately 1-2 feet of swelling was observed within treated rows during soil mixing. Cells identified by Weston as having historical soil impacts (E4-S4, E5-S4, E3-S5, E4-S5, E5-S5, E10-S4, E11-S4, E13-S4, E14-S4) were mixed longer than other treated cells.

Health and Safety Items Covered:

General site safety topics during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall, Allie Balter, Vinnie DelloRusso) and EPA (Darryl Luce). Delivery truck drivers on-site for chemical delivery.

Unforeseen Site Conditions:

List of Deliveries:

Received 26 totes of 34% hydrogen peroxide (~4,000 gallons or 62,400 lbs). Bathroom was serviced.

Other Comments (Work delays, inspections results, etc.):

TREATMENT PROGRAM - MIXING VOLUME SUMMARY KMC Site, Conway, New Hampshire ISOTEC PROJECT #801991

DATE: 18-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 Volume (gal)	Reagent Flow Rate (gal/min)	Total Volume	Catalyst (lbs)	34% H2O2 (lbs)	Cell Dimensions
E2-S5	7:56	8:06	10	50	160	21.0	210	10.25	960	5' x 10'
E2-S4	8:06	8:37	31	100	320	13.5	420	20.5	1920	10' x 10'
E3-S4	8:50	9:15	25	100	320	16.8	420	20.5	1920	10' x 10'
E4-S4	9:15	9:46	31	100	320	13.5	420	20.5	1920	10' x 10'
E5-S4	9:47	10:16	29	100	320	14.5	420	20.5	1920	10' x 10'
E6-S4	10:16	10:37	21	100	320	20.0	420	20.5	1920	10' x 10'
E7-S4	10:37	11:02	25	100	320	16.8	420	20.5	1920	10' x 10'
E8-S4	11:02	11:26	24	100	320	17.5	420	20.5	1920	10' x 10'
E9-S4	11:26	11:47	21	100	320	20.0	420	20.5	1920	10' x 10'
E10-S4	11:47	12:13	26	100	320	16.2	420	20.5	1920	10' x 10'
E9-S5	12:40	12:50	10	50	160	21.0	210	10.25	960	5' x 10'
E10-S5	12:50	13:01	11	50	160	19.1	210	10.25	960	5' x 10'
E11-S4	13:01	13:32	31	100	320	13.5	420	20.5	1920	10' x 10'
E12-S4	13:34	13:57	23	100	320	18.3	420	20.5	1920	10' x 10'
E13-S4	13:57	14:26	29	100	320	14.5	420	20.5	1920	10' x 10'
E14-S4	14:26	14:56	30	100	320	14.0	420	20.5	1920	10' x 10'
E15-S4	14:56	15:18	22	100	320	19.1	420	20.5	1920	10' x 10'
E3-S5	15:19	15:49	30	100	320	14.0	420	20.5	1920	10' x 10'
E4-S5	15:50	16:18	28	100	320	15.0	420	20.5	1920	10' x 10'
E5-S5	16:18	16:47	29	100	320	14.5	420	20.5	1920	10' x 10'
DAY TOTAL/ AVERAGE				1850	5920		7770	379.3	35520	

Phone (989) 435-9864 Fax (989) 435-4311

bill@langtool.com

September 18, 2015

Areas mixed to 447 MSL area colored green by the Dual Axis Blender on board computer. Areas mixed below 447 are colored red.

Metering Plunge Point Coordinates

Easting Northing Elevation ,1125969.647168,537280.959132,446.785034 ,1125973.200074,537283.491365,446.681183 ,1125972.011872,537277.604179,446.664673 ,1125972.023885,537277.708491,446.685944 ,1125975.111470,537280.179906,446.901672 ,1125975.306516,537273.227931,446.691101 ,1125978.337341,537275.520559,446.497833 ,1125977.880033,537287.329148,446.549255 ,1125981.609651,537289.509229,447.042267 ,1125981.842178,537289.401565,446.717621 ,1125980.958509,537283.143387,446.710114 ,1125984.320266,537286.005864,446.741821 ,1125985.960982,537292.630172,446.891602 ,1125989.461711,537289.502530,446.915710 ,1125989.472722,537289.480327,446.912537 ,1125989.493238,537289.464708,446.945770 ,1125989.451987,537289.416558,446.933075 ,1125989.476390,537289.415210,446.894836 ,1125992.654460,537291.359189,446.854370 ,1125990.432101,537295.789794,446.610107 ,1125994.739644,537298.981520,446.685120 ,1125997.895166,537301.144004,446.752045 ,1125996.533912,537295.094217,446.825806 ,1126000.636176,537297.631108,446.877686 ,1125995.891254,537294.886358,446.812500

Northing Elevation **Easting** ,1126001.381878,537304.641881,446.710083 ,1126005.769346,537307.402211,446.938354 ,1126004.467013,537301.444269,446.755829 ,1126008.391258,537303.795105,446.854492 ,1126010.001886,537309.862519,446.723236 ,1126013.585849,537312.492692,446.158661 ,1126012.723083,537305.677414,446.806641 ,1126016.730244,537308.629464,446.744629 .1126018.968656,537316.074899,446.483521 ,1126022.350682,537319.058459,446.578766 ,1126021.140943,537311.872672,446.710846 ,1126024.757463,537314.743228,446.802704 ,1126024.757726,537314.721561,446.800598 ,1126024.620698,537314.690467,446.770630 ,1126026.491059,537321.563039,446.523346 ,1126030.055118,537324.698301,446.834778 ,1126032.943912,537320.245046,446.871582 ,1126029.322862,537318.359227,446.421967 .1126035.136171,537327.205800,446.721497 ,1126038.303615,537330.061814,446.909882 ,1126038.324678,537330.032010,446.852173 ,1126040.631852,537326.762757,446.666473 ,1126037.212835,537323.849046,446.736053 ,1126032.317195,537313.641721,446.573395 ,1126036.141078,537316.651433,446.882996

Easting Northing Elevation ,1126040.187605,537319.520911,446.854584 ,1126043.929862,537322.424865,446.569824 ,1126043.984060,537322.347058,446.463806 ,1126043.983007,537322.348828,446.460327 ,1126043.047893,537333.127935,446.910828 ,1126046.152333,537336.231393,446.615662 ,1126049.481970,537332.808767,446.632782 ,1126049.488996,537332.793634,446.639191 ,1126049.525715,537332.724061,446.568634 ,1126045.824767,537330.142644,446.902710 ,1126051.523534,537339.019433,446.888367 ,1126054.932529,537341.646509,446.887299 ,1126053.208923,537335.963813,446.595215

Easting **Northing** Elevation ,1126057.191871,537338.147944,446.616516 ,1126058.840872,537345.374586,446.909912 ,1126062.874862,537347.195781,446.885376 ,1126062.216429,537341.445643,446.899597 ,1126065.245783,537343.912300,446.542145 ,1126061.567808,537341.290133,446.809204 ,1126067.461929,537350.823456,446.811493 ,1126071.353753,537353.172603,446.464935 ,1126073.825744,537349.791577,446.884033 ,1126069.501385,537347.268373,446.348969 ,1126069.373771,537347.334718,446.321594 ,1126069.364699,537347.280772,446.296417 ,1126079.045501,537359.086723,446.709076 ,1126081.690257,537356.413102,446.639954

### PROX. SI July 1		E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	Ell	E12	E13	E14	E15	E16	E17
Solution Gal July 2007 1907 1907 1907 1907 1907 1907 1907 1		122	12.2	122	122	12.2	12.2	122	127	122	122	122	25	×8.	×.	-61	_	
130 150		1,002	1,002	1,002	1,002	1,902	1,002	1,002	1,002	1,902	1,902	1,902		*		951	274	6
Pack St. Liver		1917	12/1	320	2001	3017	320	120	324	300	2047	2347				140	1.100	
Pendix St		100	100	100	192	102	100	192	100	100	192	100	-3%	192	192	122	_	
Solution Call Meet Aser		1,002	1,902	1,902	1,002	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1002	19902	1002	1,902	0	1000
## PROX SI AFF	Catalyst S1	100	100	100	180	100	100	100	100	100	100	180	180	90	3	90	0	0
Penox St Carly and St Carly Ca	Solution Gal	320	320	320	320	320	320	320	326	320	320	330	384	384	780	320	0	0
Solution Call 1.50	Transition (Transition)	170 TO 170 TO 1	122	122	122	12.2	122	122	122	122	122	12.2	122	12.2	122	122		-
Solution Call April Apri		991	1,902	1,002	1,902	1,902	1,902	1,902	1,802	1,902	1,902	1,502	1,902	1,902	1,902	1,902		
Part		20	100	100	100	100	100	100	100	100	180	110	100	100	100	100		
Page 12 Page 12 Page 13 Page			120	120	120	120	120	120	125	120	125	134	120	120	120	120		
Cathyry SI 0 0 1400 1400 1400 1400 1400 1400 1400		20.0	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.602	1.002	1.002	1.902	1.002		100
Schring Gal O 2007 200		0	100	100	100	100	100	100	100	100	100	180	100	100	100	100	100	
Performance	THE PARTY OF THE PARTY	0	320	320	320	320	320	320	320	720	320	320	320	320	320	720	320	0
Solution Gal O	H2O S5	0	61	122	122	122	122	122	122	61	61	0	31	122	122	122	127	122
Soltrino Gal Parico Sal O O O O O O O O O O O O O	The second secon		951	1,002	1,002	1,002		ALC: NO CONTRACTOR OF THE PARTY	The Contract of the Contract o	Contract of the Contract of th	100100000000000000000000000000000000000	0	15.5144	1,902	1,902	The State of the Land	A STATE OF THE PARTY OF THE PAR	
Part	The same of the sa	10.77	- 50	180	180	100			100 Miles	- V H	- X 70 -		(1997)	A THE REAL PROPERTY.	2000		The state of the s	
Perion St		_										_						
Catalyst SI 0 0 0 0 160 160 160 0 0 0 0 0 0 0 0 0 160 320 320 320 320 320 320 320 320 320 32		1900	700	- 75			761.00	. 160	-	- 10	- 100	0	- 10			The second secon		and the second
Solution Gal 100 100 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 1		- 27	- 20	153	112/12/14	Water Committee	7,177	Vinc	100		177	· ·	1793	75	10000000	ACREMIC MEN		
### Part X S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-	_						_					_				
Part	All the control of th	-	15754			1000	75.00.00			_	-	-	-			E-727.00		
Solution Gal		0	0			0					0	0	0	0	0		1,902	1,002
H2O SS O O O O O O O O O	Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	
Parl St O	Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320
Catalyst S1		000		-	0	0	0	-	0	0	0	0	0	0	0	61	122	122
Solution Gal 0 0 0 0 0 0 0 0 0		1077	100	27		70.	7,01			- 27		0	77.0	7.0		991	1,902	1,002
H2O S9			_		-		-	-	-					700	-1980	50	100	20
ParOX S1	The second secon						_		_					_		160	120	120
Catalyst SI		-		-			1500	100		1.00	1.00	-	-	-	1.6.	0.00	1.041	1.022
Solution Gal 0		- 57		170		- 50	7.	1.00					370	10.		551	1002	1002
H2O S10				1.77	1			1,000	100		-	1,000	-	-	110000	140	320	300
Catalyst S1																122	122	BY
Solution Gal	PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,002	1,007	991
H2O S11	Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	180	46
ParOX S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_		_	_	_	_		_	_	_	_	_		0	320	320	100
Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	The second secon				0	-		-	10	17	-	0		7.	-	122	122	101
Solution Gal 0 0 0 0 0 0 0 0 0			-			-		-	-			0		_	_	1,902	1,902	951
H2O S12	April 19 Carlot Wall Control of the Control	7.7					-		0				0	0	0	200	220	200
PerOX S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									0		_	V A	0	0	C No.	107	107	201
Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		127	-		100	(7)	100	100	T	140		- 5	177	100	091	1,902	1.902	1.002
Solution Gal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1000	-		1000		1000	1000	-	1000	100			2500	-50	180	100	100
PerOX S1 0<		0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320	400
Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	Al	122	127	202
Solution Gal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	991	1,902	1,902	1,802
H2O S14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1000	10000	100	50.00	2,374	2500	40 -	100	1000	100	227	22:2	100	-55	100	100	100
ParOX S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	The second secon						1/2				_		-		168	320	320	400
Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10.00	-	1111			1000		17.0	100					47	1.00	1.00	1000
Solution Gal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Commence of the second second second second	120	200	1200	220	200	200	100	-		- 53	532	195	- 原	21	1002	1002	1002
H2O S15 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 444</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>24</td> <td>200</td> <td>390</td> <td>480</td>							1 444								24	200	390	480
ParOX S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																		
Catalyst S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.000	1000	5-3	(37)		0.000	1,000	144	1,100	1,700		- TE		1.01		951	1,902
		0	1000	100	cil.	770	1,010	100		- 10	53	0	- 20		100	- 22	50	100
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	180	400

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

 Report No.: 10
 Prepared By:

 Date: Mon 9/21/15
 Erik Hall

 Weather:
 Site Hours:

 Sunny 38-70°F
 0700-1800

PROJECT PERSONNEL

Employer:	Employee:	Trade:	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	11
ISOTEC	Mike Temple	Project Manager	Soil Mixing	11
ISOTEC	Mark Ratner	Site Manager	Soil Mixing	11
ISOTEC	Kevin O'Neil	Site Manger	Soil Mixing	11
LTC	Bill Lang	Project Manager	Soil Mixing	11
LTC	Bill Oberloier	Site Assistant	Soil Mixing	11
LTC	Dave Roe	Equipment Operator	Soil Mixing	11
LTC	Cody Shell	Equipment Operator	Soil Mixing	11

PROJECT EQUIPMENT

(Company Name – Description)

- **WESTON** (1) POV and (1) Chevy Express Cargo Van
- **ISOTEC** (1)Penske Box Truck with various project tools and supplies
- LTC (1)Caterpillar D5K2 Bulldozer, (1) Caterpillar 320E Excavator, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer*, (1) Mack mixing truck, (1) JLC 8042 fork lift, (2) utility trucks, (1) office/utility trailer

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

None.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

TEST DATA

(List type and location of tests performed and results)

 See attached spreadsheets for analytical results of soil mixing cells and field test data for catch basins CB 5-6 and CB 6-7.

SAFETY COMMENTS/VIOLATIONS

None

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None

WORK COMPLETED- BY WESTON

- Construction oversight.
- Perform review of erosion controls. Erosion controls are intact and working properly
- Collect aqueous samples from catch basins CB 5-6 and CB 6-7 for H2O2 and total iron. Refer to attached spreadsheet for results.
- Collected soil samples from 6 cells treated the previous day. Refer to attached spreadsheet for results.
- Review analytical data received from off-site laboratory. Cell E13S04 exceeded the project remediation goals. The cell was retreated and resampled.
- Perimeter air monitoring with MultiRae. None of the action limits were triggered.

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

- Retreated cell E13S04 that exceeded the project remediation goals
- Peroxide and total iron field test kits of collected soil samples from 4 cells treated the previous work day plus one sample from retreated CellE13S04. Refer to attached spreadsheet for results
- For more details refer attached Daily Reports from ISOTEC and Lang Tool.

AGREEMENTS

(Company Name – task description)

None.

Notes:

 $ISOTEC = In\mbox{-}Situ\ Oxidative\ Technologies,\ Inc.$

LTC = Lang Tool Company

TREATMENT PROGRAM – MIXING SUMMARY

See attached Daily Reports from ISOTEC and Lang Tool

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

Soil mixing activities

Looking southeast towards the southeast corner of the excavation

Soil mixing activities

Looking north from the southeast corner of the excavation

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs (continued)

Treating the last cell

Looking east from the western edge of the excavation

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
						9		0.0	0	20.0	NA	NA	
E17-S14	14-Sep	10:45	11:04	19	15-Sep	11	Next Day	0.0	0	14.0	NA	NA	
						13		0.0	0	28.0	100 U	10 II	Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	12.0	NA	NA	
E17-S13	14-Sep	11:05	11:20	15	15-Sep	11	Next Day	0.0	0	63.0	NA	NA	
						13		0.0	0	32.0	50 U	20 U	Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	10.0	NA	NA	
E17-S11	14-Sep	11:36	11:42	7	15-Sep	11	Next Day	0.0	0	12.0	NA	NA	
						13		0.0	0	18.0	100 U	40 U	Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	14.0	NA	NA	
E17-S9	14-Sep	11:52	12:17	25	15-Sep	11	Next Day	0.0	0	9.0	NA	NA	
						13		0.0	0	15.0	100 U		Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	14.0	NA	NA	
E17-S7	14-Sep	13:07	13:22	15	15-Sep	11	Next Day	0.0	0	8.0	NA	NA	
						13		0.0	0	5.0	100 U		Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	11.0	NA	NA	
E17-S6	14-Sep	13:23	13:38	15	15-Sep	11	Next Day	0.0	0	6.0	NA	NA	
						13		0.0	0	12.0	100 U	3011	Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	6.0	NA	NA	
E17-S5	14-Sep	13:39	14:08	29	15-Sep	11	Next Day	0.0	0	4.0	NA	NA	
						13		0.0	0	6.0	100 U		Sample sent to lab on 9/16. Results received on 9/17.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
						9		0.0	0	12.0	NA	NA	
				17		11		0.0	0	8.0	NA	NA	
E13-S2	14-Sep	16:16	16:33		15-Sep	13	Next Day	0.0	0	8.0	200	110	Sample sent to lab on on 9/16. Results received on 9/17. Exceedance detected. Cell retreated on 9/17. Analytical data received on 9/19/15 with results below
						9		0.0	0	6.0	NA	NA	
				14		11		0.0	0	12.0	NA	NA	
E14-S1	14-Sep	15:05	15:19		15-Sep	13	Next Day	0.0	0	8.0	100 U	160	Sample sent to lab on on 9/16. Results received on 9/17. Exceedance detected. Cell retreated on 9/17. Analytical data received on 9/19/15 with results below
						9		0.0	0	14.0	NA	NA	
E15-S2	14-Sep	15:20	15:35	15	15-Sep	11	Next Day	0.0	0	10.0	NA	NA	
						13		0.0	0	8.0	100 U	50	Sample sent to lab on 9/16. Results received on 9/17.
						11		0.0	0	5.0	NA	NA	
E11-S2	15-Sep	9:00	9:18	18	16-Sep	13	Next Day	0.0	0	10.0	100	60	Sample sent to lab on 9/16. Results received on 9/17.
E7-S1	15-Sep	12:05	12:22	17	16-Sep	13	Next Day	0.0	1	12.0	100	30	Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0.0	4.0	NA	NA	
E9-S2	15-Sep	10:46	11:08	22	16-Sep	11	Next Day	0.0	0.0	9.0	100	50	
						13		0.0	0.8	6.0	NA	NA	Sample sent to lab on 9/16. Results received on 9/17.
E10-S1	15-Sep	8:38	8:59	21	16-Sep	13	Next Day	0.0	0.0	6.0	100	30	Sample sent to lab on 9/16. Results received on 9/17.
E8-S1	15-Sep	11:09	11:31	22	16-Sep	13	Next Day	0.0	0.0	7.0	100	60	Sample sent to lab on 9/16. Results received on 9/17.
E6-S2	15-Sep	13:37	13:57	20	16-Sep	13	Next Day	0.1	0.0	4.0	100	30 J	Sample sent to lab on 9/16. Results received on 9/17.
E5-S2	15-Sep	14:19	14:39	20	16-Sep	13	Next Day	0.1	0.0	10.0	50 J	20 J	Sample sent to lab on 9/16. Results received on 9/17.
E5-S1	15-Sep	13:58	14:18	20	16-Sep	13	Next Day	0.0	0.0	5.0	100	30	Sample sent to lab on 9/16. Results received on 9/17.
E3-S2	15-Sep	15:41	16:03	22	16-Sep	13	Next Day	0.1	0.0	4.0	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.
E3-S1	15-Sep	15:20	15:40	20	16-Sep	13	Next Day	0.1	0.0	8.0	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes Sample sent to lab on 9/17. Results received
E4-S3	16-Sep	15:20	15:50	30	17-Sep	11	Next Day	0.0	1.0	5.0	100	40	on 9/18.
						13		0.0	0.0	10.0	NA	NA	
E5-S3	16-Sep	15:50	16:20	30	17-Sep	11	Next Day	0.0	1.0	3.0	NA	NA	
L5-33	10-3ер	15.50	10.20	30	17-Зер	13	NEXT Day	0.0	0.0	6.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S14	16-Sep	9:22	9:46	24	17-Sep	11	Next Day	0.1	0.0	9.0	100 U		Sample sent to lab on 9/17. Results received on 9/18.
110-314	10-3ер	3.22	3.40	24	17-Зер	13	Next Day	0.1	0.0	5.0	NA	NA	
E16-S11	16-Sep	10:28	10:48	20	17-Sep	13	Next Day	0.0	0.0	8.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E1-S2	16-Sep	8:10	8:36	26	17-Sep	13	Next Day	0.0	0.0	7.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S6	16-Sep	12:33	12:54	21	17-Sep	13	Next Day	0.1	0.0	2.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S9	16-Sep	11:09	11:28	19	17-Sep	13	Next Day	0.1	0.0	9.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S3	16-Sep	13:43	14:08	25	17-Sep	13	Next Day	0.1	0.0	7.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E10-S3	17-Sep	9:48	10:17	29	18-Sep	13	Next Day	0.1	0.0	7.0	100 U	30 J	Sample sent to lab on 9/18. Results received on 9/19.
E13-S3	17-Sep	11:07	11:37	20	18-Sep	13	Next Day	0.1	0.0	4.0	100 U	40 J	Sample sent to lab on 9/18. Results received on 9/19.
E14-S12	17-Sep	14:59	15:11	12	18-Sep	13	Next Day	0.0	0.0	10.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E14-S3	17-Sep	11:37	12:00	23	18-Sep	13	Next Day	0.2	0.0	2.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E15-S8	17-Sep	13:02	13:14	12	18-Sep	13	Next Day	0.0	0.0	5.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E15-S10	17-Sep	13:27	13:50	23	18-Sep	13	Next Day	0.0	0.0	3.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E15-S14	17-Sep	15:23	15:50	27	18-Sep	13	Next Day	0.0	0.0	8.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E15-S3	17-Sep	12:33	12:59	26	18-Sep	13	Next Day	0.0	0.0	7.0	100 U	<i>1</i> 0 H	Sample sent to lab on 9/18. Results received on 9/19.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
E12-S1	17-Sep	17:42	17:59	17	18-Sep	11	Next Day	0.0	0.0	3.0	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
						13		0.0	0.0	5.0	NA	NA	Retreated cell on 9/17.
E12-S2	17-Sep	17:24	17:42	18	18-Sep	11	Next Day	0.0	0.0	5.0	NA	NA	Retreated cell on 9/17.
E12-32	17-зер	17:24	17:42	16	10-3eb	13	Next Day	0.1	0.0	5.0	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
E13-S1	17-Sep	17:14	17:24	10	18-Sep	11	Next Day	0.0	0.0	3.0	NA	NA	Retreated cell on 9/17.
E13-31	17-зер	17:14	17:24	10	16-зер	13	Next Day	0.0	0.0	6.0	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
E13-S2	17-Sep	16:50	17:14	24	18-Sep	11	Next Day	0.0	0.0	4.0	NA	NA	Retreated cell on 9/17.
E13-32	17-зер	16.50	17:14	24	10-зер	13	Next Day	0.1	0.0	5.0	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
E14-S1	17-Sep	16:37	16:50	13	18-Sep	11	Next Day	0.1	0.0	6.0	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
14-31	17-3ер	10.37	10.50	13	10-3ер	13	Next Day	0.0	0.0	8.0	NA	NA	Retreated cell on 9/17.
E14-S2	17-Sep	16:06	16:37	31	18-Sep	11	Next Day	0.0	0.0	7.0	NA	NA	Retreated cell on 9/17.
E14-32	17-зер	16:06	10.57	31	10-3eb	13	Next Day	0.0	0.0	3.0	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
E2-S4	18-Sep	7:56	8:06	10	19-Sep	13	Next Day	0.1	0.0	5.0			Sample sent to lab on 9/19.
E3-S5	18-Sep	13:19	13:49	30	19-Sep	13	Next Day	0.1	0.0	13.0			Sample sent to lab on 9/19.
E5-S4	18-Sep	9:47	10:16	29	19-Sep	13	Next Day	0.1	0.0	3.0			Sample sent to lab on 9/19.
E14-S4	18-Sep	14:26	14:56	30	19-Sep	13	Next Day	0.0	0.0	8.0			Sample sent to lab on 9/19.
E4-S5	18-Sep	13:50	14:18	28	19-Sep	13	Next Day	0.1	0.0	4.0			Sample sent to lab on 9/19.
E15-S4	18-Sep	14:56	15:18	22	19-Sep	13	Next Day	0.0	0.0	6.0			Sample sent to lab on 9/19.
E5-S5	18-Sep	16:18	16:47	29	19-Sep	13	Next Day	0.1	0.0	7.0			Sample sent to lab on 9/19.
E7-S4	18-Sep	10:37	11:02	25	19-Sep	13	Next Day	0.1	0.0	5.0			Sample sent to lab on 9/19.
E10-S4	18-Sep	11:42	12:13	31	19-Sep	13	Next Day	0.0	0.0	24.0			Sample sent to lab on 9/19.
E11-S4	18-Sep	13:11	13:32	21	19-Sep	13	Next Day	0.0	0.0	12.0			Sample sent to lab on 9/19.

Cell Location		Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron	1,1,1-TCA	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
E13-S4	18-Sep	13:52	14:26	34	19-Sep	13	Next Day	0.1	0.0	13.0			Sample sent to lab on 9/19.

Note:

Cell Locations = ID locations of the treatment cells that were sampled after the cell was mixed/blended.

FT BGS = Feet below ground surface.

PPM = Parts per million

NA = Not Analyzed

μg/kg = Micrograms per kilogram

Sample Collection Time = Samples collected the morning after day of mixing.

1,1-DCE = 1,1-Dichloroethene (criteria of ≤60 µg/kg)

1,1,1-TCA = 1,1,1-Trichloroethane (criteria of ≤150 μ g/kg)

U=Compound was not detected and the reporting limit is shown.

Blue shading indicates results were nondetect for the compounds indicated.

Yellow highlighting indicates detection at or below the criteria for the compound indicated.

Red highlighting indicates detection above the crietria for the compound indicated.

Field testing for hydrogen peroxide was conducted using Quantofix Peroxide 100 test strips.

TABLE 1
STORM DRAIN MONITORING FIELD DATASHEET
KEARSARGE METALLURGICAL CORP. SUPERFUND SITE
CONWAY, NH

Catch Basin Location	Date	Time	Collected By	Hydrogen Peroxide Concentration (ppm)	Dissolved Iron Concentration (ppm)	Notes
CB5-6	9/15/2015	1630	AB	0	1.0	
	9/16/2015	1115	AB	0	0.4	
	9/16/2015	1643	AB	0	0.1	
	9/17/2015	1021	AB	0	1.4	
	9/17/2015	1610	AB	0	0.3	
	9/18/2015	1102	AB	0	0.6	
	9/18/2015	1610	AB	0	0.2	
	9/19/2015	0915	AB	0	0.8	
	9/19/2015	1200	AB	0	0.8	
CB6-7	9/16/2015	1115	AB	0	1.0	
	9/16/2015	1643	AB	0	0.5	
	9/17/2015	1011	AB	0	1.0	
	9/17/2015	1620	AB	0	0.2	
	9/18/2015	1112	AB	0	0.8	
	9/18/2015	1603	AB	0	0.1	
	9/19/2015	0915	AB	0	1.0	
	9/19/2015	1200	AB	0	1.0	

Notes:

ppm = Parts per million

ISOTEC				DAIL	Y FIELD REP	ORT		11 Princess Rd, Suite A Lawrenceville, NJ 08648			
In-Situ Oxidative Technolog	ies							(609) 275-850	•		
Date:		19-Sep-15		Client:	Wes	ton	Personnel:	Mike, Mark,	Kevin, Bill L, Bil	l O, Cody, Dave	
Project:	KI	AC Site, Conwa	y, NH	Job Number:	8019	991	Weather:	Sunny, 55-85			
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other	
Personnel Names	7	Гime	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)	
	Start	Stop	Job Site			Analysis			Time		
Mike Temple	7:30 AM	1:00 PM	0.25	0.25	0.75	1.0	2.5	0.5	0.5	0.5	
Mark Ratner	7:30 AM	1:00 PM	0.25	0.25	0.75	1.0	2.5	0.5			
Kevin O'Neal	7:30 AM	1:00 PM	0.25	0.25	0.75	1.0	2.5	0.5			
Bill Lang	7:30 AM	1:00 PM	0.25	0.25	0.75		4.25	0.5		0.5	
Bill Oberloier	7:30 AM	1:00 PM	0.25	0.25	0.75		4.25	0.5		0.5	
Dave Roe	7:30 AM 1:00 PM 0			0.25	0.75		4.25	0.5		0.5	
Cody Shell	7:30 AM	1:00 PM	0.25	0.25	0.75		4.25	0.5		0.5	
TOTAL HOURS =		5.50	TOTA	L MIXING HO	JRS =			4.2	5		
Support Equipment and Services	Quantity	Hours	Catalyst Volume H2O2 Volume Ca				Catalvs	t Volume	H2O	2 Volume	
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	
Pumps			E6-S5	100	E6-S5	320		0		0	
Generator			E7-S5	100	E7-S5	320		0		0	
Mixers			E8-S5	100	E8-S5	320		0		0	
Equipment Set			E4-S6	50	E4-S6	160		0		0	
Vehicle(s) utilized			E5-S6	50	E5-S6	160		0		0	
Raw Materials Used			E6-S6	50	E6-S6	160		0		0	
Powder Catalyst	189.6	lbs.	E13-S5	100	E13-S5	320		0		0	
Liquid Catalyst	925	Gallons	E12-S5	25	E12-S5	80		0		0	
34% H2O2	1850	Gallons	E14-S5	100	E14-S5	320		0		0	
Diluted H2O2	2960	Gallons	E14-S6	50	E14-S6	160		0		0	
34% H2O2	17760	lbs.	E15-S5	100	E15-S5	320		0		0	
			E15-S6	100	E15-S6	320		0		0	
				0		0		0		0	
	ION VOLUME	=	3885								

Major Work Activities Performed:

Daily safety meeting. Equipment preparation, soil mixing into 12 cells. Sampling of the down-gradient catch basin for iron and hydrogen peroxide levels. Each sample collected the previous day came back below site criteria. Collected soil samples from 12 cells treated the previous day (E2-S4, E3-S5, E5-S4, E14-S4, E4-S5, E15-S4, E5-S5, E7-S4, E10-S4, E11-S4, E11-S4, E13-S4, and E4-S4). Samples were collected from 1 depth interval (at approximately 13 ft bgs) at select cells to confirm adequate mixing occurred.

Health and Safety Items Covered:

General site safety topics during the daily safety meeting between ISOTEC (Mike Temple, Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall, Allie Balter).

Unforeseen Site Conditions:

List of Deliveries:

Other Comments (Work delays, inspections results, etc.):

TREATMENT PROGRAM - MIXING VOLUME SUMMARY KMC Site, Conway, New Hampshire ISOTEC PROJECT #801991

DATE: 19-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 Volume (gal)	Reagent Flow Rate (gal/min)	Total Volume	Catalyst (lbs)	34% H2O2 (lbs)	Cell Dimensions
E6-S5	8:45	9:15	30	100	320	14.0	420	20.5	1920	10' x 10'
E7-S5	9:25	9:45	20	100	320	21.0	420	20.5	1920	10' x 10'
E8-S5	9:45	10:15	30	100	320	14.0	420	20.5	1920	10' x 10'
E4-S6	8:19	8:32	13	50	160	16.2	210	10.25	960	5' x 10'
E5-S6	8:32	8:45	13	50	160	16.2	210	10.25	960	5' x 10'
E6-S6	9:15	9:25	10	50	160	21.0	210	10.25	960	5' x 10'
E13-S5	10:25	10:47	22	100	320	19.1	420	20.5	1920	10' x 10'
E12-S5	10:15	10:25	10	25	80	10.5	105	5.125	480	5' x 5'
E14-S5	10:47	11:10	23	100	320	18.3	420	20.5	1920	10' x 10'
E14-S6	11:10	11:20	10	50	160	21.0	210	10.25	960	5' x 10'
E15-S5	11:20	11:40	20	100	320	21.0	420	20.5	1920	10' x 10'
E15-S6	11:40	12:05	25	100	320	16.8	420	20.5	1920	10' x 10'
DAY TOTAL/ AVERAGE				925	2960		3885	189.6	17760	

bill@langtool.com

Phone (989) 435-9864 Fax (989) 435-4311

September 18, 2015

Areas mixed to 447 MSL area colored green by the Dual Axis Blender on board computer. Areas mixed below 447 are colored red.

Metering Plunge Point Coordinates

Northing **Easting** Elevation ,1125996.784053,537276.647099,446.506226 ,1126000.271217,537279.758424,446.727051 ,1126000.271163,537279.627843,446.677521 ,1126005.516511,537282.464107,446.728577 ,1126009.143693,537285.824884,446.848602 ,1126007.590364,537296.639462,446.855743 ,1126011.838324,537299.470743,446.766022 ,1126011.137288,537292.491990,446.810364 ,1126014.377355,537295.561201,446.684052 ,1126013.546075,537290.174972,446.449371 ,1126013.673764,537290.401372,446.317932 ,1126014.259656,537288.913101,449.773102 ,1126018.183072,537292.147833,446.863678 ,1126016.861383,537303.182891,446.812744 ,1126019.731824,537304.788985,446.562531 ,1126019.058740,537298.531272,446.562500,1126021.646978,537300.826827,446.603394 ,1126023.774266,537308.412347,446.694977 ,1126028.185373,537310.844653,446.842743 ,1126026.705964,537304.604489,446.866760 ,1126030.904227,537307.066911,447.012207 ,1126059.946342,537334.376760,446.584778 ,1126064.684007,537337.291963,446.680573 ,1126068.906216,537339.798362,446.604614 ,1126071.040929,537336.368585,446.673645

Easting Northing Elevation ,1126068.354427,537333.686048,446.621521 ,1126079.169557,537342.035405,446.258209 ,1126079.204969,537342.060599,446.365356 ,1126082.568687,537337.281898,446.807922 ,1126078.813087,537334.640186,446.668152 ,1126078.856038,537334.627105,446.677368 ,1126078.874231,537334.614286,446.664673 ,1126078.882787,537334.607757,446.660767,1126078.701917,537334.702548,446.716400 ,1126076.222173,537338.537021,446.654114 ,1126076.086177,537338.610713,446.638184 ,1126072.558662,537343.019710,446.648773 ,1126085.411600,537351.086702,446.723633 ,1126081.533502,537348.131652,446.926697 ,1126084.336967,537344.388499,446.646301 ,1126087.225291,537346.568939,446.621582 ,1126087.275174,537346.563084,446.632721 ,1126093.179122,537339.406774,446.601013 ,1126090.384534,537343.621839,446.498596 ,1126089.557180,537336.884198,446.714355 ,1126086.643387,537340.402255,446.928314

	El	E2	E3	E4	E5	E6	E7	ES	E9	E10	E11	E12	E13	E14	E15	E16	E17
H2O S1	122	122	122	122	122	122	122	122	122	122	122	XX.	26%	X	-61	0	0
PerOX S1	1,002	1,002	1,002	1,902	1,902	1,902	1,002	1,002	1,902	1,002	1,002	2 **		× 10	051	0	0
Catalyst S1 Solution Gal	320	320	320	390	320	320	320	320	320	390	320				100	0	0
H2O S2	107	107	107	197	10.7	101	107	107	107	197	197	~	100	192	122	0	0
PerOX S1	1.002	1.902	1.902	1.002	1.902	1.902	1,002	1.902	1,902	1.902	1.902	1007	1.000	1.002	1.902	0	0
Catalyst S1	100	100	100	180	190	100	100	100	190	100	190	300	38	99	80	0	o
Solution Gal	320	320	320	320	320	320	320	326	320	320	320	380	380	5	320	0	0
H2O S3	61	127	122	122	12.7	127	122	122	122	122	122	122	122	122	122	122	0
PerOX S1	991	1,902	1,902	1,902	1,902	1,002	1,802	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,902	1,002	0
Catalyst S1	- 50	100	100	100	100	100	100	100	180	100	100	180	100	100	100	100	0
Solution Gal	160	326	120	320	320	320	320	326	320	320	320	326	320	320	120	320	0
H2O S4	0	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	0
PerOX S1	0	1,902	1,952	1,802	1,002	1,002	1,002	1,002	1,962	1,002	1,007	1,007	1,002	1,002	1,002	1,002	0
Catalyst S1	0	100	100	200	100	100	100	100	100	200	100	300	100	300	320	100	0
Solution Gal H2O S5	0	120	120	124	127	120	320	320	220	220	320	220	127	124	120	320	132
PerOX S1	0	05	1,002	1.002	1.007	1.907	1,902	1.002	257	051	0	AZZ	1.002	1.007	1.002	1.002	1.002
Catalyst S1	0	50	100	180	100	180	100	180	50	.50	0	29	160	180	100	100	20
Solution Gal	0	100	320	320	320	320	320	320	180	100	0	86	320	320	320	320	320
H2O S6	0	0	0	- 61	-61	-61	0	0	0	0	0	0	0	-61	122	122	127
PerOX S1	0	0	0	951	951	951	0	0	0	0	0	0	0	951	1,002	1,002	1,952
Catalyst S1	0	0	0			50	0	0	0	0	0	0	0		180	100	20
Solution Gal	0	0	0	180	160	160	0	0	0	0	0	0	0	190	320	320	320
H2O S7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	12.2
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,902	1,902
Catalyst S1 Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	
H2O S8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61	320	320
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	041	1.002	1.002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	56	100	20
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320
H2O S9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	GY.	122	122
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	991	1,962	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	190	20
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320
H2O S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	122	122	84
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,002	1,002	991
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	390	200	100
Solution Gal H2O S11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	107	107	100
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.002	1.002	951
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	190	180	30
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	320	320	260
H2O S12	0	0	0	0	0	0	0	0	0	0	0	0	0	-GY	122	122	302
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	991	1,902	1,002	1,002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	- 38	180	100	160
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	160	320	320	460
H2O S13	0	0	0	0	0	0	0	0	0	0	0	0	0	-	122	122	202
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	091	1,902	1,002	1,002
Catalyst S1 Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	16	120	320	400
H2O S14	0	0	0	0	0	0	0	0	0	0	0	0	0	23	124	122	200
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	476	1.002	1.002	1.002
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	-27	180	100	100
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	86	320	320	400
H2O S15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	£1.	202
PerOX S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	951	1,902
Catalyst S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	100
Solution Gal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	400

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

<u>Report No.: 10</u>	<u>Prepared By:</u>
Date: Mon 9/21/15	Erik Hall

 Weather:
 Site Hours:

 Sunny 38-70°F
 0700-1800

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	11
ISOTEC	Mark Ratner	Site Manager	Soil Mixing	11
ISOTEC	Kevin O'Neil	Site Manger	Soil Mixing	11
LTC	Bill Lang	Project Manager	Soil Mixing	11
LTC	Bill Oberloier	Site Assistant	Soil Mixing	11
LTC	Dave Roe	Equipment Operator	Soil Mixing	11
LTC	Cody Shell	Equipment Operator	Soil Mixing	11

PROJECT EQUIPMENT

(Company Name – Description)

- **WESTON** (1) POV and (1) Chevy Express Cargo Van
- **ISOTEC** (1)Penske Box Truck with various project tools and supplies
- LTC (1)Caterpillar D5K2 Bulldozer, (1) Caterpillar 320E Excavator, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer*, (1) Mack mixing truck, (1) JLC 8042 fork lift, (2) utility trucks, (1) office/utility trailer

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

None.

TEST DATA

(List type and location of tests performed and results)

See attached spreadsheets for analytical results of soil mixing cells and field test data for catch basins CB 5-6 and CB 6-7.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

SAFETY COMMENTS/VIOLATIONS

None

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None

WORK COMPLETED- BY WESTON

- Construction oversight.
- Perform review of erosion controls. Erosion controls are intact and working properly
- Collect aqueous samples from catch basins CB 5-6 and CB 6-7 for H2O2 and total iron. Refer to attached spreadsheet for results.
- Collected soil samples from 6 cells treated the previous day. Refer to attached spreadsheet for results.
- Review analytical data received from off-site laboratory. Cell E13S04 exceeded the project remediation goals. The cell was retreated and resampled.
- Duct taped and crimped black poly line water line to prevent sediment from entering EW-13B; located approximately at Northing 537282.762, Easting 1125950.636, and approximately 460.5 feet above mean sea level.
- Perimeter air monitoring with MultiRae. None of the action limits were triggered.

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

- Retreated cell E13S04 that exceeded the project remediation goals
- Peroxide and total iron field test kits of collected soil samples from 4 cells treated the previous work day plus one sample from retreated CellE13S04. Refer to attached spreadsheet for results
- Re-established access road along the eastern edge of the excavation. Pushed bermed material along the eastern edge into the excavation. Reinstalled silt fence along the access road.
- Began installation of orange construction fence along the perimeter of the excavation.
- For more details refer attached Daily Reports from ISOTEC and Lang Tool.

AGREEMENTS

(Company Name – task description)

D. Hoffman of NHDES, D. Luce on USEPA and V. DelloRusso decided that monitoring of the catch basins for hydrogen peroxide and iron was no longer necessary as peroxide is rarely detected the next day in soil samples from within the excavations. E. Hall agreed to cease collection of the samples and demobilize the peristaltic pump.

Notes:

ISOTEC = In-Situ Oxidative Technologies, Inc.

LTC = Lang Tool Company

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

TREATMENT PROGRAM – MIXING	3
SUMMARY	

See attached Daily Reports from ISOTEC and Lang Tool

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

Looking southeast towards the southeast corner of the excavation

Removing the silt fence prior to re-establishing the access road on the eastern edge of the site.

Duct taped and crimped black poly line water line to prevent sediment from entering EW-13B

Looking northeast from the southwest corner of the excavation

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs (continued)

Decontaminating the excavator

Decontaminated sampler tool

Re-established access road along the eastern edge of the site

Looking southwest from the northeastern corner of the excavation

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
						9		0.0	0	20.0	NA	NA	
E17-S14	14-Sep	10:45	11:04	19	15-Sep	11	Next Day	0.0	0	14.0	NA	NA	
						13		0.0	0	28.0	100 U		Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	12.0	NA	NA	
E17-S13	14-Sep	11:05	11:20	15	15-Sep	11	Next Day	0.0	0	63.0	NA	NA	
						13		0.0	0	32.0	50 U	2011	Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	10.0	NA	NA	
E17-S11	14-Sep	11:36	11:42	7	15-Sep	11	Next Day	0.0	0	12.0	NA	NA	
						13		0.0	0	18.0	100 U	40 11	Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	14.0	NA	NA	
E17-S9	14-Sep	11:52	12:17	25	15-Sep	11	Next Day	0.0	0	9.0	NA	NA	
						13		0.0	0	15.0	100 U		Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	14.0	NA	NA	
E17-S7	14-Sep	13:07	13:22	15	15-Sep	11	Next Day	0.0	0	8.0	NA	NA	
						13		0.0	0	5.0	100 U		Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	11.0	NA	NA	
E17-S6	14-Sep	13:23	13:38	15	15-Sep	11	Next Day	0.0	0	6.0	NA	NA	
						13		0.0	0	12.0	100 U		Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	6.0	NA	NA	
E17-S5	14-Sep	13:39	14:08	29	15-Sep	11	Next Day	0.0	0	4.0	NA	NA	
						13		0.0	0	6.0	100 U		Sample sent to lab on 9/16. Results received on 9/17.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
						9		0.0	0	12.0	NA	NA	
				17		11		0.0	0	8.0	NA	NA	
E13-S2	14-Sep	16:16	16:33		15-Sep	13	Next Day	0.0	0	8.0	200	110	Sample sent to lab on on 9/16. Results received on 9/17. Exceedance detected. Cell retreated on 9/17. Analytical data received on 9/19/15 with results below project goals.
						9		0.0	0	6.0	NA	NA	
				14		11		0.0	0	12.0	NA	NA	
E14-S1	14-Sep	15:05	15:19		15-Sep	13	Next Day	0.0	0	8.0	100 U	160	Sample sent to lab on on 9/16. Results received on 9/17. Exceedance detected. Cell retreated on 9/17. Analytical data received on 9/19/15 with results below project goals.
						9		0.0	0	14.0	NA	NA	
E15-S2	14-Sep	15:20	15:35	15	15-Sep	11	Next Day	0.0	0	10.0	NA	NA	
						13		0.0	0	8.0	100 U	50	Sample sent to lab on 9/16. Results received on 9/17.
544.60	45.0	0.00	0.40	10	15.5	11		0.0	0	5.0	NA	NA	•
E11-S2	15-Sep	9:00	9:18	18	16-Sep	13	Next Day	0.0	0	10.0	100	60	Sample sent to lab on 9/16. Results received on 9/17.
E7-S1	15-Sep	12:05	12:22	17	16-Sep	13	Next Day	0.0	1	12.0	100	30	Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0.0	4.0	NA	NA	
E9-S2	15-Sep	10:46	11:08	22	16-Sep	11	Next Day	0.0	0.0	9.0	100	50	
						13		0.0	0.8	6.0	NA	NA	Sample sent to lab on 9/16. Results received on 9/17.
E10-S1	15-Sep	8:38	8:59	21	16-Sep	13	Next Day	0.0	0.0	6.0	100	30	Sample sent to lab on 9/16. Results received on 9/17.
E8-S1	15-Sep	11:09	11:31	22	16-Sep	13	Next Day	0.0	0.0	7.0	100	60	Sample sent to lab on 9/16. Results received on 9/17.
E6-S2	15-Sep	13:37	13:57	20	16-Sep	13	Next Day	0.1	0.0	4.0	100	20 I	Sample sent to lab on 9/16. Results received on 9/17.
E5-S2	15-Sep	14:19	14:39	20	16-Sep	13	Next Day	0.1	0.0	10.0	50 J	20.1	Sample sent to lab on 9/16. Results received on 9/17.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
E5-S1	15-Sep	13:58	14:18	20	16-Sep	13	Next Day	0.0	0.0	5.0	100	30	Sample sent to lab on 9/16. Results received on 9/17.
E3-S2	15-Sep	15:41	16:03	22	16-Sep	13	Next Day	0.1	0.0	4.0	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.
E3-S1	15-Sep	15:20	15:40	20	16-Sep	13	Next Day	0.1	0.0	8.0	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.
E4-S3	16-Sep	15:20	15:50	30	17-Sep	11	Next Day	0.0	1.0	5.0	100	40	Sample sent to lab on 9/17. Results received on 9/18.
E4-53	16-Seb	15:20	15:50	30	17-Sep	13	Next Day	0.0	0.0	10.0	NA	NA	
FF 63	16.6	45.50	16:20	20	47.6	11	Nova Davi	0.0	1.0	3.0	NA	NA	
E5-S3	16-Sep	15:50	16:20	30	17-Sep	13	Next Day	0.0	0.0	6.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
F4.6. 64.4	46.6	0.00	0.45	24	47.0	11		0.1	0.0	9.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S14	16-Sep	9:22	9:46	24	17-Sep	13	Next Day	0.1	0.0	5.0	NA	NA	,
E16-S11	16-Sep	10:28	10:48	20	17-Sep	13	Next Day	0.0	0.0	8.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E1-S2	16-Sep	8:10	8:36	26	17-Sep	13	Next Day	0.0	0.0	7.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S6	16-Sep	12:33	12:54	21	17-Sep	13	Next Day	0.1	0.0	2.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S9	16-Sep	11:09	11:28	19	17-Sep	13	Next Day	0.1	0.0	9.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S3	16-Sep	13:43	14:08	25	17-Sep	13	Next Day	0.1	0.0	7.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E10-S3	17-Sep	9:48	10:17	29	18-Sep	13	Next Day	0.1	0.0	7.0	100 U	30 J	Sample sent to lab on 9/18. Results received on 9/19.
E13-S3	17-Sep	11:07	11:37	20	18-Sep	13	Next Day	0.1	0.0	4.0	100 U	40 J	Sample sent to lab on 9/18. Results received on 9/19.
E14-S12	17-Sep	14:59	15:11	12	18-Sep	13	Next Day	0.0	0.0	10.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E14-S3	17-Sep	11:37	12:00	23	18-Sep	13	Next Day	0.2	0.0	2.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E15-S8	17-Sep	13:02	13:14	12	18-Sep	13	Next Day	0.0	0.0	5.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E15-S10	17-Sep	13:27	13:50	23	18-Sep	13	Next Day	0.0	0.0	3.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E15-S14	17-Sep	15:23	15:50	27	18-Sep	13	Next Day	0.0	0.0	8.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E15-S3	17-Sep	12:33	12:59	26	18-Sep	13	Next Day	0.0	0.0	7.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
E12-S1	17-Sep	17:42	17:59	17	18-Sep	11	Next Day	0.0	0.0	3.0	100 U	40 11	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
	oop	271.2	27.00		20 006	13	next 2uy	0.0	0.0	5.0	NA	NA	Retreated cell on 9/17.
F42 C2	47.6	47.24	17:42	10	10.6	11	Nova Davi	0.0	0.0	5.0	NA	NA	Retreated cell on 9/17.
E12-S2	17-Sep	17:24	17:42	18	18-Sep	13	Next Day	0.1	0.0	5.0	100 U	40 11	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
E13-S1	47.6	17:14	17:24	10	10.5	11	Next Day	0.0	0.0	3.0	NA	NA	Retreated cell on 9/17.
£13-51	17-Sep	17:14	17:24	10	18-Sep	13	Next Day	0.0	0.0	6.0	100 U	40 11	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
F42 C2	47.6	46.50	47.44	24	10.6	11		0.0	0.0	4.0	NA	NA	Retreated cell on 9/17.
E13-S2	17-Sep	16:50	17:14	24	18-Sep	13	Next Day	0.1	0.0	5.0	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
E14-S1	47.6	16:37	16:50	13	10.6	11	Next Day	0.1	0.0	6.0	100 U	40 11	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
E14-51	17-Sep	16:37	16:50	13	18-Sep	13	Next Day	0.0	0.0	8.0	NA	NA	Retreated cell on 9/17.
544.63	47.6	45.05	46.07	24	10.0	11		0.0	0.0	7.0	NA	NA	Retreated cell on 9/17.
E14-S2	17-Sep	16:06	16:37	31	18-Sep	13	Next Day	0.0	0.0	3.0	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
E4-S5	18-Sep	13:50	14:18	28	19-Sep	13	Next Day	0.1	0.0	4.0	100 U	30 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
E15-S4	18-Sep	14:56	15:18	22	19-Sep	13	Next Day	0.0	0.0	6.0	100 U	3011	Sample Sent to Lab 9/19. Analytical data received on 9/21.
E5-S5	18-Sep	16:18	16:47	29	19-Sep	13	Next Day	0.1	0.0	7.0	100 U	30 J	Sample Sent to Lab 9/19. Analytical data received on 9/21.
E7-S4	18-Sep	10:37	11:02	25	19-Sep	13	Next Day	0.1	0.0	5.0	100 U	3011	Sample Sent to Lab 9/19. Analytical data received on 9/21.
E10-S4	18-Sep	11:42	12:13	31	19-Sep	13	Next Day	0.0	0.0	24.0	100 U	30 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
E11-S4	18-Sep	13:11	13:32	21	19-Sep	13	Next Day	0.0	0.0	12.0	100 U	3011	Sample Sent to Lab 9/19. Analytical data received on 9/21.
E13-S4	18-Sep	13:52	14:26	34	19-Sep	13	Next Day	0.1	0.0	13.0	100 U	80	Sample sent to lab on on 9/19. Results received on 9/21. Exceedance detected. Cell retreated on 9/21. Analytical data received on 9/22 with results below project goals.
E5-S6	19-Sep	8:32	8:45	13	21-Sep	13	Approx. 47 hrs	0.0	0.0	4.0			Sample Sent to Lab 9/21.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID	Hydrogen	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
E8-S5	19-Sep	9:45	10:15	30	21-Sep	13	Approx. 46 hrs	0.1	0.0	1 100	Lab broke samp was resampled a		Sample Sent to Lab 9/21.
E13-S5	19-Sep	10:25	10:47	22	21-Sep	13	Approx. 45 hrs	0.0	0.0	10.0			Sample Sent to Lab 9/21.
E15-S6	19-Sep	11:40	12:05	25	21-Sep	13	Approx. 44 hrs	0.0	0.0	6.0			Sample Sent to Lab 9/21.
E13-S4	21-Sep	12:38	13:12	33	21-Sep	13	Approx. 4 hrs	0.0	2.5	13.0			Sample Sent to Lab 9/19. Cell was retreated on 9/21 at 12:38. Cell was resampled at 14:38 on 9/21. A
E8-S5	21-Sep	9:45	10:15	30	21-Sep	13	Approx. 2 days	0.0	10.0	10.0			Sample Sent to Lab 9/21.

Note:

Cell Locations = ID locations of the treatment cells that were sampled after the cell was mixed/blended.

FT BGS = Feet below ground surface.

PPM = Parts per million

NA = Not Analyzed

μg/kg = Micrograms per kilogram

Sample Collection Time = Samples collected the morning after day of mixing.

1,1-DCE = 1,1-Dichloroethene (criteria of ≤60 µg/kg)

1,1,1-TCA = 1,1,1-Trichloroethane (criteria of ≤150 μg/kg)

U=Compound was not detected and the reporting limit is shown.

Blue shading indicates results were nondetect for the compounds indicated.

Yellow highlighting indicates detection at or below the criteria for the compound indicated Red highlighting indicates detection above the crietria for the compound indicated

Field testing for hydrogen peroxide was conducted using Quantofix Peroxide 100 test strips

Field testing for Total Iron was conducted using Hach Iron Color Disc Test Kit, Model IR-18A.

TABLE 1
STORM DRAIN MONITORING FIELD DATASHEET
KEARSARGE METALLURGICAL CORP. SUPERFUND SITE
CONWAY, NH

Catch Basin Location	Date	Time	Collected By	Hydrogen Peroxide Concentration (ppm)	Dissolved Iron Concentration (ppm)	Notes
CB5-6	9/15/2015	1630	AB	0	1.0	
	9/16/2015	1115	AB	0	0.4	
	9/16/2015	1643	AB	0	0.1	
	9/17/2015	1021	AB	0	1.4	
	9/17/2015	1610	AB	0	0.3	
	9/18/2015	1102	AB	0	0.6	
	9/18/2015	1610	AB	0	0.2	
	9/19/2015	0915	AB	0	0.8	
	9/19/2015	1200	AB	0	0.8	
	9/21/2015	0910	EH	0	0.0	
	9/21/2015	1515	EH	0	0.8	
CB6-7	9/16/2015	1115	AB	0	1.0	
	9/16/2015	1643	AB	0	0.5	
	9/17/2015	1011	AB	0	1.0	
	9/17/2015	1620	AB	0	0.2	
	9/18/2015	1112	AB	0	0.8	
	9/18/2015	1603	AB	0	0.1	
	9/19/2015	0915	AB	0	1.0	
	9/19/2015	1200	AB	0	1.0	
	9/21/2015	0915	EH	0	0.0	
	9/21/2015	1510	EH	0	0.8	

Notes:

ppm = Parts per million

ISOTEC In-Situ Oxidative Technologi	ies			DAILY FIELD REPORT 11 Princess Rd, Suite A Lawrenceville, NJ 08648 (609) 275-8500								
Date:		21-Sep-15		Client:	Wes	ton	Personnel:	` '	Bill L, Bill O, Co	dy, Dave		
Project:	KN	/IC Site, Conwa	ıy, NH	Job Number:	8019	991	Weather:	Overcast, 45-71				
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other		
Personnel Names	1	Γime	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)		
	Start	Stop	Job Site			Analysis			Time			
Kevin O'Neal	7:00 AM	6:00 PM		0.25	8.25	1.00	0.50	0.50	0.50	0.50		
Mark Ratner	7:00 AM	6:00 PM		0.25	8.25	1.00	0.50	0.50		0.50		
Bill Lang	7:00 AM	2:00 PM		0.25	4.75	1.00	0.50	0.50		0.50		
Bill Oberloier	7:00 AM	6:00 PM		0.25	8.25	1.00	0.50	0.50		0.50		
Dave Roe	1:00 PM	2:00 PM		0.25	4.75	1.00	0.50	0.50		0.50		
Cody Shell	1:00 PM	2:00 PM		0.25	4.75	1.00	0.50	0.50		0.50		
TOTAL HOURS =	1	1.00	TOTA	L MIXING HOURS =				0.50				
Support Equipment and Services	Quantity	Hours	Catalyst	: Volume	17% H2O2	2 Volume	Catalys	t Volume 17% H2O2 Volume		2O2 Volume		
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume		
Pumps			E13-S4	100	E13-S4	320	0	0	0	0		
Generator			0	0	0	0	0	0	0	0		
Mixers			0	0	0	0	0	0	0	0		
Equipment Set			0	0	0	0	0	0	0	0		
Vehicle(s) utilized			0	0	0	0	0	0	0	0		
Raw Materials Used			0	0	0	0	0	0	0	0		
Powder Catalyst	33	lbs.	0	0	0	0	0	0	0	0		
Liquid Catalyst	100	Gallons	0	0	0	0	0	0	0	0		
34% H2O2	160	Gallons	0	0	0	0	0	0	0	0		
17% H2O2	320	Gallons	0	0	0	0	0	0	0	0		
			TOTAL INJECT	ION VOLUME	<u> </u> =	420						

Major Work Activities Performed:

Daily safety meeting. Equipment preparation, re-mixing into 1 cell. Sampling of the down-gradient catch basin for iron and hydrogen peroxide levels. Collected a total of 6 soil samples from 4 cells treated on Saturday (E5-S6, E8-S5, E13-S5 and E15-S6), 1 cell treated today 9/21 (E13-S4) and a second sample of E8-S5 collected at ~17:00 to replace the damaged sample sent to the lab earlier in the day. Samples were collected from 1 depth interval (at approximately 13 ft bgs) at select cells to confirm adequate mixing occurred. Removed portions of the perimeter fence and silt fence to allow the bulldozer to push in bermed (clean/ dry overburden soils) soils back into the excavation area. Re-installed silt fence and perimeter fence.

Health and Safety Items Covered:

General site safety topics during the daily safety meeting between ISOTEC (Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall).

Unforeseen Site Conditions:

List of Deliveries:

Bathroom serviced.

Other Comments (Work delays, inspections results, etc.):

TREATMENT PROGRAM - MIXING VOLUME SUMMARY KMC Site, Conway, New Hampshire ISOTEC PROJECT #801991

DATE: 21-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 (17%) Volume (gal)		Total Volume	Comments
E13-S4	12:38	13:12	34	100	320	12.35	420	
DAY TOTAL/ AVERAGE				100	320		420	

Phone (989) 435-9864 Fax (989) 435-4311

www.langtool.com bill@langtool.com

September 21, 2015

Total remixed soil volume as of 9/21 is 163 cubic yards.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

 Report No.: 11
 Prepared By:

 Date: Tues 9/22/15
 Erik Hall

 Weather:
 Site Hours:

 Sunny 45-68°F
 0700-1815

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	11.25
ISOTEC	Mark Ratner	Site Manager	Soil Mixing	11.25
ISOTEC	Kevin O'Neil	Site Manger	Soil Mixing	11.25
LTC	Bill Lang	Project Manager	Soil Mixing	11.25
LTC	Bill Oberloier	Site Assistant	Soil Mixing	11.25
LTC	Dave Roe	Equipment Operator	Soil Mixing	11.25
LTC	Cody Shell	Equipment Operator	Soil Mixing	11.25

PROJECT EQUIPMENT

(Company Name – Description)

- **WESTON** (1) POV and (1) Chevy Express Cargo Van
- **ISOTEC** (1)Penske Box Truck with various project tools and supplies
- LTC (1)Caterpillar D5K2 Bulldozer, (1) Caterpillar 320E Excavator, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer*, (1) Mack mixing truck, (1) JLC 8042 fork lift, (2) utility trucks, (1) office/utility trailer

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

None.

TEST DATA

(List type and location of tests performed and results)

None.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

SAFETY COMMENTS/VIOLATIONS

None

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None

WORK COMPLETED- BY WESTON

- Construction oversight.
- Perform review of erosion controls. Erosion controls are intact and working properly.
- Review analytical data received from off-site laboratory.
- Perimeter air monitoring with MultiRae. None of the action limits were triggered.

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

- Complete installation of construction fence surrounding the open excavation.
- Prepare equipment for demobilization first tomorrow morning.
- For more details refer attached Daily Reports from ISOTEC and Lang Tool.

AGREEMENTS

(Company Name – task description)

None.

Notes:

ISOTEC = In-Situ Oxidative Technologies, Inc.

LTC = Lang Tool Company

TREATMENT PROGRAM – MIXING

SUMMARY

See attached Daily Reports from ISOTEC and Lang Tool

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Water hose removed from the hydrant

Construction fence surrounds the excavation

Decontaminated blender

Looking east from the western edge of the excavation

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Blender on low boy ready to demobe in the morning

Catch basin along Hobbs Street where water line was run under the road. Pull string left in place in case restoration contractor needs access to the hydrant.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
						9		0.0	0	20.0	NA	NA	
E17-S14	14-Sep	10:45	11:04	19	15-Sep	11	Next Day	0.0	0	14.0	NA	NA	
						13		0.0	0	28.0	100 U		Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	12.0	NA	NA	
E17-S13	14-Sep	11:05	11:20	15	15-Sep	11	Next Day	0.0	0	63.0	NA	NA	
						13		0.0	0	32.0	50 U	2011	Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	10.0	NA	NA	
E17-S11	14-Sep	11:36	11:42	7	15-Sep	11	Next Day	0.0	0	12.0	NA	NA	
						13		0.0	0	18.0	100 U	40 11	Sample sent to lab on 9/15. Results received on 9/16.
						9		0.0	0	14.0	NA	NA	
E17-S9	14-Sep	11:52	12:17	25	15-Sep	11	Next Day	0.0	0	9.0	NA	NA	
						13		0.0	0	15.0	100 U		Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	14.0	NA	NA	
E17-S7	14-Sep	13:07	13:22	15	15-Sep	11	Next Day	0.0	0	8.0	NA	NA	
						13		0.0	0	5.0	100 U		Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	11.0	NA	NA	
E17-S6	14-Sep	13:23	13:38	15	15-Sep	11	Next Day	0.0	0	6.0	NA	NA	
						13		0.0	0	12.0	100 U		Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0	6.0	NA	NA	
E17-S5	14-Sep	13:39	14:08	29	15-Sep	11	Next Day	0.0	0	4.0	NA	NA	
						13		0.0	0	6.0	100 U		Sample sent to lab on 9/16. Results received on 9/17.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
						9		0.0	0	12.0	NA	NA	
				17		11		0.0	0	8.0	NA	NA	
E13-S2	14-Sep	16:16	16:33		15-Sep	13	Next Day	0.0	0	8.0	200	110	Sample sent to lab on on 9/16. Results received on 9/17. Exceedance detected. Cell retreated on 9/17. Analytical data received on 9/19/15 with results below project goals.
						9		0.0	0	6.0	NA	NA	
				14		11		0.0	0	12.0	NA	NA	
E14-S1	14-Sep	15:05	15:19		15-Sep	13	Next Day	0.0	0	8.0	100 U	160	Sample sent to lab on on 9/16. Results received on 9/17. Exceedance detected. Cell retreated on 9/17. Analytical data received on 9/19/15 with results below project goals.
						9		0.0	0	14.0	NA	NA	
E15-S2	14-Sep	15:20	15:35	15	15-Sep	11	Next Day	0.0	0	10.0	NA	NA	
						13		0.0	0	8.0	100 U	50	Sample sent to lab on 9/16. Results received on 9/17.
544.60	45.0	0.00	0.40	10	46.6	11		0.0	0	5.0	NA	NA	•
E11-S2	15-Sep	9:00	9:18	18	16-Sep	13	Next Day	0.0	0	10.0	100	60	Sample sent to lab on 9/16. Results received on 9/17.
E7-S1	15-Sep	12:05	12:22	17	16-Sep	13	Next Day	0.0	1	12.0	100	30	Sample sent to lab on 9/16. Results received on 9/17.
						9		0.0	0.0	4.0	NA	NA	
E9-S2	15-Sep	10:46	11:08	22	16-Sep	11	Next Day	0.0	0.0	9.0	100	50	
						13		0.0	0.8	6.0	NA	NA	Sample sent to lab on 9/16. Results received on 9/17.
E10-S1	15-Sep	8:38	8:59	21	16-Sep	13	Next Day	0.0	0.0	6.0	100	30	Sample sent to lab on 9/16. Results received on 9/17.
E8-S1	15-Sep	11:09	11:31	22	16-Sep	13	Next Day	0.0	0.0	7.0	100	60	Sample sent to lab on 9/16. Results received on 9/17.
E6-S2	15-Sep	13:37	13:57	20	16-Sep	13	Next Day	0.1	0.0	4.0	100	20 I	Sample sent to lab on 9/16. Results received on 9/17.
E5-S2	15-Sep	14:19	14:39	20	16-Sep	13	Next Day	0.1	0.0	10.0	50 J	20.1	Sample sent to lab on 9/16. Results received on 9/17.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
E5-S1	15-Sep	13:58	14:18	20	16-Sep	13	Next Day	0.0	0.0	5.0	100	30	Sample sent to lab on 9/16. Results received on 9/17.
E3-S2	15-Sep	15:41	16:03	22	16-Sep	13	Next Day	0.1	0.0	4.0	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.
E3-S1	15-Sep	15:20	15:40	20	16-Sep	13	Next Day	0.1	0.0	8.0	100 U	30 U	Sample sent to lab on 9/16. Results received on 9/17.
E4-S3	16-Sep	15:20	15:50	30	17-Sep	11	Next Day	0.0	1.0	5.0	100	40	Sample sent to lab on 9/17. Results received on 9/18.
14-33	10-3ер	13.20	13.30	30	17-Зер	13	NEXT Day	0.0	0.0	10.0	NA	NA	
E5-S3	16-Sep	15:50	16:20	30	17-Sep	11	Next Day	0.0	1.0	3.0	NA	NA	
E5-35	10-3ep	13.50	10.20	30	17-зер	13	Next Day	0.0	0.0	6.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S14	16-Sep	9:22	9:46	24	17-Sep	11	Next Day	0.1	0.0	9.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
110-314	10-3ep	9.22	9.40	24	17-зер	13	Next Day	0.1	0.0	5.0	NA	NA	
E16-S11	16-Sep	10:28	10:48	20	17-Sep	13	Next Day	0.0	0.0	8.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E1-S2	16-Sep	8:10	8:36	26	17-Sep	13	Next Day	0.0	0.0	7.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S6	16-Sep	12:33	12:54	21	17-Sep	13	Next Day	0.1	0.0	2.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S9	16-Sep	11:09	11:28	19	17-Sep	13	Next Day	0.1	0.0	9.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E16-S3	16-Sep	13:43	14:08	25	17-Sep	13	Next Day	0.1	0.0	7.0	100 U	30 U	Sample sent to lab on 9/17. Results received on 9/18.
E10-S3	17-Sep	9:48	10:17	29	18-Sep	13	Next Day	0.1	0.0	7.0	100 U	30 J	Sample sent to lab on 9/18. Results received on 9/19.
E13-S3	17-Sep	11:07	11:37	20	18-Sep	13	Next Day	0.1	0.0	4.0	100 U	40 J	Sample sent to lab on 9/18. Results received on 9/19.
E14-S12	17-Sep	14:59	15:11	12	18-Sep	13	Next Day	0.0	0.0	10.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E14-S3	17-Sep	11:37	12:00	23	18-Sep	13	Next Day	0.2	0.0	2.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E15-S8	17-Sep	13:02	13:14	12	18-Sep	13	Next Day	0.0	0.0	5.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E15-S10	17-Sep	13:27	13:50	23	18-Sep	13	Next Day	0.0	0.0	3.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E15-S14	17-Sep	15:23	15:50	27	18-Sep	13	Next Day	0.0	0.0	8.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.
E15-S3	17-Sep	12:33	12:59	26	18-Sep	13	Next Day	0.0	0.0	7.0	100 U	40 U	Sample sent to lab on 9/18. Results received on 9/19.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening (ppm)	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
E12-S1	17-Sep	17:42	17:59	17	18-Sep	11	Next Day	0.0	0.0	3.0	100 U	1 40 11	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
						13	,	0.0	0.0	5.0	NA	NA	Retreated cell on 9/17.
E12-S2	17-Sep	17:24	17:42	18	18-Sep	11	Next Day	0.0	0.0	5.0	NA		Retreated cell on 9/17.
L12-32	17-3ср	17.24	17.42	10	10-3ер	13	Next Day	0.1	0.0	5.0	100 U	1 40 11	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
F42 C4	47.6	17.14	47.24	10	10.5	11	Nova Dov	0.0	0.0	3.0	NA	NA	Retreated cell on 9/17.
E13-S1	17-Sep	17:14	17:24	10	18-Sep	13	Next Day	0.0	0.0	6.0	100 U	1 40 11	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
						11		0.0	0.0	4.0	NA	NA	Retreated cell on 9/17.
E13-S2	17-Sep	16:50	17:14	24	18-Sep	13	Next Day	0.1	0.0	5.0	100 U	40 U	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
E14-S1	17-Sep	16:37	16:50	13	18-Sep	11	Next Day	0.1	0.0	6.0	100 U		Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
E14-31	17-Sep	16:37	16:50	13	18-3ер	13	Next Day	0.0	0.0	8.0	NA	NA	Retreated cell on 9/17.
E14-S2	17-Sep	16:06	16:37	31	18-Sep	11	Next Day	0.0	0.0	7.0	NA	NA	Retreated cell on 9/17.
E14-32	17-зер	16.06	10.37	31	10-зер	13	Next Day	0.0	0.0	3.0	100 U	40 11	Retreated cell on 9/17. Sample sent to lab on 9/18. Analytical data received on 9/19.
E4-S5	18-Sep	13:50	14:18	28	19-Sep	13	Next Day	0.1	0.0	4.0	100 U	30 H	Sample Sent to Lab 9/19. Analytical data received on 9/21.
E15-S4	18-Sep	14:56	15:18	22	19-Sep	13	Next Day	0.0	0.0	6.0	100 U	1 3011	Sample Sent to Lab 9/19. Analytical data received on 9/21.
E5-S5	18-Sep	16:18	16:47	29	19-Sep	13	Next Day	0.1	0.0	7.0	100 U	30 J	Sample Sent to Lab 9/19. Analytical data received on 9/21.
E7-S4	18-Sep	10:37	11:02	25	19-Sep	13	Next Day	0.1	0.0	5.0	100 U	30 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
E10-S4	18-Sep	11:42	12:13	31	19-Sep	13	Next Day	0.0	0.0	24.0	100 U	30 U	Sample Sent to Lab 9/19. Analytical data received on 9/21.
E11-S4	18-Sep	13:11	13:32	21	19-Sep	13	Next Day	0.0	0.0	12.0	100 U	1 3011	Sample Sent to Lab 9/19. Analytical data received on 9/21.
E13-S4	18-Sep	13:52	14:26	34	19-Sep	13	Next Day	0.1	0.0	13.0	100 U	80	Sample sent to lab on on 9/19. Results received on 9/21. Exceedance detected. Cell retreated on 9/21. Analytical data received on 9/22 with results below project goals.
E5-S6	19-Sep	8:32	8:45	13	21-Sep	13	Approx. 47 hrs	0.0	0.0	4.0	100 U	1 3011	Sample Sent to Lab 9/21. Analytical data received on 9/22.

Cell Location	Date of Blending	Start time of Blending	Stop time of Blending	Total Blending Time (minutes)	Date of Sampling	Depth of Sample (ft bgs)	Sample Collection Time After Blending	PID Screening	Post-Treatment Hydrogen Peroxide Concentration (ppm)	Post-Treatment Dissolved Iron Concentration (ppm)	Post-Treatment 1,1,1-TCA Concentration (ug/kg)	Post-Treatment 1,1-DCE Concentration (ug/kg)	Notes
E8-S5	19-Sep	9:45	10:15	30	21-Sep	13	Approx. 46 hrs	0.1	0.0	1 100	Lab broke samp was resampled a		Sample Sent to Lab 9/21.
E13-S5	19-Sep	10:25	10:47	22	21-Sep	13	Approx. 45 hrs	0.0	0.0	10.0	100 U	4011	Sample Sent to Lab 9/21. Analytical data received on 9/22.
E15-S6	19-Sep	11:40	12:05	25	21-Sep	13	Approx. 44 hrs	0.0	0.0	6.0	100 U	3011	Sample Sent to Lab 9/21. Analytical data received on 9/22.
E13-S4	21-Sep	12:38	13:12	33	21-Sep	13	Approx. 4 hrs	0.0	2.5	13.0	100 U	30 U	on 9/21 at 12:38. Cell was retreated on 9/21 at 12:38. Cell was resampled at 14:38 on 9/21. Analytical data received on 9/22
E8-S5	21-Sep	9:45	10:15	30	21-Sep	13	Approx. 2 days	0.0	10.0	10.0	70 J	20 J	Sample Sent to Lab 9/21. Lab broke sample bottle. Cell will be resampled at approx. 14:30 on 9/21. Analytical data received on 9/22.

Note:

Cell Locations = ID locations of the treatment cells that were sampled after the cell was mixed/blended.

FT BGS = Feet below ground surface.

PPM = Parts per million

NA = Not Analyzed

μg/kg = Micrograms per kilogram

Sample Collection Time = Samples collected the morning after day of mixing.

1,1-DCE = 1,1-Dichloroethene (criteria of ≤60 µg/kg)

1,1,1-TCA = 1,1,1-Trichloroethane (criteria of ≤150 µg/kg)

U=Compound was not detected and the reporting limit is shown.

Blue shading indicates results were nondetect for the compounds indicated.

Yellow highlighting indicates detection at or below the criteria for the compound indicated

Red highlighting indicates detection above the crietria for the compound indicated

Field testing for hydrogen peroxide was conducted using Quantofix Peroxide 100 test strips

Field testing for Total Iron was conducted using Hach Iron Color Disc Test Kit, Model IR-18A.

ISOTEC				DAII	Y FIELD REP	11 Princess Rd, Suite A					
				DAIL	. TIEED IVE	O		Lawrencevill	•		
In-Situ Oxidative Technolog	gies							(609) 275-85			
Date:		22-Sep-15						Kevin, Mark, Bill L, Bill O, Cody, Dave			
Project:	KMC Site, Conway, NH			Job Number:			Weather:	Overcast, 45-70			
			Mobilization	Safety	Equipment	Sampling	Mixing	De-Con.	Data	Other	
Personnel Names	1	ime	To & From	Meeting	Preparation	Wells &	Time	Equipment	Entry	(Lunch)	
	Start	Stop	Job Site			Analysis			Time		
Kevin O'Neal	7:00 AM	6:15 PM		0.25	9.75			0.50	0.25	0.50	
Mark Ratner	7:00 AM	6:15 PM		0.25	9.75			0.50		0.50	
Bill Lang	7:00 AM	6:15 PM		0.25	9.75			0.50		0.50	
Bill Oberloier	7:00 AM	6:15 PM		0.25	9.75			0.50		0.50	
Dave Roe	7:00 AM	6:15 PM		0.25	9.75			0.50		0.50	
Cody Shell	7:00 AM	6:15 PM		0.25	9.75			0.50		0.50	
TOTAL HOURS =	1	11.00		AL MIXING HO	JRS =	RS =		0.00			
Support Equipment and											
Services	Quantity	Hours	Catalyst	: Volume	17% H2O2	2 Volume	Catalyst Volume		17% H2O2 Volume		
Compressor			Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	Cell ID	Volume	
Pumps			0	0	0	0	0	0	0	0	
Generator			0	0	0	0	0	0	0	0	
Mixers			0	0	0	0	0	0	0	0	
Equipment Set			0	0	0	0	0	0	0	0	
Vehicle(s) utilized			0	0	0	0	0	0	0	0	
Raw Materials Used			0	0	0	0	0	0	0	0	
Powder Catalyst		lbs.	0	0	0	0	0	0	0	0	
Liquid Catalyst		Gallons	0	0	0	0	0	0	0	0	
34% H2O2		Gallons	0	0	0	0	0	0	0	0	
Diluted H2O2		Gallons	0	0	0	0	0	0	0	0	
34% H2O2		lbs.									
			TOTAL INJECT	ION VOLUME	<u> </u>	0	<u> </u>	<u> </u>			
			I O I AL IIIJECI	IOIA AOFOIAIF	_	U					

Major Work Activities Performed:

Daily safety meeting. Decon equipment, installed the rest of the snow fence, cleaned up trash around the site, loaded all of Lang's equipment and machinery for demobilization tomorrow morning (9/23).

Health and Safety Items Covered:

General site safety topics during the daily safety meeting between ISOTEC (Mark Ratner, Kevin O'Neal), LTC (Bill L, Bill O, Cody S, Dave Roe), Weston (Erik Hall).

Unforeseen Site Conditions:

List of Deliveries:

None

Other Comments (Work delays, inspections results, etc.):

TREATMENT PROGRAM - MIXING VOLUME SUMMARY KMC Site, Conway, New Hampshire ISOTEC PROJECT #801991

DATE: 23-Sep-15

Mixing Cell ID	Start Time	Stop Time	Mixing Time (mins)	Catalyst Volume (gal)	H2O2 (17%) Volume (gal)	Total Volume	Comments
						0	
DAY TOTAL/ AVERAGE				0	0	0	

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

 Report No.: 12
 Prepared By:

 Date: Wed 9/23/15
 Erik Hall

 Weather:
 Site Hours:

 Sunny 45-68°F
 0700-1300

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	4
ISOTEC	Mark Ratner	Site Manager	Soil Mixing	6
ISOTEC	Kevin O'Neil	Site Manger	Soil Mixing	6
LTC	Bill Lang	Project Manager	Soil Mixing	0.5
LTC	Bill Oberloier	Site Assistant	Soil Mixing	0.5
LTC	Dave Roe	Equipment Operator	Soil Mixing	0.5
LTC	Cody Shell	Equipment Operator	Soil Mixing	0.5

PROJECT EQUIPMENT

(Company Name – Description)

- **WESTON** (1) POV and (1) Chevy Express Cargo Van
- **ISOTEC** (1)Penske Box Truck with various project tools and supplies
- LTC (1)Caterpillar D5K2 Bulldozer, (1) Caterpillar 320E Excavator, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer*, (1) Mack mixing truck, (1) JLC 8042 fork lift, (2) utility trucks, (1) office/utility trailer

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

■ LTC demobilized (1) Caterpillar D5K2 Bulldozer, (1) 20-LTC Dual Action Blender, (1) Mack Granite Tractor and lowboy trailer*, (1) Mack mixing truck, (2) utility trucks, (1) office/utility trailer. ISOTEC returned remaining hydrogen peroxide totes to Mann Chemical via common carrier. ISOTEC demobilized (1)Penske Box Truck with various project tools and supplies

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

TEST DATA

(List type and location of tests performed and results)

None.

SAFETY COMMENTS/VIOLATIONS

None

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None

WORK COMPLETED- BY WESTON

- Construction oversight.
- Team photo.
- Conduct post-remediation videos

WORK COMPLETED- BY ISOTEC & SUBCONTRACTORS

- Team photo.
- Return remaining hydrogen peroxide totes to Mann Chemical
- ISOTEC removed secondary containment and packed the box truck from demobilization.
- LTC demobilized first tomorrow morning.

AGREEMENTS

(Company Name – task description)

None.

Notes:

ISOTEC = In-Situ Oxidative Technologies, Inc.

LTC = Lang Tool Company

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Team Photo: (Left to Right)Kevin O'Neal-ISOTEC, Bill Lang – LTC, Cody Shell-LTC, Erik Hall- Weston, Bill Oberloier – LTC, Mark Ratner- ISOTEC, Dave Roe-LTC

Topsoil stockpile located north of the excavation

Topsoil stockpile located south of the excavation

Looking north from the southeastern edge of the excavation

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Looking west from the northern edge of the excavation

Looking east from the northern edge of the excavation

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 13
 Prepared By:

 Date: Mon 9/28/15
 Erik Hall

Weather: Site Hours:

Sunny – Cloudy with showers 45-76°F 1000-1900

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
Weston Solutions	Vinnie Dello Russo	Project Manager	Site Visit	2.5
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	9
Active Environmental	Louis Evangelista	Equipment Operator	Site Restoration	9
Active Environmental	Jim McPherson	Equipment Operator	Site Restoration	8
Active Environmental	Brandon Horn	Laborer	Site Restoration	9
Active Environmental	Nicholas Evangelista	Laborer	Site Restoration	8

PROJECT	
EOUIPMENT	

(Company Name – Description)

- WESTON (1) personally owned vehicle (POV) and (1) Chevy Express Cargo Van
- **Active** (2) Ford F350 pickup trucks with various project tools and supplies, (1)John Deere 700J Bulldozer, (1) Volvo EC160C Excavator, (1) Hydroseeder, (1) POV,

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

Active mobilized (2) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer,
 (1) Volvo EC160C Excavator, (1) Hydroseeder, (1) POV, 15 pounds (lbs) of wetland seed mix, 75 lbs of upland seed mix

TEST DATA

(List type and location of tests performed and results)

None. Compared seed mix to specifications. Seed is acceptable. Attached are PDFs of the seed mix tags.

SAFETY COMMENTS/VIOLATIONS

• All work conducted in a safe manner. Conducted kickoff meeting with the Active and Weston site team. Reviewed Weston's HASP and Active's JSAs. Reviewed competent person for excavations and filled out the forms.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

■ None.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Daily reports

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

- Mobilize equipment.
- Began backfill of the excavation. During backfilling on test cell, material swelled to original grade. See attached Site Status Map.

AGREEMENTS

(Company Name – task description)

None.

Notes:

Active = Active Environmental Technologies. Inc.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Looking north from the southeastern edge of the excavation prior to backfilling activities

Looking west from the northeastern edge of the excavation prior to backfilling activities

Installing temporary berm

Installing temporary berm

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Backfilling activities

Swelled material to original grade in test cell.

	Upland Seed Mixture	
Pure Seed		Germination
38.80%	CREEPING RED	85%
38.80%	PERENNIAL RYEGRASS	90%
6.59%	BIRDSFOOT TREFOIL	79%+11% hard seed
6.59%	ALSIKE CLOVER	85%
6.38%	RED TOP	85%
0.10%	Other Crop Seed	
4.27%	Inert Matter	Lot Number 28008
0.07%	Weed Seed	Test Date 1-15
Jersey Seed	18B Jules Lane New Brunsy	wick NJ 08901

	WETLAND RESTORATION MI	XTURE
PURE SEED		GERMINATION
1960%	VIRGINIA WILD RYE	89%
19.40%	CREEPING RED FESCUE	85%
11.25%	LITTLE BLUESTEM	62%+33% DORMANT
9.86%	SWITCHGRASS	87%
9.67%	FOX SEDGE	26%+54% DORMANT
8.08%	BIG BLUESTEM	74%+21% DORMANT
4.92%	BLUE VERVAIN	1%+90% DORMANT
1.97%	GREEN BULRUSH	0%+90% DORMANT
1.97%	SOFT RUSH	1%+90% DORMANT
1.79%	ROUGH BENTGRASS	91%
0.98%	WOOLGRASS	3%+91% DORMANT
0.95%	NEW ENGLAND ASTER	83%+9% DORMANT
0.84%	BONESET	25%+52% DORMANT
0.68%	GRASS LEAVED GOLDENROD	29%+66% DORMANT
0.15%	OTHER CROP SEED	
7.80%	INERT MATTER	LOT NUMBER 28009
0.09%	WEED SEED	TEST DATE 12/14
JERSEY SE	ED 18B JULES LANE NEW BRUN	

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 14
 Prepared By:

 Date: Tues 9/29/15
 Erik Hall

Weather: Site Hours:

Sunny – Cloudy with showers 59-63°F 0700-1900

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
NHDES	Andrew Hoffman	Project Manager	Site Visit	8
Weston Solutions	Fred Symmes	Technical Manager	Site Visit/Deliver Geotextile	1
Weston Solutions	Lee Baronas	Technical Manager	Site Visit	12
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	10.5
Active Environmental	Louis Evangelista	Equipment Operator	Site Restoration	10
Active Environmental	Jim McPherson	Equipment Operator	Site Restoration	11
Active Environmental	Brandon Horn	Laborer	Site Restoration	11
Active Environmental	Nicholas Evangelista	Laborer	Site Restoration	

PROJECT EQUIPMENT

(Company Name - Description)

- **NHDES** (1) government vehicle
- WESTON (2) personally owned vehicle (POV) and (1) Chevy Express Cargo Van
- Active (2) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1)
 Volvo EC160C Excavator, (1) Hydroseeder, (1) POV,

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

■ Two rolls of SKAPPS 8 oz. nonwoven geotextile (12.5 ft. wide by 360 ft. long)

TEST DATA (List type and location of tests performed and results)

None.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Daily report

WORK COMPLETED- BY ISOTEC& SUBCONTRACTORS

Continue backfill of the excavation. During backfilling, material swelled to original grade. An excavation approximately 105 ft. long by 20 ft. by 4 ft. deep (and below final grade) was excavated to allow swelled material to exit the soil mixing excavation. The new excavation filled with approximately 12-24 inches of swelled material at completion of work today. See attached Site Status Map and photos bellows for more details.

AGREEMENTS

(Company Name – task description)

Active, Weston and NHDES agreed to excavate the cell south of the soil mix excavation to all relief of the swell material as backfill continued in the soil mix excavation.

Notes:

Active = Active Environmental Technologies. Inc.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Test cell from yesterday. Swelled material settled approximately 6 inches overnight.

Swelled material exiting test cell over the temporary berm into the remaining portion of the exaction as the test cell is backfilled.

Backfilling the excavation

Backfilled test cell. Looking north from the former southeast corner of the excavation.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Backfilling activities

Excavating the relief cell for the swelled material located south of the soil mixing excavation.

Looking southeast from the northwest corner of the excavation

Re-establishing the excavation barrier fence at the end of the backfill activities.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 15
 Prepared By:

 Date: Tues 9/30/15
 Erik Hall

Weather: Site Hours:

Sunny – Cloudy with showers 59-63°F 0730-1100;

1400-1900

PROJECT PERSONNEL

Employer:	Employee:	Trade:	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	9.5
Active Environmental	Louis Evangelista	Site Manager	Site Restoration	6
Active Environmental	Brandon Horn	Laborer	Site Restoration	4
Active Environmental	Nicholas Evangelista	Laborer	Site Restoration	1

PROJECT EQUIPMENT

(Company Name – Description)

- WESTON (1) personally owned vehicle (POV) and (1) Chevy Express Cargo Van
- Active (1) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1) Volvo EC160C Excavator, (1) Hydroseeder, (1) POV,

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

- 10 bales of straw
- 22 bales of hay
- (1) 2" trash pump and (1) 2"submersible pump

TEST DATA

(List type and location of tests performed and results)

None.

SAFETY COMMENTS/VIOLATIONS

• All work conducted in a safe manner. Site received over 5 inches of rain. Ponded areas undermined the silt fence in two places. No obvious discharge of silt occurred.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

• Staked hay bales in front and behind silt fence in the two areas of silt fence where the ponded water was discharging.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures; Repair as discussed above
- Installed geotextile and hay bale structure to pump water from excavation
- Daily report

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

- Inspect erosion control measures; Repair as discussed above
- Installed geotextile and hay bale structure to pump water from excavation

AGREEMENTS

(Company Name – task description)

- 1. Active and Weston discussed path forward.
- 2. Dewater excavation. Pump water through hay bale/geotextile structure and through additional hay bales and silt fence.
- 3. Berm off the existing relief excavation dug on 9/29/15.
- 4. Dig additional relieve excavation(s) to the south of the one excavated on Tuesday 9/29/15, if water table allows after the rain. Work the material to the west side of the excavation.
- 5. Place the material that is located to the west of the soil mixing excavation into the excavation; working west to
- 6. Attempt mixing of additional dry soil with soil mixed material in the excavation.
- 7. If material in relief cells allow, install geotextile to attempt to encapsulate soil mixing material and minimize displacement to the surface.
- 8. Re-assess plan including means, methods, potential additives, and potential off site materials.

Notes:

Active = Active Environmental Technologies. Inc.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Site conditions at 0730.

Site conditions at 0730.

Hay bales staked along areas where silt fence was discharging in southeastern corner of the site

Hay bales staked along areas where silt fence was discharging in southwestern corner of the site.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Ponded area at 1400 after rain stopped.

Ponded area at 1400 after rain stopped.

Ponded area at 1400 after rain stopped.

Hay bale and geotextile structure to filter water pumped from the excavation.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 15
 Prepared By:

 Date: Thurs 10/01/15
 Erik Hall

Weather: Site Hours:

Sunny, 40-63°F 0700-2100

PROJECT PERSONNEL

Employer:	Employee:	Trade:	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	14
Weston Solutions	Fred Symmes	Technical Manager	Construction Oversight	12
Active Environmental	Louis Evangelista	Site Manager	Site Restoration	12
Active Environmental	Brandon Horn	Operator/Laborer	Site Restoration	12
Active Environmental	Nicholas Evangelista	Laborer	Site Restoration	12

PROJECT EQUIPMENT

 $(Company\ Name-Description)$

- WESTON (1) personally owned vehicle (POV). (1) Chevy pickup, and (1) Chevy Express Cargo Van
- **Active** (1) Ford F350 pickup trucks with various project tools and supplies, (1)John Deere 700J Bulldozer, (1) Volvo EC160C Excavator, (1) Hydroseeder, (1) POV,

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

- 25 bales of hay
- (1) 3" trash pump

TEST DATA

(List type and location of tests performed and results)

None.

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures.
- Relocated the geotextile and hay bale structure to pump water from excavation to the southwest corner of the site
- Delivered 25 bales of hay.
- Daily report

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

- Delivered one rental 3" trash pump.
- Relocated the geotextile and hay bale structure to pump water from excavation to the southwest corner of the site
- Pumped water into geotextile/hay bale structure
- Continued backfill of the excavation. Relocated the trench to 105 ft. long by 20 ft. by 4 ft. deep excavation to allow swelled material to exit the soil mixing excavation to the west. See attached Site Status Map and photos bellows for more details.

AGREEMENTS

(Company Name – task description)

Status update with Andrew Hoffman of NHDES and Darryl Luce of EPA.

Notes:

Active = Active Environmental Technologies. Inc.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Site conditions at 0730.

Site conditions at 0730.

Visitor to the site

Backfilling activities

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Site conditions at 1600. Water removed from soil mixing excavation.

Ponded area north of soil mixing area at 1600.

Attempt to blend soil mixing material with common fill. Very time consuming. Soil mixing material did not dry out after 1.5 hours and did not blend well when pushed with the bulldozer.

Water quality of discharge point of the wetland.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

0545-1900

 Report No.: 16
 Prepared By:

 Date: Fri 10/02/15
 Erik Hall

Weather: Site Hours:

PROJECT PERSONNEL

Sunny, 47-55°F

	4			
Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
NHDES	Andrew Hoffman	Project Manager	Site Visit	5.5
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	13
Active Environmental	Louis Evangelista	Site Manager	Site Restoration	12
Active Environmental	Jason Richards	Operator	Site Restoration	12
Active Environmental	Brandon Horn	Operator/Laborer	Site Restoration	2.75
Active Environmental	Nicholas Evangelista	Laborer	Site Restoration	12.75
G.E. Brown	Ron Sheaff Jr.	Truck Driver	Haul silty sand	9
B.E. Quint	Brian Brook	Truck Driver	Haul silty sand	9.75
Rotten Rock	Brian Lamontange	Truck Driver	Haul silty sand	9

PROJECT EQUIPMENT

(Company Name – Description)

- WESTON (1) personally owned vehicle (POV). (1) Chevy pickup, and (1) Chevy Express Cargo Van
- **Active** (1) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1) Volvo EC160C Excavator, (1) John Deere 200D Excavator, (1) Hydroseeder, (1) POV,

DEVIATIONS FROM PROPOSED SCHEDULE

Backfilling of excavation is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

- Mobilized (1) John Deere 200D excavator.
- (1) Volvo EC160C excavator remains on site, but taken off rent.
- 878 cubic yards of silty sand was delivered.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

TEST DATA

(List type and location of tests performed and results)

 Collected (1) aqueous sample from Catch Basin CB5-6 and (2) solid samples of sandy fill backfill material delivered from Alvin J. Coleman's pit. All samples will be analyzed for volatile organic compounds (VOCs) by Absolute Resource Associates.

SAFETY COMMENTS/VIOLATIONS

• All work conducted in a safe manner. The Volvo excavator had a hydraulic fuel line separate under the floor panel. Approximately 5 to 8 gallons of hydraulic fluid that leaked to the ground was containerized for off-site disposal by Active.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

• The fuel line was repaired on the Volvo Excavator. The excavator was parked and taken off-rent.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures.
- Daily report
- Collected (1) aqueous sample from Catch Basin CB5-6 and (2) solid samples of sandy fill backfill material.

WORK COMPLETED- BY ACTIVE &

SUBCONTRACTORS

- Continued backfill of the excavation. See attached photos below for more details.
- Pumped water into geotextile/hay bale structure.
- Mobilized (1) John Deere 200D excavator.
- Containerize approximately 5 to 8 gallons of hydraulic fluid (and associated impacted soil) that spilled from a separated hose under the excavator floor board.
- Conducted a soil mixing test. One excavator bucket of soil mix silty material was mixed with approximately 3 buckets of silty sand. It took approximately 3:17 to mix to a consistency that could be used as suitable backfill material.

AGREEMENTS

(Company Name – task description)

None.

Notes:

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Site conditions at 0730.

Site conditions at 0730.

Backfill material

Site conditions at 1600.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs (continued)

Site conditions at 1600.

Hydraulic fluid spill from the Volvo excavator.

Hydraulic fitting that separated under the floor board of the excavator

Containerizing the hydraulic fluid and associated impacted soil.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 17
 Prepared By:

 Date: Sat 10/03/15
 Erik Hall

Weather: Site Hours:

Sunny, 34-62°F 0700-1400

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
Weston Solutions	Vinnie DelloRusso	Project Manager	Site Visit	4.75
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	7
Active Environmental	Louis Evangelista	Site Manager	Site Restoration	7
Active Environmental	Jason Richards	Operator	Site Restoration	7
Active Environmental	Nicholas Evangelista	Laborer	Site Restoration	7
Coleman	Errol Wiggin	Truck Driver	Haul silty sand	2.75
Coleman	Mike O Rourke	Truck Driver	Haul silty sand	2.75

PROJECT EQUIPMENT

(Company Name – Description)

- WESTON (1) personally owned vehicle (POV). (1) Chevy pickup, and (1) Chevy Express Cargo Van
- **Active** (1) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1) Volvo EC160C Excavator, (1) John Deere 200D Excavator, (1) Hydroseeder, (1) POV,

DEVIATIONS FROM PROPOSED SCHEDULE

Backfilling of excavation is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

288 cubic yards of silty sand was delivered.

TEST DATA (List type and location of tests performed and results)

None

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures.

•

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

- Continued backfill of the excavation. See attached photos below for more details.
- Pumped water into geotextile/hay bale structure.

AGREEMENTS

(Company Name – task description)

None.

Notes:

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Site conditions at 0730

Site conditions at 0730

Site conditions at 0730

Mixing silty sand in the former soil mix cell

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Photographs (continued)

Site conditions at 1400

Site conditions at 1400

Site conditions at 1400

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 18
 Prepared By:

 Date: Mon10/05/15
 Erik Hall

 Weather:
 Site Hours:

 Sunny, 34-62°F
 0555-1400

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
Weston Solutions	Lee Baronas	Technical Manager	Construction Oversight	11
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	7
Active Environmental	Jason Richards	Operator	Site Restoration	5
Active Environmental	Nicholas Evangelista	Laborer	Site Restoration	5
Rotten Rock	Bryan Lamontagne	Truck Driver	Haul silty sand	9
G.E. Brown	Ron Sheaff Jr.	Truck Driver	Haul silty sand	9

PROJECT EQUIPMENT

(Company Name – Description)

- WESTON (1) personally owned vehicle (POV). (1) Chevy pickup, and (1) Chevy Express Cargo Van
- **Active** (1) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1) Volvo EC160C Excavator, (1) John Deere 200D Excavator, (1) Hydroseeder,

DEVIATIONS FROM PROPOSED SCHEDULE

Backfilling of excavation is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

482 cubic yards of silty sand was delivered.

TEST DATA (List type and location of tests performed and results)

Conducted 3 bucket tests of silty soil with Portland cement at ratios by volume of 2%, 4% and 8%.

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

Continued backfill of the excavation. See attached photos below for more details.

AGREEMENTS

(Company Name – task description)

Vinnie DelloRusso notified Lee Baronas to continue hauling silty sand up to 600 cubic yards for the day.

Notes:

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Site conditions at 0930

Site conditions at 0930

Site conditions at 0930

Mixing silty sand in the former soil mix cell

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Photographs (continued)

Site conditions at 1600

Site conditions at 1600

Site conditions at 1600

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 19
 Prepared By:

 Date: Tues 10/06/15
 Erik Hall

Weather: Site Hours:

Sunny, 34-61°F 0645-1400

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	11.25
Active Environmental	Jason Richards	Operator	Site Restoration	8
Active Environmental	Nicholas Evangelista	Laborer	Site Restoration	10
Active Environmental	Louis Evangelista	Site Superintendent	Site Restoration	7
Rotten Rock	Bryan Lamontagne	Truck Driver	Haul silty sand	4.25

PROJECT EQUIPMENT

 $(Company\ Name-Description)$

- WESTON (1) personally owned vehicle (POV) and (1) Chevy Express Cargo Van
- **Active** (1) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1) Volvo EC160C Excavator, (1) John Deere 200D Excavator, (1) Hydroseeder, (1) POV

DEVIATIONS FROM PROPOSED SCHEDULE

Backfilling of excavation is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

140 cubic yards of silty sand was delivered.

TEST DATA (List type and location of tests performed and results)

Conducted 3 bucket tests of silty soil with Portland cement at ratios by volume of 2%, 4% and 8%.

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

■ None.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

- Continued backfill of the excavation. See attached photos below for more details.
- Pump water to the geotextile/hay bale structure.
- Prepare site to demobilize.

AGREEMENTS

(Company Name – task description)

- During a conference call between EPA, NHDES, and Weston, D. Hoffman requested that hauling of silty sand stop due to financial restrictions. Decision was made demobilize the crew until NHDES, EPA, and Weston agree upon a path forward.
- At 14:55, E. Hall received a call from V. DelloRusso that the crew will not demobilize and to continue to backfill excavation to prepare for additional of cement kiln dust.

Notes:

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Site conditions at 0730

Site conditions at 0730

Site conditions at 0730

Site conditions at 0730

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs (continued)

Site conditions at 1700

Site conditions at 1700

Site conditions at 1700

Portland cement and soil mix soil ratio results after 14 hrs. of cure time

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

<u>Report No. : 20</u>	<u>Prepared By:</u>
Date: Weds 10/07/15	Erik Hall

Weather: Site Hours:

Sunny, 54-63°F 0700-1630

PROJECT PERSONNEL

Employer:	Employee:	Trade:	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	9
Active Environmental	Jacob Siletti	Laborer	Site Restoration	9
Active Environmental	Nicholas Evangelista	Project Admin/Laborer	Site Restoration	9
Active Environmental	Louis Evangelista	Site Superintendent	Site Restoration	9

PROJECT EQUIPMENT

(Company Name – Description)

■ WESTON – (1) personally owned vehicle (POV) and (1) Chevy Express Cargo Van

Active – (1) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1)
 Volvo EC160C Excavator, (1) John Deere 200D Excavator, (1) Hydroseeder, (2) POV

DEVIATIONS FROM PROPOSED SCHEDULE

Backfilling of excavation is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

None.

TEST DATA (List type and location of tests performed and results)

None.

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

Continued backfill of the excavation. See attached photos below for more details.

AGREEMENTS

(Company Name – task description)

None.

Notes:

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Mixing soil mix material that was placed south of the relief cell

Mixing soil mix material that was placed south of the relief cell

Mixing soil mix material that was placed south of the relief cell

Site conditions at 15:30

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Photographs (continued)

Site conditions at 15:30

Site conditions at 15:30

Page 4 of 4

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

0700-1730

<u>Report No.: 21</u> <u>Prepared By:</u>

Date: Thurs 10/08/15 Erik Hall

Weather: Site Hours:

PROJECT PERSONNEL

Sunny, 54-63°F

Employer:	Employee:	Trade:	Work Description:	Hours:
NHDES	Robin Mongeon	Program Manager	Site Visit	2.5
NHDES	Andrew Hoffman	Project Manager	Site Visit	2.5
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	9
Active Environmental	Jacob Siletti	Laborer	Site Restoration	9
Active Environmental	Nicholas Evangelista	Project Admin/Laborer	Site Restoration	10.5
Active Environmental	Louis Evangelista	Site Superintendent	Site Restoration	9
Active Environmental	Brandon Horn	Operator	Site Restoration	6.5
Active Environmental	Brian Way	Laborer	Site Restoration	6.5

PROJECT EQUIPMENT

(Company Name – Description)

■ **NHDES** - (1) SUV

- WESTON (1) personally owned vehicle (POV) and (1) Chevy Express Cargo Van
- Active (1) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1)
 Volvo EC160C Excavator (off rent), (1) John Deere 200D Excavator, (1) Hydroseeder, (2) POV

DEVIATIONS FROM PROPOSED SCHEDULE

Backfilling of excavation is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

- Delivery of 21 tons of cement kiln dust (CKD).
- Picked up 14 hay bales.

TEST DATA (List type and location of tests performed and results)

Conducted bucket tests of CKD.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

SAFETY	COM	TENTS/	JIOT A	TIONS
SAFETY	COMM	TENTS/N	/ IOLA	HIONS

All work conducted in a safe manner.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures.
- Bucket test of CKD.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

- Continued backfill of the excavation. See attached photos below for more details.
- Spread load of CKD.

AGREEMENTS

(Company Name – task description)

None.

Notes:

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Site conditions at 07:30

Site conditions at 07:30

Site conditions at 07:30

Delivery of cement kiln dust

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Photographs (continued)

Site conditions at 17:30

Site conditions at 17:30

Page 4 of 4

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 22
 Prepared By:

 Date: Fri 10/09/15
 Erik Hall

 Weather:
 Site Hours:

 Rain, 40-47°F
 0700-1230

PROJECT PERSONNEL

Employer:	Employee:	Trade:	Work Description:	Hours:
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversight	5.5
Active Environmental	Jacob Siletti	Laborer	Site Restoration	4.5
Active Environmental	Brandon Horn	Operator	Site Restoration	5
Active Environmental	Brian Way	Laborer	Site Restoration	5

PROJECT EQUIPMENT

(Company Name - Description)

■ WESTON – (1) personally owned vehicle (POV) and (1) Chevy Express Cargo Van

Active – (1) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1)
 Volvo EC160C Excavator (off rent), (1) John Deere 200D Excavator, (1) Hydroseeder, (1) POV

DEVIATIONS FROM PROPOSED SCHEDULE

Backfilling of excavation is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

- Delivery of 27.65 tons of cement kiln dust (CKD).
- Delivery of 35.9 tons of lime kiln dust (LKD).

TEST DATA (List type and location of tests performed and results)

Conducted bucket tests of LKD (4% and 8% of LKD by volume to soil mix material).

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures.
- Inspected CKD bucket tests from yesterday. Material did not stiffen overnight.
- Bucket tests of LKD. Bucket will be check tomorrow.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

- Spread load of CKD
- Conducted mixing test of LKD. (10 excavator buckets of soil mix material with 3/4 bucket of LKD). Placed mixed material under poly to be inspected tomorrow.
- Prepared site for rain.

AGREEMENTS

(Company Name – task description)

None.

Notes:

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Delivery of CKD

Delivery of LKD

Site conditions at 12:30

Material mixed with LKD approximately 2 hours after mixing $% \left(1\right) =\left(1\right) +\left(1\right)$

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
toration of In-Situ Chemical Oxidation via Soil Mixing

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Photographs (continued)

LKD Bucket test (4% by volume)

LKD Bucket test (8% by volume)

Page 4 of 4

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 23
 Prepared By:

 Date: Sat 10/10/15
 Erik Hall

Weather: Site Hours:

Sunny, 52-74°F 0730-1015

PROJECT PERSONNEL

Employer:Employee:Trade:Work Description:Hours:Weston SolutionsVinnie DelloRussoProject ManagerReceive Kiln Dust2.75Active EnvironmentalBrian WayLaborerReceive Kiln Dust2.25

PROJECT EQUIPMENT (Company Name – Description)

- WESTON (1) personally owned vehicle (POV) and (1) Chevy Express Cargo Van
- Active (1) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1) Volvo EC160C Excavator (off rent), (1) John Deere 200D Excavator, (1) Hydroseeder, (1) POV

DEVIATIONS FROM PROPOSED SCHEDULE

Backfilling of excavation is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

Delivery of 36.15 tons of lime kiln dust (LKD).

TEST DATA (List type and location of tests performed and results)

Reviewed bucket tests of LKD collected on Friday 10/09/15. The 4% LKD by volume was still very soft. The 8% by volume was stiff enough to work into a ball but not crumbly. The LKD test soil pile that was mixed by the excavator (approximately 8-10% by volume) looked very workable and stiff.

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

RECOMMENDED CORRECTIVE ACTIONS (Company Name – task description)

■ None.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures.
- Received LKD.
- Reviewed bucket tests of LKD collected on Friday 10/09/15.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

- Uncovered LKD prior to delivery
- Recovered LKD piles after delivery

AGREEMENTS

(Company Name – task description)

None.

Notes:

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Delivery of lime kiln dust (LKD)

Covered LKD piles

Site conditions in southeast corner of the site

Site conditions in southeast corner of the site

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs (continued)

Site conditions looking east from the western edge of the relief cell

LKD bucket test (8% by volume)

LKD bucket test (4% by volume)

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 24
 Prepared By:

 Date: Tues 10/13/15
 Erik Hall

Weather: Site Hours:

Showers, 56-76°F 0700-1800

PROJECT PERSONNEL

Employer:	Employee:	Trade:	Work Description:	Hours:
NHDES	Robin Mongeon	Program Manager	Site Visit	2.75
NHDES	Andrew Hoffman	Project Manager	Site Visit	2.75
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversite	11
Weston Solutions	Vinnie DelloRusso	Project Manager	Site Visit	7.75
Active Environmental	Louis Evangelista	Site Superintendent	Site Restoration	11
Active Environmental	Mike Nardone	Operator	Site Restoration	11
Active Environmental	Brian Way	Laborer	Site Restoration	11

PROJECT EQUIPMENT

(Company Name – Description)

- WESTON (2) personally owned vehicle (POV) and (1) Chevy Express Cargo Van
- Active (1) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1) Volvo EC160C Excavator (off rent), (1) John Deere 200D Excavator, (1) Kubota SVL-90-2, skid steer (1) Hydroseeder, (1) POV

DEVIATIONS FROM PROPOSED SCHEDULE

Backfilling of excavation is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

- Delivery of 36.81 tons of lime kiln dust (LKD).
- Delivery of Kubota SVL-90-2 skid steer

TEST DATA

(List type and location of tests performed and results)

None.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures. All controls are in good shape.
- Received LKD.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

• Continued backfill of the excavation. Mixed in LKD to stiffen soil with good results. Was able to grade portions of raised areas with the bulldozer. See attached photos below for more details.

AGREEMENTS

(Company Name – task description)

NHDES and Weston agreed to order 3 more loads of LKD for delivery tomorrow.

Notes:

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Results of the LKD bucket test after 96 hours (conducted on Friday 10/9/15). 4% by volume is still soft. 8% by volume is workable material.

Results of LKD test conducted on Friday 10/9/15. Material was mixed with approximately 8-10% by volume LKD. Material is stiff, crumbly and very workable.

Site conditions at 08:00

Site conditions at 08:00

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Site conditions at 08:00

Grading portions of the raised area after stiffening material with LKD

Mixing in LKD in southeast corner of the site

Site conditions at 17:00. Portions of raised area were lowered with bulldozer.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Site conditions at 17:00. Portions of raised area were lowered with bulldozer.

Site conditions at 17:00. Portions of raised area were lowered with bulldozer.

Site conditions at 17:00. Portions of raised area were lowered with bulldozer.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 25
 Prepared By:

 Date: Tues 10/14/15
 Erik Hall

Weather: Site Hours:

Showers, 58-75°F 0700-1700

PROJECT PERSONNEL

Employer:	Employee:	Trade:	Work Description:	Hours:
EPA	Darryl Luce	Remedial Proj. Manager	Site Visit	2.
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversite	10
Active Environmental	Louis Evangelista	Site Superintendent	Site Restoration	10
Active Environmental	Mike Nardone	Operator	Site Restoration	10
Active Environmental	Brian Way	Laborer	Site Restoration	10
Active Environmental	Jacob Siletti	Laborer	Site Restoration	10

PROJECT EQUIPMENT

(Company Name – Description)

- WESTON (2) personally owned vehicle (POV) and (1) Chevy Express Cargo Van
- Active (1) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1) Volvo EC160C Excavator (off rent), (1) John Deere 200D Excavator, (1) Kubota SVL-90-2, skid steer (1) Hydroseeder, (1) POV

DEVIATIONS FROM PROPOSED SCHEDULE

Backfilling of excavation is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

Delivery of 55.589 tons of lime kiln dust (LKD).

TEST DATA (List type and location of tests performed and results)

None.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

SAFETY COMMENTS/VIOLATIONS

- All work conducted in a safe manner.
- Soil was backfilled against the silt fence.
- LKD delivery truck spill LKD on Hobbs Street as it exited.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

- Weston requested that soil be shoveled away from the silt fence. Active restored the silt fence area in question.
- Weston requested that Active fill hydroseeder and wash LKD that spilled from delivery truck from Hobbs Street.,
 Active complied.

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures. All controls are in good shape.
- Received LKD
- Met with EPA Remedial Project Manager on site.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

- Continued backfill of the excavation. Mixed in LKD to stiffen soil with good results. Was able to rough grade portions of raised areas with the bulldozer. Some soft spots still exist and will be thickened with KLD tomorrow. See attached photos below for more details.
- Pumped rain water into geotextile/hay bale structures to dewater site.

AGREEMENTS

(Company Name – task description)

None.

Notes:

Active = Active Environmental Technologies. Inc.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

Washed LKD off Hobbs Street that LKD truck spilled as it exited

Rough grading the site

Mixing KLD into soft spots

Site conditions at 17:00. Standing on southern topsoil pile looking east.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Site conditions at 17:00. Standing on southern topsoil pile looking northeast.

Site conditions at 17:00. Standing on southern topsoil pile looking north.

Site conditions at 17:00. Standing on northern topsoil pile looking southeast.

Site conditions at 17:00. Standing on northern topsoil pile looking south.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 25
 Prepared By:

 Date: Thurs 10/15/15
 Erik Hall

Weather: Site Hours:

Showers, 39-52°F 0700-1700

PROJECT PERSONNEL

Employer:	Employee:	Trade:	Work Description:	Hours:
Weston Solutions	Lee Baronas	Technical Manager	Construction Oversite	5
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversite	7
Active Environmental	Louis Evangelista	Site Superintendent	Site Restoration	10
Active Environmental	Mike Nardone	Operator	Site Restoration	9
Active Environmental	Brian Way	Laborer	Site Restoration	9
Active Environmental	Jacob Siletti	Laborer	Site Restoration	10

PROJECT EQUIPMENT

(Company Name – Description)

- WESTON (2) personally owned vehicle (POV) and (1) Chevy Express Cargo Van
- Active (1) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1) Volvo EC160C Excavator (off rent), (1) John Deere 200D Excavator, (1) Kubota SVL-90-2, skid steer (1) Hydroseeder, (2) POV

DEVIATIONS FROM PROPOSED SCHEDULE

Backfilling of excavation is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

- 100 bales of hay delivered for mulching after seeding.
- Skid steer was demobilized.
- 1.5 rolls of geotextile demobilized. To be delivered to the Keefe site.

TEST DATA (List type and location of tests performed and results)

None.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures. All controls are in good shape.
- Shot elevations, with a survey level and rod, at perimeter of site to develop grading plan. A swale will be installed between the north topsoil stockpile and soil mixing area with the discharge at the wetland on the southwest corner of the site. The wetland to the north of the site will be incorporated into that swale. Another swale will be installed along the eastern edge of the site and will discharge in the southeast corner of the site. The rest of the site will be graded to either of these swales. See attached proposed grading plan.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

- Mixed in lime kiln dust (LKD) to stiffen soil with good results.
- Rough graded the raised areas with the bulldozer. Some soft spots still exist and will be allowed to stiffen over the weekend. See attached photos below for more details.
- Pumped rain water into geotextile/hay bale structures to dewater site.
- Decontaminated the skid steer and the excavator with the hydroseeder.
- Demobilized the skid steer.
- Received 100 bales of hay. Hay was placed on and covered by poly.

AGREEMENTS

(Company Name – task description)

None.

Notes:

Active = Active Environmental Technologies. Inc.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Photographs

Thickening soft spots with LKD

Rough grading the site

Rough grading the site

Site conditions at 17:00. Standing on southern topsoil pile looking east.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Site conditions at 17:00. Standing on southern topsoil pile looking northwest.

Site conditions at 17:00. Standing on southern topsoil pile looking north.

Site conditions at 17:00. Standing on southern topsoil pile looking northeast.

Site conditions at 17:00. Standing on southern topsoil pile looking east.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 26
 Prepared By:

 Date: Mon 10/19/15
 Erik Hall

 Weather:
 Site Hours:

 Sunny, 31-42°F
 0700-1630

PROJECT PERSONNEL

Employer:	Employee:	Trade:	Work Description:	Hours:
Weston Solutions	Lee Baronas	Technical Manager	Construction Oversite	7
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversite	3
Active Environmental	Jason Richards	Operator	Site Restoration	9.5
Active Environmental	Mike Nardone	Site Foreman	Site Restoration	9.5
Active Environmental	Brian Way	Laborer	Site Restoration	9.5
Active Environmental	Jacob Siletti	Laborer	Site Restoration	7.5

PROJECT EQUIPMENT

(Company Name – Description)

- WESTON (2) personally owned vehicle (POV) and (1) Chevy Express Cargo Van
- Active (2) Ford F350 pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1) Volvo EC160C Excavator (off rent), (1) John Deere 200D Excavator, (1) skid steer, (1) hydroseeder, (1) hay blower, (1) POV

DEVIATIONS FROM PROPOSED SCHEDULE

Restoration is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

- Active delivered the hay blower to the site.
- Weston's rental van was demobilized.

TEST DATA (List type and location of tests performed and results)

None.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures. All controls are in good shape.
- Shot elevations along eastern swale along access road.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

- Finished rough grading of the site with the bulldozer. See attached photos below for more details.
- Install swale along access road on eastern side of site.
- Begin spreading topsoil.
- Removed concrete rings around the protected monitoring wells and catch basin CB7-8.
- Removed dewatering hay bale/geotextile structures and stockpiles for disposal.
- Removed silt fence along the eastern perimeter of the site to allow for rough grading.
- Removed, cleaned and reinstalled silt sack in CB7-8. Silt sack in CB8-9 did not need to be cleaned.
- Received hay blower.

AGREEMENTS

(Company Name – task description)

• Lee Baronas spoke with Jon Hurteau regarding placement of concrete rings along the northwest corner of the site near the concrete pile.

Notes:

Active = Active Environmental Technologies. Inc.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

Removing silt fence on the eastern edge of the site

Continued rough grading the site

Removing the geotextile dewatering structure.

Temporarily staged concrete rings that were protecting monitoring wells and catch basin CB7-8.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Excavating topsoil to be spread by the bulldozer.

Site conditions at 16:30. Standing on at the former location of the northern topsoil pile looking southeast.

Spreading topsoil

Site conditions at 16:30. Standing on southern topsoil pile looking north.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 27
 Prepared By:

 Date: Tues 10/20/15
 Erik Hall

Weather: Site Hours:

Sunny, 42-62°F 0700-1700

PROJECT PERSONNEL

Employer:	Employee:	Trade:	Work Description:	Hours
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversite	10
Active Environmental	Jason Richards	Operator	Site Restoration	10
Active Environmental	Mike Nardone	Site Foreman	Site Restoration	10
Active Environmental	Brian Way	Laborer	Site Restoration	10
Active Environmental	Jacob Siletti	Laborer	Site Restoration	10

PROJECT EQUIPMENT

(Company Name – Description)

■ **WESTON** – (1) personally owned vehicle (POV)

Active – (2) pickup truck with various project tools and supplies, (1) John Deere 700J Bulldozer, (1) Volvo EC160C Excavator (off rent), (1) John Deere 200D Excavator, (1) hydroseeder, (1) hay blower, (1) POV

DEVIATIONS FROM PROPOSED SCHEDULE

Restoration is behind schedule due to the nature of silty material created during soil mixing.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

- Active demobilized the hay blower.
- The Volvo EC160C Excavator was demobilized by the rental company.
- (1) 30-yd roll-off was delivered prior to 07:00 today. It was demobilized before noon.

TEST DATA

(List type and location of tests performed and results)

■ None.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures. All controls are in good shape. Installed additional silt fence along the north and south edges of the site in preparation for demobilization.
- Shot elevations along western swale along access road.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

- Finished spreading topsoil. See attached photos below for more details.
- Install swale along access road on eastern side of site.
- Seeded, fertilized, hay mulched and hydro mulched the disturbed portions of the site.
- Removed concrete rings around the protected monitoring wells and catch basin CB7-8.
- Placed site trash in roll-off for disposal.
- Extended silt fence along the northeast and southeast corners of the site.
- Demobilized the hay blower.

AGREEMENTS

(Company Name – task description)

- Jon Hurteau requested placement of concrete rings along the eastern edge of his parking lot to minimize trespassers' vehicles from driving onto the site after the security fence is removed.
- Erik Hall and Jon Hurteau discussed final grading. Mr. Hurteau preferred leaving a low spot at the existing wetland to the north of the site rather than have a swale with a 2 foot cut along the western edge of the site.

Notes:

Active = Active Environmental Technologies. Inc.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

Rough grading of the site

Spreading the seed

Installing the swale on the western side of the site

Spreading seed on the topsoil

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Access road along the eastern edge of the site.

Blowing hay after seeding and fertilizing

Catch Basin CB7-8 with silt sack

Site conditions at 16:30. Standing on southern topsoil pile looking north.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Hay mulched and hydromulched. Standing at location of the former north topsoil looking east.

Hay mulched and hydromulched. Standing at location of the former north topsoil looking southeast.

Site conditions at 16:00. Looking south along western edge of the site.

Site conditions at 16:30. Looking south along western edge of the site.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 28
 Prepared By:

 Date: Weds 10/21/15
 Erik Hall

 Weather:
 Site Hours:

 Sunny, 40-51°F
 0700-1200

PROJECT PERSONNEL

Employer:	Employee:	Trade:	Work Description:	Hours
Weston Solutions	Erik Hall	Site Superintendent	Construction Oversite	5
Active Environmental	Jason Richards	Operator	Site Restoration	5
Active Environmental	Mike Nardone	Site Foreman	Site Restoration	5
Active Environmental	Brian Way	Laborer	Site Restoration	5
Active Environmental	Jacob Siletti	Laborer	Site Restoration	5

PROJECT EQUIPMENT

 $(Company\ Name-Description)$

■ **WESTON** – (1) personally owned vehicle (POV)

• Active – (2) pickup trucks with various project tools and supplies, (1) John Deere 700J Bulldozer, (1) John Deere 200D Excavator, (1) hydroseeder, (1) POV

DEVIATIONS FROM PROPOSED SCHEDULE

Restoration was completed today.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

Active demobilized (2) pickup trucks with various project tools and supplies, (1) hydroseeder, and (1) POV.

TEST DATA (List type and location of tests performed and results)

None.

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None

WORK COMPLETED- BY WESTON

- Construction oversight.
- Photo document activities and site conditions.
- Inspect erosion control measures. All controls are in good shape.
- Relocated western edge of the temporary site security fence to allow Hurteau Enterprises access to the eastern edge of their security fence.
- Video documentation of site conditions at demobilization.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

- Decontaminated the excavator and bulldozer. Bulldozer and excavator were left on site to be demobilized by the rental company.
- Relocated portable toilet to the southeast corner of the former water treatment plant.
- Seeded and hay mulched area on western edge of the site where equipment was stored yesterday.
- Relocated concrete rings formerly used to protect monitoring wells and catch basin CB7-8 to minimize vehicular traffic on the site after the temporary security fence is removed.
- Relocated western edge of the temporary site security fence to allow Hurteau Enterprise's access to the eastern edge of their security fence.
- Demobilized (2) pickup trucks with various project tools and supplies, (1) hydroseeder, and (1) POV.

AGREEMENTS

(Company Name – task description)

None.

Notes

Active = Active Environmental Technologies. Inc.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Photographs

Decontaminating equipment

Site conditions standing in the center of the site looking northwest.

Site conditions standing in the center of the site looking north.

Site conditions standing in the center of the site looking northeast.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street
Restoration of In-Situ Chemical Oxidation via Soil Mixing
NHDES Site No. 198708002

Site conditions standing in the center of the site looking east.

Site conditions standing in the center of the site looking southeast.

Site conditions standing in the center of the site looking south.

Site conditions standing in the center of the site looking west.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Relocated portable toilet to the southeast corner of the former water treatment plant.

Relocated temporary security fence along the the western edge of the site.

Steel plate found in the exacvation during soil mixing was left on site per request of Hurteau Enterprises

Placement of the concrete rings formerly used to procte the monitoring well along the eastern edge of Hurteau Enterprises' parking lot.

Former Kearsarge Metallurgical Corp Superfund Site
123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

 Report No.: 29
 Prepared By:

 Date: Thurs 11/5/15
 Erik Hall

 Weather:
 Site Hours:

 Sunny, 40-51°F
 0900-1200

PROJECT PERSONNEL

Employer:	Employee:	<u>Trade:</u>	Work Description:	Hours
NHDES	Andrew Hoffman	Project Manager	Site Walk	2
Weston Solutions	Erik Hall	Site Superintendent	Site Walk/Fence Removal	3
B-Quip Temp Fence	Mike Guild	Foreman	Fence Removal	2
B-Quip Temp Fence	Todd Nalette	Foreman	Fence Removal	2

PROJECT EQUIPMENT

(Company Name – Description)

- **WESTON** (1) Fleet pickup (POV)
- $\mathbf{BQuip} (1)$ Flat bed truck and trailer

DEVIATIONS FROM PROPOSED SCHEDULE

None.

EQUIPMENT/MATERIALS DELIVERED/PICKED-UP

■ B-Quip demobilized temporary fence.

TEST DATA (List type and location of tests performed and results)

None.

SAFETY COMMENTS/VIOLATIONS

All work conducted in a safe manner.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street

Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

RECOMMENDED CORRECTIVE ACTIONS

(Company Name – task description)

None

WORK COMPLETED- BY WESTON

- Site Walk with NHDES.
- Photo document activities and site conditions.
- Inspect erosion control measures. All controls are in good shape.
- Helped demobilize temporary fence.

WORK COMPLETED- BY ACTIVE & SUBCONTRACTORS

■ B-Quip Temporary Fence demobilized temporary security fence

AGREEMENTS

(Company Name – task description)

■ None.

Former Kearsarge Metallurgical Corp Superfund Site 123 Hobbs Street Restoration of In-Situ Chemical Oxidation via Soil Mixing NHDES Site No. 198708002

Photographs

Site conditions upon arriving at the site

Site conditions upon arriving at the site

Ponded area along northern edge of the site

Grass started to grow

VENDU A / SOLD TO Shepherd Materials Management LLC 56 Central Avenue Ravena NY 12143

Graymont (QC) Inc. Usine de Bedford 1015 Chemin de la Carriere

C.P. 1290 Bedford QC J0J 1A0

EXPEDIE A / SHIP TO 215877 Shepherd Materials Management LLC

123 Hobbs Street North Conway NH

Non negociable - Not negotiable

Client/Cust #: 700325 Comm/Cust PO:

867914 SO

Ref Graymont: Ref-2 Graymont:

Comm/Ord:

08-Oct-2015

Terms:

Brut:

Net:

Tare:

Net 30

Exp/Ship#:

57625407

35360 kg 17:29

18820 kg 17:29

B/L NO:

4060728

Page: 1

158914

Date Exp/Ship: 08-Oct-2015

Int/Broker #: 158914 FCA-COLLECT Inter/Broker: Transport Chalut 2000 Inc

Zone:

.

Livraison/Del: 09-Oct-2015

CTO/NIR:

Balance/Scale ID:26001

Veh#:

Transport Chalut 2000 Inc

Trans/Carrier: MTC/Max Weight:

57500 KG

Item

Qte/Qty

16540 kg

Description

3524

18.232 TN Graysol Plus 0 x 1.25 mm

High Calcium LKD

EMERGENCY TEL. NO.: (800) 424-9300 CHEMTREC (US)

(613) 996-6666 CANUTEC (CANADA)

Instructions: IRS# 27-3592584

Expediteur/Shipper:

Transporteur/Carrier:

Client/Consignee:

B/L NO:

4060728

OFFICE COPY

Pro-Bill

Groupe

MALO TRANSPORT (1971) INC. 23 St-Jacques, C.P. 322 Joliette Québec J6E 3Z6

Tél.: 450-756-8008 • Fax: 450-756-8337

Intermédiaire

NI: 5-Q-30641 i

Chalut

NO. PRO-BILL:

00000247497

NO. EXP. / SHIP:

57625423

NO. B/L:

NO. COMMANDE:

09/10/2015

L. BRETON TRANSPORT LTÉE

Intermédiaire

NI: 3-Q-30642 i

NI: 1-Q-30643 i

115 route 255, Marbleton Québec JOB 2L0 Tél.: 819-887-6773 • Fax: 819-887-6394

TRANSPORT CHALUT 2000 INC. Intermédiaire

1065 chemin de la Carrière, Bedford Québec J0J 1A0

Tél.: 450-248-4422 • Fax: 450-248-7846

EXPÉDITEUR:

DATE CHARGEMENT:

08/10/2015

GRAYMONT (QC) INC. USINE DE BEDFORD 1015 CH.DE LA CARRIERE

BEDFORD, PO JOJ 1A0

是基本

003169

CONSIGNATAIRE:

SHEPHERD MATERIALS

MANAGEMENT LLC

123 HOBBS STREET NORTH CONWAY, NH

03860

003281

UNITÉ CODE OTÉ DESCRIPTION POIDS CHAUFFEUR GRAYSOL PLUS 0X1.25MM 000009 643 TRANSPORT CHA CAMION REMORQUE 1562 C - 1056BRILC HALL: (003860 6434

EXPLOITANT OU TRANSPORTEUR SUCCESSIF

NO .:

NIR ·

NTD 508972-8

LIVRÉ PAR: 1 11

DATE LIVRAISON:

VENDU A / SOLD TO Shepherd Materials Management LLC 56 Central Avenue Ravena NY 12143

Graymont (QC) Inc. Usine de Bedford

1015 Chemin de la Carriere

C.P. 1290

Bedford QC J0J 1A0

EXPEDIE A / SHIP TO

215877

Shepherd Materials Management LLC 123 Hobbs Street

North Conway NH

Non negociable - Not negotiable

Client/Cust #: 700325

B/L NO:

4060802

Page: 1

158914

Comm/Cust PO:

Ref Graymont: 867914

Date Exp/Ship: 08-Oct-2015

Int/Broker #: 158914 FCA-COLLECT
Inter/Broker: Transport Chalut 2000 Inc

Ref-2 Graymont:

Zone:

.

Comm/Ord: Terms:

08-Oct-2015 Net 30

Livraison/Del: 09-Oct-2015

Exp/Ship#:

57625423

CTQ/NIR:

Brut:

______ 35070 kg 19:36

Balance/Scale ID:26001

Tare:

18910 kg 19:36

Veh#:

Net:

16160 kg

Trans/Carrier: Transport Chalut 2000 Inc

MTC/Max Weight:

57500 KG

Item

Qte/Qty

17.813

Description

3524

High Calcium LKD

TN Graysol Plus 0 x 1.25 mm

EMERGENCY TEL. NO.: (800) 424-9300 CHEMTREC (US)

(613) 996-6666 CANUTEC (CANADA)

Instructions: IRS# 27-3592584

Expediteur/Shipper:

Transporteur/Carrier:

Client/Consignee:

B/L NO:

4060802

SHIPPING NOTICE - AVIS D'EXPÉDITION

Pro-Bill

Groupe

MALO TRANSPORT (1971) INC. 23 St-Jacques, C.P. 322 Joliette Québec J6E 3Z6

Intermédiaire

NI: 5-Q-30641 i

Chalut

NO. PRO-BILL: 00000247496

NO. EXP. / SHIP:

57625407

NO. B/L:

NO. COMMANDE:

L. BRETON TRANSPORT LTÉE 115 route 255, Marbleton Québec J0B 2L0

Intermédiaire NI: 3-Q-30642 i

Tél.: 450-756-8008 • Fax: 450-756-8337

Tél.: 819-887-6773 • Fax: 819-887-6394

NI: 1-Q-30643 i TRANSPORT CHALUT 2000 INC. Intermédiaire

1065 chemin de la Carrière, Bedford Québec J0J 1A0

Tél.: 450-248-4422 • Fax: 450-248-7846

EXPÉDITEUR:

DATE CHARGEMENT:

08/10/2015

GRAYMONT (QC) INC.

USINE DE BEDFORD 1015 CH.DE LA CARRIERE

BEDFORD, PQ

JOJ 1A0

003169

CONSIGNATAIRE:

SHEPHERD MATERIALS

DATE LIVRAISON:

POIDS

09/10/2015

MANAGEMENT LLC 123 HOBBS STREET NORTH CONWAY, NH

03860

003281

000009

CAMION

1561

CHAUFFEUR

REMORQUE

C-1057

TRANSPORT CHA

OTÉ UNITÉ CODE DESCRIPTION GRAYSOL PLUS 0X1.25MM 643

LIVRÉ PAR:

EXPLOITANT OU TRANSPORTEUR SUCCESSIF

NO .

NTD 508072-8

Graymont (QC) Inc. Usine de Marbleton 303 Principale Ouest Marbleton QC JOB 2L0

VENDU A / SOLD TO Shepherd Materials Management LLC 56 Central Avenue Ravena NY 12143

EXPEDIE A / SHIP TO 215877 Shepherd Materials Management LLC 123 Hobbs Street North Conway NH

Non negociable - Not negotiable

Client/Cust #: 700325

B/L NO:

4062131

Page:

Comm/Cust PO:

868195

Date Exp/Ship: 10-Oct-2015

Ref Graymont:

Int/Broker #: 157800 FCA-COLLECT
Inter/Broker: L. Breton Transport L

Ref-2 Graymont:

L. Breton Transport Ltee

Comm/Ord:

10-Oct-2015

Zone:

.

Terms:

Net 30

Livraison/Del: 13-Oct-2015

Exp/Ship#: ___________

57662110

CTO/NIR:

_____ 157800

Brut:

35800 kg 8:12

Balance/Scale ID:

02B651

Tare:

19000 kg 8:12

Veh#:

Trans/Carrier: L. Breton Transport Ltee

Net:

16800 kg PDS MAN

MTC/Max Weight:

57500 KG

Item

Qte/Qty

18.519

Description

3524

High Calcium LKD

TN Graysol Plus 0 x 1.25 mm

EMERGENCY TEL. NO.: (800) 424-9300 CHEMTREC (US)

(613) 996-6666 CANUTEC (CANADA)

Instructions: IRS# 27-3592584

Expediteur/Shipper:

Transporteur/Carrier:

Client/Consignee:

B/L NO:

4062131

Groupe

Chalut

NO. PRO-BILL: 00001064867

NO. EXP. / SHIP:

57662110

NO. B/L:

NO. COMMANDE:

MALO TRANSPORT (1971) INC. 23 St-Jacques, C.P. 322 Joliette Québec J6E 3Z6

Intermédiaire

NI: 5-Q-30641 i

NI: 1-Q-30643 i

Tél.: 450-756-8008 • Fax: 450-756-8337 L. BRETON TRANSPORT LTÉE

Intermédiaire NI: 3-Q-30642 i

115 route 255, Marbleton Québec J0B 2L0

Tél.: 819-887-6773 • Fax: 819-887-6394

TRANSPORT CHALUT 2000 INC. Intermédiaire

1065 chemin de la Carrière, Bedford Québec J0J 1A0 Tél.: 450-248-4422 • Fax: 450-248-7846

TXPÉDITEUR:

DATE CHARGEMENT:

10/10/2015

CONSIGNATAIRE:

DATE LIVRAISON:

13/10/2015

GRAYMONT (OC) INC.

R.R. 1

MARBLETON, PO JOB 21.0

000009

SHEPHERD MATERIALS

MANAGEMENT LLC

123 HOBBS STREET

NORTH CONWAY, NH

03860

000302

UNITÉ CODE OTÉ DESCRIPTION POIDS CHAUFFEUR 001000 036 3524 REJET FOUR 2 L BRETON TRAN F. HOROUX REMORQUE CAMION B651 12230

EXPLOITANT OU TRANSPORTEUR SUCCESSIF

NO .

NIID .

NITO 501055-0

LIVRÉ PAR:

VENDU A / SOLD TO Shepherd Materials Management LLC 56 Central Avenue Ravena NY 12143

Graymont (QC) Inc. Usine de Marbleton 303 Principale Ouest Marbleton QC JOB 2L0

EXPEDIE A / SHIP TO 215877 Shepherd Materials Management LLC 123 Hobbs Street North Conway NH

Non negociable - Not negotiable

Client/Cust #: 700325

868193

Ref Graymont: Ref-2 Graymont:

Comm/Cust PO:

Comm/Ord: 09-Oct-2015

Terms:

Net 30

Exp/Ship#:

57662101

B/L NO:

4061841

Date Exp/Ship: 09-Oct-2015

02M436

Trans/Carrier: L. Breton Transport Ltee

Page: 1

Int/Broker #: 157800 FCA-COLLECT

57500 KG

Inter/Broker: L. Breton Transport Ltee

Balance/Scale ID:

MTC/Max Weight:

.

Livraison/Del: 13-Oct-2015

CTO/NIR:

Veh#:

157800

Brut: Tare: 36270 kg 15:27 19680 kg 15:27

16590 kg PDS MAN

Qte/Qty

Description

3524

Net:

Item

18.287 TN Graysol Plus 0 x 1.25 mm High Calcium LKD

EMERGENCY TEL. NO.: (800) 424-9300 CHEMTREC (US)

(613) 996-6666 CANUTEC (CANADA)

Instructions: IRS# 27-3592584

Expediteur/Shipper:

Transporteur/Carrier:

Client/Consignee:

B/L NO:

4061841

Pro-Bill

Groupe

NO. PRO-BILL: 00001064838

NO. EXP. / SHIP:

57662101

NO. B/L:

NO. COMMANDE:

13/10/2015

MALO TRANSPORT (1971) INC. 23 St-Jacques, C.P. 322 Joliette Québec J6E 3Z6

Intermédiaire NI: 5-Q-30641 i

Tél.: 450-756-8008 • Fax: 450-756-8337

L. BRETON TRANSPORT LTÉE

Intermédiaire NI: 3-Q-30642 i

115 route 255, Marbleton Québec JOB 2L0

Tél.: 819-887-6773 • Fax: 819-887-6394

TRANSPORT CHALUT 2000 INC. Intermédiaire

NI: 1-Q-30643 i 1065 chemin de la Carrière, Bedford Québec J0J 1A0

Tél.: 450-248-4422 • Fax: 450-248-7846

EXPÉDITEUR:

DATE CHARGEMENT:

09/10/2015

GRAYMONT (OC) INC.

R.R. 1

MARBLETON, PO TOB 2 0

000009

CONSIGNATAIRE .

SHEPHERD MATERIALS

Chalut

MANAGEMENT LLC 123 HOBBS STREET

NORTH CONWAY, NH

03860

000302

QTÉ UNITÉ CODE DESCRIPTION POIDS CHAUFFEUR 001000 036 3524 REJET FOUR 2 L BRETON TRAN M.O. PouliN REMORQUE CAMION M436 15 259

EXPLOITANT OU TRANSPORTEUR SUCCESSIF

NO .

NITO 501055-0

LIVRÉ PAR:

DATE LIVRAISON:

Graymont (QC) Inc. Usine de Marbleton 303 Principale Ouest Marbleton QC J0B 2L0

VENDU A / SOLD TO Shepherd Materials Management LLC 56 Central Avenue Ravena NY 12143

EXPEDIE A / SHIP TO 215877 Shepherd Materials Management LLC 123 Hobbs Street North Conway NH

Non negociable - Not negotiable

Client/Cust #: 700325

B/L NO:

4064714

Page: 1

157800

Comm/Cust PO:

868425

Date Exp/Ship: 13-Oct-2015

Ref Graymont:

Int/Broker #: 157800 FCA-COLLECT
Inter/Broker: L. Breton Transport Ltee

Ref-2 Graymont:

.

Comm/Ord: Terms:

13-Oct-2015

Zone:

Net 30

Livraison/Del: 14-Oct-2015

Exp/Ship#:

57707251

CTO/NIR:

Brut:

36090 kg 15:01

Balance/Scale ID:

02B651

Tare:

19610 kg 15:01

Veh#:

Trans/Carrier: L. Breton Transport Ltee

Net:

16480 kg PDS MAN

MTC/Max Weight:

57500 KG

Item

Qte/Qty

Description

3524

18.166 TN Graysol Plus 0 x 1.25 mm

High Calcium LKD

EMERGENCY TEL. NO.: (800) 424-9300 CHEMTREC (US)

(613) 996-6666 CANUTEC (CANADA)

Instructions: IRS# 27-3592584

Expediteur/Shipper:

Transporteur/Carrier:

Client/Consignee:

4064714

Pro-Bill

Groupe

NO. PRO-BILL: 00001065014

NO. EXP. / SHIP:

57707251 NO. B/L:

4064714

NO. COMMANDE:

MALO TRANSPORT (1971) INC.

Intermédiaire 23 St-Jacques, C.P. 322 Joliette Québec J6E 3Z6 Tél.: 450-756-8008 • Fax: 450-756-8337

NI: 5-Q-30641 i

L. BRETON TRANSPORT LTÉE Intermédiaire

NI: 3-Q-30642 i

115 route 255, Marbleton Québec J0B 2L0

Tél.: 819-887-6773 • Fax: 819-887-6394

TRANSPORT CHALUT 2000 INC. Intermédiaire 1065 chemin de la Carrière, Bedford Québec J0J 1A0

NI: 1-Q-30643 i

Tél.: 450-248-4422 • Fax: 450-248-7846

EXPÉDITEUR:

DATE CHARGEMENT:

13/10/2015

CONSIGNATAIRE:

DATE LIVRAISON:

14/10/2015

GRAYMONT (OC) INC.

R.R. 1

EXPLOITANT OU TRANSPORTEUR SUCCESSIF

MARBLETON, PO JOB 21.0

000009

SHEPHERD MATERIALS

Chalut

MANAGEMENT LLC 123 HOBBS STREET NORTH CONWAY, NH

03860

MITO ENINEE O

000302

OTÉ UNITÉ CODE POIDS DESCRIPTION CHAUFFFUR 001000 036 3524 REJET FOUR 2 L BRETON TRAN REMORQUE CAMION 13-651 LIVRÉ PAR

Graymont (QC) Inc. Usine de Marbleton 303 Principale Ouest Marbleton QC J0B 2L0

VENDU A / SOLD TO Shepherd Materials Management LLC 56 Central Avenue Ravena NY 12143

EXPEDIE A / SHIP TO 215877 Shepherd Materials Management LLC 123 Hobbs Street North Conway NH

Non negociable - Not negotiable

Client/Cust #: 700325

B/L NO:

4064597 Page: 1

Comm/Cust PO:

Date Exp/Ship: 13-Oct-2015

Ref Graymont:

868332

Int/Broker #: 157800 FCA-COLLECT
Inter/Broker: L. Breton Transport Ltee

Ref-2 Graymont:

Zone:

.

Comm/Ord: Terms:

13-Oct-2015

Net 30

Livraison/Del: 14-Oct-2015

Exp/Ship#:

57700403

CTO/NIR:

______ Brut:

36020 kg 14:05

Balance/Scale ID:

157800

Tare:

19430 kg 14:05

Veh#:

02M436

Net:

16590 kg PDS MAN

Trans/Carrier: L. Breton Transport Ltee

MTC/Max Weight:

57500 KG

Item

3524

Qte/Qty

18.287

Description

TN Graysol Plus 0 x 1.25 mm High Calcium LKD

EMERGENCY TEL. NO.: (800) 424-9300 CHEMTREC (US)

(613) 996-6666 CANUTEC (CANADA)

Instructions: IRS# 27-3592584

Expediteur/Shipper:

Transporteur/Carrier:

Client/Consignee:

B/L NO:

4064597

Pro-Bill

Groupe

NO. PRO-BILL:

00001064995

NO. EXP. / SHIP:

57700403

NO. B/L:

4064597 NO. COMMANDE:

Chalut

MALO TRANSPORT (1971) INC.

Intermédiaire

NI: 5-Q-30641 i

23 St-Jacques, C.P. 322 Joliette Québec J6E 3Z6 Tél.: 450-756-8008 • Fax: 450-756-8337

L. BRETON TRANSPORT LTÉE

Intermédiaire

NI: 3-Q-30642 i

115 route 255, Marbleton Québec JOB 2L0

Tél.: 819-887-6773 • Fax: 819-887-6394

NI: 1-Q-30643 i

TRANSPORT CHALUT 2000 INC. Intermédiaire

1065 chemin de la Carrière, Bedford Québec J0J 1A0

Tél.: 450-248-4422 • Fax: 450-248-7846

EXPÉDITEUR:

DATE CHARGEMENT:

13/10/2015

CONSIGNATAIRE:

DATE LIVRAISON:

14/10/2015

GRAYMONT (QC) INC. R.R. 1

MARBLETON, PO JOB 21.0

000009

SHEPHERD MATERIALS

MANAGEMENT LLC 123 HOBBS STREET

NORTH CONWAY, NH

03860

000302

OTÉ UNITÉ CODE POIDS DESCRIPTION CHAUFFEUR 036 3524 REVET FOUR 2 001000 L BRETON TRAN CAMION REMORQUE M436

EXPLOITANT OU TRANSPORTEUR SUCCESSIF

NO .

NITO ENIMEE O

LIVRÉ PAR:

Graymont (QC) Inc. Usine de Marbleton 303 Principale Ouest Marbleton QC JOB 2L0

VENDU A / SOLD TO Shepherd Materials Management LLC 56 Central Avenue Ravena NY 12143

EXPEDIE A / SHIP TO 215877 Shepherd Materials Management LLC 123 Hobbs Street North Conway NH

Non negociable - Not negotiable

Client/Cust #: 700325

B/L NO:

4064345

Page: 1

Comm/Cust PO:

Date Exp/Ship: 13-Oct-2015

Ref Graymont: 868332 SO

Int/Broker #: 157800 FCA-COLLECT
Inter/Broker: L. Breton Transport Let

L. Breton Transport Ltee

Ref-2 Graymont:

13-Oct-2015

Zone:

.

Comm/Ord: Terms:

Net 30

Livraison/Del: 14-Oct-2015

Exp/Ship#: 57700497 CTQ/NIR:

157800

Brut:

36120 kg 12:02

Veh#:

02B672

Tare: Net:

18760 kg 12:01

Trans/Carrier: L. Breton Transport Ltee

17360 kg PDS MAN

Balance/Scale ID:

MTC/Max Weight:

57500 KG

Item

Qte/Qty

Description

3524 19.136

TN Graysol Plus 0 x 1.25 mm

High Calcium LKD

EMERGENCY TEL. NO.: (800) 424-9300 CHEMTREC (US)

(613) 996-6666 CANUTEC (CANADA)

Instructions: IRS# 27-3592584

Expediteur/Shipper:

Transporteur/Carrier:

Client/Consignee:

B/L NO:

4064345

Groupe

NO. PRO-BILL: 00001064994

NO. FXP. / SHIP:

57700497 NO. B/L:

1064345 NO. COMMANDE:

14/10/2015

MALO TRANSPORT (1971) INC. Tél.: 450-756-8008 • Fax: 450-756-8337

EXPÉDITEUR:

JOB 21.0

23 St-Jacques, C.P. 322 Joliette Québec J6E 3Z6

NI: 5-Q-30641 i

NI: 1-Q-30643 i

L. BRETON TRANSPORT LTÉE 115 route 255, Marbleton Québec J0B 2L0

Intermédiaire NI: 3-Q-30642 i

Tél.: 819-887-6773 • Fax: 819-887-6394

TRANSPORT CHALUT 2000 INC. Intermédiaire

1065 chemin de la Carrière, Bedford Québec J0J 1A0 Tél.: 450-248-4422 • Fax: 450-248-7846

NO .

Intermédiaire

GRAYMONT (QC) INC.

R. R. 508144 / RC1062W MARBLETON, PO

000009

CONSIGNATAIRE:

SHEPHERD MATERIALS

Chalut

MANAGEMENT LLC 10 17-11-23 HOBBS STREET

NORTH CONWAY, NH 03860

000302

DATE LIVRAISON:

UNITÉ CODE OTÉ DESCRIPTION CHAUFFEUR POIDS 036 3524 REJET FOUR 2 001000 I BRETON TRAN REMORQUE B672

EXPLOITANT OU TRANSPORTEUR SUCCESSIF

LIVRÉ PAR:

GON 10138 ADDRESS: 97,200 27.65 (CHECK [✓] APPROPRIATE BOX) SAND STONE CEMENT SLAG OTHER DRIVER'S SIGNATURE

GREENFORD GROUP INC.

P.O. BOX 449 MILFORD, ME 04461 TEL. 207-827-6000

GG- 6780

DATE 10-8-15-1	TIME
PRODUCT WIST WIST	
PRODUCER NINGON CHINENT.	SLIP NO. 10139
TOWN Thornhater UMP	
DESTINATION MESTER GLUTIONS	
TOWN COMMANY 114	
YARDS	
WEIGHT (Gross)	(Tare)
NET WEIGHT 2 3-65 TONS	
ADDITIONAL INFORMATION	
TRUCKER / 106 - 751	
DRIVER / EMICH	
9 Wel	
RECEIVED BY	

DRAGON 10136

NAME: (1) OSHELT	en Solutions
NAME: WOOTER	1 Southers
ADDRESS:	18/15
19	
	79800
	25600
	50000
	74200
	22,107N
	00,10111
(CHECK [/] APPROPRIAT	E BOX)
SAND	
STONE	
CEMENT	
SLAG	
OTHER Kil	Dut
AAI	
Contino.	,
0 1	10 B-
DRIVE	ER'S SIGNATURE

	Upland Seed Mixture	
Pure Seed		Germination
38.80%	CREEPING RED	85%
38.80%	PERENNIAL RYEGRASS	90%
6.59%	BIRDSFOOT TREFOIL	79%+11% hard seed
6.59%	ALSIKE CLOVER	85%
6.38%	RED TOP	85%
0.10%	Other Crop Seed	
4.27%	Inert Matter	Lot Number 28008
0.07%	Weed Seed	Test Date 1-15
Jersey Seed	18B Jules Lane New Brunsy	wick NJ 08901

	WETLAND RESTORATION MI	XTURE
PURE SEED		GERMINATION
1960%	VIRGINIA WILD RYE	89%
19.40%	CREEPING RED FESCUE	85%
11.25%	LITTLE BLUESTEM	62%+33% DORMANT
9.86%	SWITCHGRASS	87%
9.67%	FOX SEDGE	26%+54% DORMANT
8.08%	BIG BLUESTEM	74%+21% DORMANT
4.92%	BLUE VERVAIN	1%+90% DORMANT
1.97%	GREEN BULRUSH	0%+90% DORMANT
1.97%	SOFT RUSH	1%+90% DORMANT
1.79%	ROUGH BENTGRASS	91%
0.98%	WOOLGRASS	3%+91% DORMANT
0.95%	NEW ENGLAND ASTER	83%+9% DORMANT
0.84%	BONESET	25%+52% DORMANT
0.68%	GRASS LEAVED GOLDENROD	29%+66% DORMANT
0.15%	OTHER CROP SEED	
7.80%	INERT MATTER	LOT NUMBER 28009
0.09%	WEED SEED	TEST DATE 12/14
JERSEY SE	ED 18B JULES LANE NEW BRUN	

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Vinnie DellaRusso PO Number: 0089493

Weston Solutions,Inc.

Job ID: 34278

45 Constitution Ave

Date Received: 9/15/15

Suite 100

Concord, NH 03301

Project: Kearsarge Metallurgical Superfund Site NHDES198708002

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Principal, General Manager

lluer

Date of Approval: 9/25/2015

Total number of pages: 17

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Lab ID: 34278

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
E17S14-091515-1	Solid	9/15/2015 9:45	34278-001	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
CB5-6-091415-1	Water	9/14/2015 8:15	34278-002	
				VOCs 8021 Halocarbons in water by 8260
E17S13-091515-1	Solid	9/15/2015 10:40	34278-003	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E17S11-091515-1	Solid	9/15/2015 11:00	34278-004	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
Trip Blank	Water	9/15/2015 0:00	34278-005	
				VOCs 8021 Halocarbons in water by 8260

Job ID: 34278

Sample#: 34278-001

Sample ID: E17S14-091515-1

Matrix: Solid Percent Dry: 75.4% Results expressed on a dry weight basis.

		Reporting		Instr Dil'r	1	Pre	еp		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
tetrachloroethene	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	92	78-114	%	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
toluene-D8 SUR	107	88-110	%	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
4-bromofluorobenzene SUR	102	86-115	%	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C
a,a,a-trifluorotoluene SUR	99	70-130	%	1	LMM	9/15/15	14:47	8167	9/15/15	23:22 SW5035A8260C

Job ID: 34278

Sample#: 34278-003

Sample ID: E17S13-091515-1

Matrix: Solid Percent Dry: 77.2% Results expressed on a dry weight basis.

		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,1-dichloroethene	U	0.02	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,1,1-trichloroethane	U	0.05	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	88	78-114	%	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
toluene-D8 SUR	103	88-110	%	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
4-bromofluorobenzene SUR	94	86-115	%	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C
a,a,a-trifluorotoluene SUR	94	70-130	%	1	LMM	9/15/15	14:47	8167	9/15/15	23:52 SW5035A8260C

Job ID: 34278

Sample#: 34278-004

Sample ID: E17S11-091515-1

Matrix: Solid Percent Dry: 77% Results expressed on a dry weight basis.

Cumpica. 5/16/16	11.00	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	89	78-114	%	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
toluene-D8 SUR	104	88-110	%	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
4-bromofluorobenzene SUR	101	86-115	%	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C
a,a,a-trifluorotoluene SUR	99	70-130	%	1	LMM	9/15/15	14:47	8167	9/16/15	0:21 SW5035A8260C

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 34278

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 5 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The MLCS/D8167 did not meet the acceptance criteria for chloroethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Data Qualifiers

U = This compound was analyzed for, but not detected above half the reporting limit.

J = The analytical result was below the instrument calibration range, but above half the reporting limit, regardless of detectability. The reported concentration is an estimate.

- QC Association Table -

Analysis VOCs 8021 Halocarbons SW5030C8260C	QC Number	Field ID	Lab ID	
	1502623	CB5-6-091415-1	34278-002 34278-005	
VOCs 8021 Halocarbons SW5035A8260C		Trip Blank	34278-005	
	8167	E17S14-091515-1	34278-001	
		E17S13-091515-1	34278-003	
		E17S11-091515-1	34278-004	

- QC Report -

Method QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5030C8260C BLK1502623	dichlorodifluoromethane		<	2	ug/L				
	chloromethane		<	2	ug/L				
	vinyl chloride		<	2	ug/L				
	bromomethane		<	2	ug/L				
	chloroethane		<	2	ug/L				
	trichlorofluoromethane		<	2	ug/L				
	1,1-dichloroethene		<	1	ug/L				
	methylene chloride		<	5	ug/L				
	trans-1,2-dichloroethene		<	2	ug/L				
	1,1-dichloroethane		<	2	ug/L				
	cis-1,2-dichloroethene		<	2	ug/L				
	chloroform		<	2	ug/L				
	1,1,1-trichloroethane		<	2	ug/L				
	carbon tetrachloride		<	2	ug/L				
	1,2-dichloroethane		<	2	ug/L				
	trichloroethene		<	2	ug/L				
	1,2-dichloropropane		<	2	ug/L				
	bromodichloromethane		<	0.6	ug/L				
	cis-1,3-dichloropropene		<	2	ug/L				
	trans-1,3-dichloropropene		<	2	ug/L				
	1,1,2-trichloroethane		<	2	ug/L				
	tetrachloroethene		J	2	ug/L				
	dibromochloromethane		<	2	ug/L				
	chlorobenzene		<	2	ug/L				
	1,1,1,2-tetrachloroethane		<	2	ug/L				
	bromoform		<	2	ug/L				
	1,1,2,2-tetrachloroethane		<	2	ug/L				
	1,3-dichlorobenzene		<	2	ug/L				
	1,4-dichlorobenzene		<	2	ug/L				
	1,2-dichlorobenzene		<	2	ug/L				
	1,2,4-trichlorobenzene		<	2	ug/L				
	1,2,3-trichlorobenzene		<	2	ug/L				
	dibromofluoromethane SUR			93	%		78 1	14	
	toluene-D8 SUR			104	%		88 1	10	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits	;	RPD	RPD Limit
SW5030C8260C LCS1502623	dichlorodifluoromethane		20	ug/L	20	100	70	130		
	chloromethane		22	ug/L	20	112	70	130		
	vinyl chloride		22	ug/L	20	109	70	130		
	bromomethane		15	ug/L	20	77	70	130		
	chloroethane		22	ug/L	20	112	70	130		
	trichlorofluoromethane		21	ug/L	20	107	70	130		
	1,1-dichloroethene		20	ug/L	20	98	70	130		
	methylene chloride		21	ug/L	20	105	70	130		
	trans-1,2-dichloroethene		21	ug/L	20	107	70	130		
	1,1-dichloroethane		21	ug/L	20	104	70	130		
	cis-1,2-dichloroethene		20	ug/L	20	98	70	130		
	chloroform		21	ug/L	20	103	70	130		
	1,1,1-trichloroethane		22	ug/L	20	108	70	130		
	carbon tetrachloride		20	ug/L	20	100	70	130		
	1,2-dichloroethane		23	ug/L	20	117	70	130		
	trichloroethene		22	ug/L	20	108	70	130		
	1,2-dichloropropane		22	ug/L	20	109	70	130		
	bromodichloromethane		21	ug/L	20	105	70	130		
	cis-1,3-dichloropropene		20	ug/L	20	102	70	130		
	trans-1,3-dichloropropene		21	ug/L	20	104	70	130		
	1,1,2-trichloroethane		20	ug/L	20	101	70	130		
	tetrachloroethene		19	ug/L	20	96	70	130		
	dibromochloromethane		17	ug/L	20	83	70	130		
	chlorobenzene		18	ug/L	20	90	70	130		
	1,1,1,2-tetrachloroethane		18	ug/L	20	92	70	130		
	bromoform		17	ug/L	20	83	70	130		
	1,1,2,2-tetrachloroethane		23	ug/L	20	115	70	130		
	1,3-dichlorobenzene		19	ug/L	20	95	70	130		
	1,4-dichlorobenzene		19	ug/L	20	95	70	130		
	1,2-dichlorobenzene		19	ug/L	20	96	70	130		
	1,2,4-trichlorobenzene		18	ug/L	20	92	70	130		
	1,2,3-trichlorobenzene		19	ug/L	20	94	70	130		
	dibromofluoromethane SUR		102	%			78	114		
	toluene-D8 SUR		104	%			88	110		
	4-bromofluorobenzene SUR		102	%			86	115		

Method	QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits		RPD	RP	D Limit
SW5030C8260C	LCSD1502623	dichlorodifluoromethane		20	ug/L	20	102	70	130		2	20
		chloromethane		22	ug/L	20	112	70	130		0	20
		vinyl chloride		22	ug/L	20	109	70	130		0	20
		bromomethane		17	ug/L	20	85	70	130		10	20
		chloroethane		23	ug/L	20	113	70	130		1	20
		trichlorofluoromethane		22	ug/L	20	110	70	130		3	20
		1,1-dichloroethene		20	ug/L	20	99	70	130		1	20
		methylene chloride		21	ug/L	20	105	70	130		0	20
		trans-1,2-dichloroethene		21	ug/L	20	107	70	130		1	20
		1,1-dichloroethane		21	ug/L	20	106	70	130		2	20
		cis-1,2-dichloroethene		20	ug/L	20	101	70	130		3	20
		chloroform		21	ug/L	20	105	70	130		2	20
		1,1,1-trichloroethane		23	ug/L	20	113	70	130		4	20
		carbon tetrachloride		20	ug/L	20	102	70	130		2	20
		1,2-dichloroethane		23	ug/L	20	116	70	130		1	20
		trichloroethene		21	ug/L	20	106	70	130		1	20
		1,2-dichloropropane		22	ug/L	20	110	70	130		1	20
		bromodichloromethane		22	ug/L	20	108	70	130		3	20
		cis-1,3-dichloropropene		21	ug/L	20	106	70	130		3	20
		trans-1,3-dichloropropene		21	ug/L	20	107	70	130		4	20
		1,1,2-trichloroethane		21	ug/L	20	105	70	130		4	20
		tetrachloroethene		18	ug/L	20	91	70	130		5	20
		dibromochloromethane		17	ug/L	20	84	70	130		1	20
		chlorobenzene		18	ug/L	20	88	70	130		3	20
		1,1,1,2-tetrachloroethane		18	ug/L	20	89	70	130		3	20
		bromoform		17	ug/L	20	86	70	130		3	20
		1,1,2,2-tetrachloroethane		22	ug/L	20	112	70	130		3	20
		1,3-dichlorobenzene		19	ug/L	20	93	70	130		2	20
		1,4-dichlorobenzene		18	ug/L	20	92	70	130		3	20
		1,2-dichlorobenzene		19	ug/L	20	95	70	130		1	20
		1,2,4-trichlorobenzene		18	ug/L	20	89	70	130		3	20
		1,2,3-trichlorobenzene		19	ug/L	20	94	70	130		1	20
		dibromofluoromethane SUR		100	%			78	114			
		toluene-D8 SUR		103	%			88	110			
		4-bromofluorobenzene SUR		102	%			86	115			

Method (QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5035A8260C M	MB8167	dichlorodifluoromethane		<	0.1	ug/g				
		chloromethane		<	0.1	ug/g				
		vinyl chloride		<	0.1	ug/g				
		bromomethane		<	0.2	ug/g				
		chloroethane		<	0.1	ug/g				
		trichlorofluoromethane		<	0.1	ug/g				
		1,1-dichloroethene		<	0.02	ug/g				
		methylene chloride		<	0.2	ug/g				
		trans-1,2-dichloroethene		<	0.1	ug/g				
		1,1-dichloroethane		<	0.1	ug/g				
		cis-1,2-dichloroethene		<	0.1	ug/g				
		chloroform		<	0.1	ug/g				
		1,1,1-trichloroethane		<	0.1	ug/g				
		carbon tetrachloride		<	0.1	ug/g				
		1,2-dichloroethane		<	0.1	ug/g				
		trichloroethene		<	0.1	ug/g				
		1,2-dichloropropane		<	0.1	ug/g				
		bromodichloromethane		<	0.1	ug/g				
		cis-1,3-dichloropropene		<	0.1	ug/g				
		trans-1,3-dichloropropene		<	0.1	ug/g				
		1,1,2-trichloroethane		<	0.1	ug/g				
		tetrachloroethene		<	0.1	ug/g				
		dibromochloromethane		<	0.1	ug/g				
		chlorobenzene		<	0.1	ug/g				
		1,1,1,2-tetrachloroethane		<	0.1	ug/g				
		bromoform		<	0.1	ug/g				
		1,1,2,2-tetrachloroethane		<	0.1	ug/g				
		1,3-dichlorobenzene		<	0.1	ug/g				
		1,4-dichlorobenzene		<	0.1	ug/g				
		1,2-dichlorobenzene		<	0.1	ug/g				
		1,2,4-trichlorobenzene		<	0.1	ug/g				
		1,2,3-trichlorobenzene		<	0.1	ug/g				
		dibromofluoromethane SUR			84	%		78 1	14	
		toluene-D8 SUR			100	%		88 1	10	
		4-bromofluorobenzene SUR			100	%		86 1	15	
		a,a,a-trifluorotoluene SUR			100	%		70 1	30	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limit	S	RPD	RPD Limit
SW5035A8260C MLCS8167	dichlorodifluoromethane		1.0	ug/g	1	97	70	130		
	chloromethane		8.0	ug/g	1	83	70	130		
	vinyl chloride		1.1	ug/g	1	112	70	130		
	bromomethane		1.1	ug/g	1	106	70	130		
	chloroethane		2.1	ug/g	1	208	* 70	130		
	trichlorofluoromethane		1.1	ug/g	1	112	70	130		
	1,1-dichloroethene		1.0	ug/g	1	97	70	130		
	methylene chloride		1.1	ug/g	1	112	70	130		
	trans-1,2-dichloroethene		1.0	ug/g	1	104	70	130		
	1,1-dichloroethane		1.0	ug/g	1	102	70	130		
	cis-1,2-dichloroethene		1.0	ug/g	1	100	70	130		
	chloroform		1.0	ug/g	1	102	70	130		
	1,1,1-trichloroethane		1.0	ug/g	1	104	70	130		
	carbon tetrachloride		0.9	ug/g	1	94	70	130		
	1,2-dichloroethane		1.1	ug/g	1	109	70	130		
	trichloroethene		1.1	ug/g	1	107	70	130		
	1,2-dichloropropane		1.0	ug/g	1	103	70	130		
	bromodichloromethane		1.0	ug/g	1	99	70	130		
	cis-1,3-dichloropropene		1.0	ug/g	1	99	70	130		
	trans-1,3-dichloropropene		1.0	ug/g	1	99	70	130		
	1,1,2-trichloroethane		1.0	ug/g	1	99	70	130		
	tetrachloroethene		1.0	ug/g	1	100	70	130		
	dibromochloromethane		0.8	ug/g	1	83	70	130		
	chlorobenzene		1.0	ug/g	1	96	70	130		
	1,1,1,2-tetrachloroethane		1.0	ug/g	1	99	70	130		
	bromoform		0.8	ug/g	1	81	70	130		
	1,1,2,2-tetrachloroethane		1.1	ug/g	1	109	70	130		
	1,3-dichlorobenzene		1.0	ug/g	1	104	70	130		
	1,4-dichlorobenzene		1.0	ug/g	1	101	70	130		
	1,2-dichlorobenzene		1.0	ug/g	1	102	70	130		
	1,2,4-trichlorobenzene		1.0	ug/g	1	104	70	130		
	1,2,3-trichlorobenzene		1.1	ug/g	1	111	70	130		
	dibromofluoromethane SUR		94	%			78	114		
	toluene-D8 SUR		102	%			88	110		
	4-bromofluorobenzene SUR		101	%			86	115		
	a,a,a-trifluorotoluene SUR		96	%			70	130		

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits		RPD	RP	D Limit
SW5035A8260C MLCSD8167	dichlorodifluoromethane		1.0	ug/g	1	98	70	130		0	30
	chloromethane		0.8	ug/g	1	84	70	130		2	30
	vinyl chloride		1.1	ug/g	1	110	70	130		2	30
	bromomethane		1.1	ug/g	1	110	70	130		5	30
	chloroethane		1.8	ug/g	1	183	* 70	130		13	30
	trichlorofluoromethane		1.1	ug/g	1	111	70	130		1	30
	1,1-dichloroethene		1.0	ug/g	1	97	70	130		0	30
	methylene chloride		1.1	ug/g	1	108	70	130		4	30
	trans-1,2-dichloroethene		1.0	ug/g	1	104	70	130		0	30
	1,1-dichloroethane		1.0	ug/g	1	101	70	130		2	30
	cis-1,2-dichloroethene		1.0	ug/g	1	98	70	130		2	30
	chloroform		1.0	ug/g	1	102	70	130		0	30
	1,1,1-trichloroethane		1.0	ug/g	1	102	70	130		1	30
	carbon tetrachloride		0.9	ug/g	1	92	70	130		2	30
	1,2-dichloroethane		1.1	ug/g	1	109	70	130		0	30
	trichloroethene		1.0	ug/g	1	101	70	130		6	30
	1,2-dichloropropane		1.0	ug/g	1	103	70	130		0	30
	bromodichloromethane		0.9	ug/g	1	93	70	130		6	30
	cis-1,3-dichloropropene		1.0	ug/g	1	98	70	130		1	30
	trans-1,3-dichloropropene		1.0	ug/g	1	98	70	130		1	30
	1,1,2-trichloroethane		1.0	ug/g	1	98	70	130		0	30
	tetrachloroethene		1.0	ug/g	1	99	70	130		2	30
	dibromochloromethane		0.8	ug/g	1	80	70	130		3	30
	chlorobenzene		1.0	ug/g	1	96	70	130		0	30
	1,1,1,2-tetrachloroethane		0.9	ug/g	1	94	70	130		6	30
	bromoform		0.8	ug/g	1	79	70	130		3	30
	1,1,2,2-tetrachloroethane		1.1	ug/g	1	106	70	130		2	30
	1,3-dichlorobenzene		1.0	ug/g	1	98	70	130		6	30
	1,4-dichlorobenzene		1.0	ug/g	1	99	70	130		3	30
	1,2-dichlorobenzene		1.0	ug/g	1	99	70	130		4	30
	1,2,4-trichlorobenzene		1.0	ug/g	1	104	70	130		0	30
	1,2,3-trichlorobenzene		1.1	ug/g	1	105	70	130		5	30
	dibromofluoromethane SUR		97	%			78	114			
	toluene-D8 SUR		104	%			88	110			
	4-bromofluorobenzene SUR		102	%			86	115			
	a,a,a-trifluorotoluene SUR		97	%			70	130			

Absol	ute R	lesou	rce		X					Ports	603-	ige Aver uth, NH 436-200	038	801					IN- AN									RI	0		3	4	2	78	3					
	-	socia	tes		-2	_		3	abso	luter	esou	rceasso	ocia	tes.co	m					1				- 1	AN	I	VE	IS	RI	0	UES	ST								1
Company Nam	50/01	hons						Pr	oject	Nam UDa #:	e: Ke	SIR TO	, Me	Haller	44	.)					☐ TPH Fingerprint	1					Hardness						☐ Fluoride		9		Ī		T	
Company Addr	ress;		1	,,	0	330	1,,		4	11/0	El la	10 10	BL	DC							PHF						10				MPN			ItyFP	esticio	98				
H3 Nor	th Me	hinst	Cex	(0	16	rel 1	NIT	Pr	oject	Loca	tiona	VT NY	A M	_	Othe	er	MADEP	3021V	Dioxane				89				Metal			TOC	cteria	d C	□ Bromide	gnitibil	CCLPP	aldehy				
Vinnie	DellaRu	KS0						Pr	otoco		RCF		WA IDE	OTI			VOC 8260 MADEP	☐ VOC 8021VT	☐ 1,4-Dioxane	Gases-List:	H MADEP	38	3 Pest/PC		Turbidity	nity	S O TAL			OT IN TOT IN TOC	□ Bacteria P/A □ Bacteria MPN	☐ Nitrate + Nitrite ☐ Ortho P		☐ Reactive CN ☐ Reactive S- ☐ Ignitibility/FP	☐ TCLP SVOC ☐ TCLP Pesticide	Herbicides Formaldehyde				
Phone #:	3656	546	7					Li	eporti mits:	ing	QAP EPA	DW Ot	N-1 her	S-1	+90	1		☐ MtBE, only	☐ GRO 8015	ist []	0	5 D £08	09	5520F		☐ Alkalinity	nt Metal			NT.	Sacteria	+ Nitrite	□ Suffe	Reactiv	TOLPS	rbicides				
Invoice to Ema	all: Isi b @	of Del	OR	٥١٤٥	PW	s Asi	Solut	i Q	uote	# 60	14.	3	,	Reimbur	-	nt	TEN VOC 8260 NHDES			☐ VOC 524.2 NH List ☐	MEDRO	□ 626	setlicides	☐ Mineral 0&G SM5520F	Conductivity	SVI	Priority Pollutant Metals			O TKN		Nitrate .	☐ Chloride ☐ Sulfate	S						6
☐ Hard Copy II	nvoice Req	quired					-	P	0#5	Die	644	3		9		_	C 826	☐ VOC BTEX	□ MEGRO	0C 52	5	70ABN	181 Pe	ineral	8	23	Priority		ist		☐ Phenols		0	active	☐ TCLP VOC	Grain Size		1	Pormondia (P)	osite (c
Lab			RS	R	Matrix	it.	Pre	serva	ation	Met	hod	5	am	pling	dipont and		N/A	000			30 801	☐ 8270ABN	08		8			-list:	etals-l	000		□ Sulfide	☐ Mitrite	□ Re		□ Grai			1	DE SO
Sample ID (Lab Use Only)	Fie		CONTAINERS	WATER	SOLID	отнея	HCI	HNO3	H ₂ SO ₄	NaOH	MeOH	DATE		TIME	1		TO-VOC 8260	□ VOC 624 [☐ VPH MADEP	☐ VOC 524.2	☐ TPH ☐ DRO 8015 ☐ MEDRO ☐ EPH MADEP	8270PAH	3 8082 PCB 🗆 8081 Pesticides 🗀 608 Pest/PCB	086	표	SQT 🗆 SST [I RCRA Metals	Total Metals-list:	Dissolved Metals-list	☐ Ammonia ☐ COD	☐ T-Phosphorus	Cyanide	□ Nitrate □	Corrosivity	☐ TCLP Metals	Subconfract: [1	Grab (G) or
(Las usa Uniy)	FIRST	Lugian, a l	-	3	×	0	Ĭ	Ī	Ť	ž	X	9/15/	-			_	-			_																S	-	+	- 2	5
200100	RG-L	V611/22 1	2	X	-		1		_		,	91111	-	0815	- 1	514		_		-	-			-	-				-			\vdash					1	+	+	_
34780 1 02 0 02 0 04 0	125/2	-69100	1		X		X				V	9/15/	0	10 40		TH:													_										+	_
1040	7/7511	-091515-	1		×							4/15/	3			7/																							\top	
-05	trip b	lank																																						
		AD										_			1																								1	
				-		-		_		<u>_</u> _			+		-	_	_	_							_		_											-	4	_
			-	-	-	-	-				_		-		+	-						-		-						-				H			\vdash	-	-	_
				1			<u> </u>		-	-		1	+		+	-									-			-		-		H						+	+	-
								1		-			-																					П					+	
TAT REQUI	286	See absolution for sample curre	e acc	eptar		olicy a		SP	ECI/	AL IN	STF F	RUCTIO	NS ts	to. N	100	72	, Da	16	SUS.	66) Luc	26.	SA	otio	-	Con		46	in.	, h	611	0	we	Hai	250	Let	dal	110	_	
Standard (10 Business Days		REPORT	ING	INS	TRU	CTIC	INS	36	PDF	(e-ma	ail ad	Idress)	EC	K.H	11	0	W	ak	25	du	FOY	C	Con	n	1,1	·	_				Ī	REC	CEIV	ED	ON	ICE	5	YES		10
*Date Needed	9/10	□ HARD						FAX (an cao	0.000/_						-	- 50	-	- 6	p.e	0.00	-/-							_		MPE				2	5		°C
		Relinquishe	_		_				/			di	Date	9/1	, ,	Tim	0	T	Reat	ive	d by	0	,1	7	X	1	(:)	11	1			10	1 1	Date 15	1.62	1	Tim	ne	-
CUST	ODY	Relinguish	11		/	6	/.			7	-	1//	Date Date	1	14	Tim	6	4	Rece	eive	AL by	MI	M	1	1)	X	11	-	1.	_	_		+	_	Date			Tim	15	2
RECC)RD	actl	2 1	. A	1	2	Sil	6	1	1)	1//	5	15	14	Tim	10																							
QSD-01 Revision	01/09/15	Relinquish											Dat	9		Tim	е	T	Rece	eive	d by	Less	grat	ory:	a /	1	7		7		2			9	Date 15/	115	1/	Tim Y	ne //	1
															_		-				-	_	- 6	0	-	1	~	_	H	1 5	-	-	=1	11	1 1	/	1/	3	, 0	1

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Vinnie DellaRusso PO Number: 0089493

Weston Solutions,Inc.

Job ID: 34303
45 Constitution Ave

Date Received: 9/16/15

Suite 100

Concord, NH 03301

Project: Kearsarge Metallurgical Superfund Site NHDES198708002

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

lluer

Principal, General Manager Total number of pages: 31

Date of Approval: 9/25/2015

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine

NH903

Lab ID: 34303

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
E17S09-091515-1	Solid	9/15/2015 11:20	34303-001	
				Percent Dry Matter for Sample Calc by SM2540B,G
E17S07-091515-1	Solid	9/15/2015 11:40	34303-002	VOCs 8021 Halocarbons in solid by 8260
				Percent Dry Matter for Sample Calc by SM2540B,G
E47000 004545 4	Calid	0/45/0045 44.50	24202 002	VOCs 8021 Halocarbons in solid by 8260
E17S06-091515-1	Solid	9/15/2015 11:50	34303-003	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E17S05-091515-1	Solid	9/15/2015 12:20	34303-004	Dercent Dry Motter for Cample Cale by CM2540D C
				Percent Dry Matter for Sample Calc by SM2540B,G VOCs 8021 Halocarbons in solid by 8260
E14S01-091515-1	Solid	9/15/2015 12:30	34303-005	
				Percent Dry Matter for Sample Calc by SM2540B,G
E15S02-091515	Solid	9/15/2015 12:50	34303-006	VOCs 8021 Halocarbons in solid by 8260
				Percent Dry Matter for Sample Calc by SM2540B,G
E40000 004545 4	0 - 1: -1	0/45/0045 40:00	0.4000 007	VOCs 8021 Halocarbons in solid by 8260
E13S02-091515-1	Solid	9/15/2015 13:00	34303-007	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
Trip Blank	Solid	9/15/2015 0:00	34303-008	VOCa 9024 Halazarkana ir aalid bu 9200
E13S02-091515-2	Solid	9/15/2015 13:00	34303-009	VOCs 8021 Halocarbons in solid by 8260
				Percent Dry Matter for Sample Calc by SM2540B,G
E44000 004045 4	0 - 1: -1	0/40/0045 0-40	0.4000 040	VOCs 8021 Halocarbons in solid by 8260
E11S02-091615-1	Solid	9/16/2015 8:10	34303-010	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E09S02-091615-1	Solid	9/16/2015 8:30	34303-011	Dercent Dry Motter for Cample Cale by CM2540D C
				Percent Dry Matter for Sample Calc by SM2540B,G VOCs 8021 Halocarbons in solid by 8260
E06S02-091615-1	Solid	9/16/2015 8:25	34303-012	
				Percent Dry Matter for Sample Calc by SM2540B,G
E05S02-091615-1	Solid	9/16/2015 8:45	34303-013	VOCs 8021 Halocarbons in solid by 8260
				Percent Dry Matter for Sample Calc by SM2540B,G
E05S02-091615-2	Colid	0/46/2045 2:45	24202 044	VOCs 8021 Halocarbons in solid by 8260
203302-091013-2	Solid	9/16/2015 8:45	34303-014	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E03S02-091615-1	Solid	9/16/2015 8:40	34303-015	Dercent Dry Motter for Cample Cale by CM2540D C
				Percent Dry Matter for Sample Calc by SM2540B,G VOCs 8021 Halocarbons in solid by 8260
E10S01-091615-1	Solid	9/16/2015 8:20	34303-016	·
				Percent Dry Matter for Sample Calc by SM2540B,G
E08S01-091615-1	Solid	9/16/2015 8:50	34303-017	VOCs 8021 Halocarbons in solid by 8260
	-		-	Percent Dry Matter for Sample Calc by SM2540B,G
F07804 004645 4	0-1:4	0/46/2045 2:45	24202 042	VOCs 8021 Halocarbons in solid by 8260
E07S01-091615-1	Solid	9/16/2015 8:15	34303-018	Percent Dry Matter for Sample Calc by SM2540B,G
				. I.I. I., manor in campio dalo of differ 100,0

Lab ID: 34303

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
E07S01-091615-1	Solid	9/16/2015 8:15	34303-018	VOCs 8021 Halocarbons in solid by 8260
E05S01-091615-1	Solid	9/16/2015 8:55	34303-019	Percent Dry Matter for Sample Calc by SM2540B,G VOCs 8021 Halocarbons in solid by 8260
E03S01-091615-1	Solid	9/16/2015 8:35	34303-020	Percent Dry Matter for Sample Calc by SM2540B,G VOCs 8021 Halocarbons in solid by 8260

Job ID: 34303

Sample#: 34303-001

Sample ID: E17S09-091515-1

Matrix: Solid Percent Dry: 73.3% Results expressed on a dry weight basis.

Campica: 0/10/10	11.20	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis	
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	•	Reference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
tetrachloroethene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	83	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
toluene-D8 SUR	102	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
4-bromofluorobenzene SUR	95	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C
a,a,a-trifluorotoluene SUR	100	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	15:34	SW5035A8260C

Job ID: 34303

Sample#: 34303-002

Sample ID: E17S07-091515-1

Matrix: Solid Percent Dry: 76.1% Results expressed on a dry weight basis.

Sampled. 9/10/10	11.40	Reporting		Instr Dil'r	1	Pre	ep		Anal	vsis	
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date		Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	85	78-114	%	1	LMM	9/16/15		8189			SW5035A8260C
toluene-D8 SUR	104	88-110	%	1	LMM	9/16/15		8189			SW5035A8260C
4-bromofluorobenzene SUR	94	86-115	%	1	LMM	9/16/15		8189			SW5035A8260C
a,a,a-trifluorotoluene SUR	101	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	16:03	SW5035A8260C

Job ID: 34303

Sample#: 34303-003

Sample ID: E17S06-091515-1

Matrix: Solid Percent Dry: 75.3% Results expressed on a dry weight basis.

		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	83	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
toluene-D8 SUR	103	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C
4-bromofluorobenzene SUR	95	86-115	%	1	LMM	9/16/15		8189	9/16/15	16:32 SW5035A8260C
a,a,a-trifluorotoluene SUR	96	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	16:32 SW5035A8260C

Job ID: 34303

Sample#: 34303-004

Sample ID: E17S05-091515-1

Matrix: Solid Percent Dry: 73.8% Results expressed on a dry weight basis.

Campica: 5/16/16	12.20	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis	
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	_	Reference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
tetrachloroethene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	86	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
toluene-D8 SUR	104	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
4-bromofluorobenzene SUR	98	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C
a,a,a-trifluorotoluene SUR	107	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	17:01	SW5035A8260C

Job ID: 34303

Sample#: 34303-005

Sample ID: E14S01-091515-1

Matrix: Solid Percent Dry: 77% Results expressed on a dry weight basis.

Sampled: 9/15/15 12:30

Campica: 5/16/16	12.00	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,1-dichloroethene	0.16	0.04	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
tetrachloroethene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	84	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
toluene-D8 SUR	107	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
4-bromofluorobenzene SUR	88	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C
a,a,a-trifluorotoluene SUR	102	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	17:30 SW5035A8260C

Job ID: 34303

Sample#: 34303-006 **Sample ID:** E15S02-091515

Matrix: Solid Percent Dry: 75.8% Results expressed on a dry weight basis.

Sampled: 9/15/15 12:50

Campica: 5/16/16	12.00	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,1-dichloroethene	0.05	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,1-dichloroethane	0.08 J	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	82	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
toluene-D8 SUR	107	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
4-bromofluorobenzene SUR	95	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C
a,a,a-trifluorotoluene SUR	104	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	17:59 SW5035A8260C

Job ID: 34303

Sample#: 34303-007

Sample ID: E13S02-091515-1

Matrix: Solid Percent Dry: 73.7% Results expressed on a dry weight basis.

Sampled: 9/15/15 13:00

		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,1-dichloroethene	0.04	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,1,1-trichloroethane	0.06 J	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	84	78-114	%	1	LMM	9/16/15	14:15	8189		18:28 SW5035A8260C
toluene-D8 SUR	103	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
4-bromofluorobenzene SUR	102	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C
a,a,a-trifluorotoluene SUR	98	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	18:28 SW5035A8260C

Job ID: 34303

Sample#: 34303-008
Sample ID: Trip Blank
Matrix: Solid

Sampled: 9/15/15 0:00

odinpied: 5/16/16	0.00	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,1-dichloroethene	U	0.02	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	87	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
toluene-D8 SUR	106	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
4-bromofluorobenzene SUR	96	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C
a,a,a-trifluorotoluene SUR	103	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	15:05 SW5035A8260C

Job ID: 34303

Sample#: 34303-009

Sample ID: E13S02-091515-2

Matrix: Solid Percent Dry: 74.9% Results expressed on a dry weight basis.

Sampled: 9/15/15 13:00

Campica: 5/16/16	10.00	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,1-dichloroethene	0.11	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,1,1-trichloroethane	0.2	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	79	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
toluene-D8 SUR	103	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
4-bromofluorobenzene SUR	95	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C
a,a,a-trifluorotoluene SUR	99	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	18:56 SW5035A8260C

Job ID: 34303

Sample#: 34303-010

Sample ID: E11S02-091615-1

Matrix: Solid Percent Dry: 72.8% Results expressed on a dry weight basis.

		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,1-dichloroethene	0.06	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,1,1-trichloroethane	0.1	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	83	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
toluene-D8 SUR	103	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
4-bromofluorobenzene SUR	102	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C
a,a,a-trifluorotoluene SUR	100	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	19:25 SW5035A8260C

Job ID: 34303

Sample#: 34303-011

Sample ID: E09S02-091615-1

Matrix: Solid Percent Dry: 74% Results expressed on a dry weight basis.

		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference	
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
1,1-dichloroethene	0.05	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600)
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600)
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
1,1,1-trichloroethane	0.1	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600)
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	3
Surrogate Recovery		Limits									
dibromofluoromethane SUR	83	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600)
toluene-D8 SUR	106	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600)
4-bromofluorobenzene SUR	98	86-115	%	1	LMM	9/16/15		8189	9/16/15	19:54 SW5035A82600)
a,a,a-trifluorotoluene SUR	102	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	19:54 SW5035A82600	2

Job ID: 34303

Sample#: 34303-012

Sample ID: E06S02-091615-1

Matrix: Solid Percent Dry: 73.5% Results expressed on a dry weight basis.

		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,1-dichloroethene	0.03 J	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,1,1-trichloroethane	0.1	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	81	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
toluene-D8 SUR	102	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
4-bromofluorobenzene SUR	102	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C
a,a,a-trifluorotoluene SUR	96	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	20:23 SW5035A8260C

Job ID: 34303

Sample#: 34303-013

Sample ID: E05S02-091615-1

Matrix: Solid Percent Dry: 75.3% Results expressed on a dry weight basis.

odnipica: 5/16/16	0.10	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,1-dichloroethene	0.02 J	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,1,1-trichloroethane	0.05 J	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	82	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
toluene-D8 SUR	106	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
4-bromofluorobenzene SUR	97	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C
a,a,a-trifluorotoluene SUR	101	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	20:52 SW5035A8260C

Job ID: 34303

Sample#: 34303-014

Sample ID: E05S02-091615-2

Matrix: Solid Percent Dry: 75.6% Results expressed on a dry weight basis.

odinpied: 5/16/16	0.10	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,1-dichloroethene	0.03 J	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,1,1-trichloroethane	0.05 J	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	83	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
toluene-D8 SUR	106	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
4-bromofluorobenzene SUR	102	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C
a,a,a-trifluorotoluene SUR	100	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	21:22 SW5035A8260C

Job ID: 34303

Sample#: 34303-015

Sample ID: E03S02-091615-1

Matrix: Solid Percent Dry: 73.4% Results expressed on a dry weight basis.

Campica: 5/16/16	0.10	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis	
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	_	Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	83	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
toluene-D8 SUR	105	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
4-bromofluorobenzene SUR	97	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C
a,a,a-trifluorotoluene SUR	102	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	21:51	SW5035A8260C

Job ID: 34303

Sample#: 34303-016

Sample ID: E10S01-091615-1

Matrix: Solid Percent Dry: 73.2% Results expressed on a dry weight basis.

odinpied: 0/10/10	0.20	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,1-dichloroethene	0.03	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,1,1-trichloroethane	0.1	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	84	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
toluene-D8 SUR	102	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
4-bromofluorobenzene SUR	95	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C
a,a,a-trifluorotoluene SUR	99	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	22:20 SW5035A8260C

Job ID: 34303

Sample#: 34303-017

Sample ID: E08S01-091615-1

Matrix: Solid Percent Dry: 74.9% Results expressed on a dry weight basis.

odinpied: 5/16/16	0.00	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,1-dichloroethene	0.06	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,1-dichloroethane	0.06 J	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,1,1-trichloroethane	0.1	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	84	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
toluene-D8 SUR	103	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
4-bromofluorobenzene SUR	98	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C
a,a,a-trifluorotoluene SUR	100	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	22:49 SW5035A8260C

Job ID: 34303

Sample#: 34303-018

Sample ID: E07S01-091615-1

Matrix: Solid Percent Dry: 75.8% Results expressed on a dry weight basis.

odinpied: 5/16/16	0.10	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,1-dichloroethene	0.03	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,1,1-trichloroethane	0.1	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	83	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
toluene-D8 SUR	105	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
4-bromofluorobenzene SUR	101	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C
a,a,a-trifluorotoluene SUR	99	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	23:18 SW5035A8260C

Job ID: 34303

Sample#: 34303-019

Sample ID: E05S01-091615-1

Matrix: Solid Percent Dry: 74.6% Results expressed on a dry weight basis.

odinpied: 5/16/16	0.00	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,1-dichloroethene	0.03	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,1,1-trichloroethane	0.1	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	81	78-114	%	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
toluene-D8 SUR	103	88-110	%	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
4-bromofluorobenzene SUR	101	86-115	%	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C
a,a,a-trifluorotoluene SUR	100	70-130	%	1	LMM	9/16/15	14:15	8189	9/16/15	23:47 SW5035A8260C

Job ID: 34303

Sample#: 34303-020

Sample ID: E03S01-091615-1

Matrix: Solid Percent Dry: 72.8% Results expressed on a dry weight basis.

Campica: 5/16/16	0.00	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	82	78-114	%	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
toluene-D8 SUR	100	88-110	%	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
4-bromofluorobenzene SUR	102	86-115	%	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C
a,a,a-trifluorotoluene SUR	95	70-130	%	1	LMM	9/16/15	14:15	8189	9/17/15	0:16 SW5035A8260C

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 34303

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 4 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The MLCS/D8189 did not meet the acceptance criteria for chloroethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Data Qualifiers

U = This compound was analyzed for, but not detected above half the reporting limit.

J = The analytical result was below the instrument calibration range, but above half the reporting limit, regardless of detectability. The reported concentration is an estimate.

- QC Association Table -

Analysis	QC Number	Field ID	Lab ID	
VOCs 8021 Halocarbons SW5035A8260C				
	8189	E17S09-091515-1	34303-001	
		E17S07-091515-1	34303-002	
		E17S06-091515-1	34303-003	
		E17S05-091515-1	34303-004	
		E14S01-091515-1	34303-005	
		E15S02-091515	34303-006	
		E13S02-091515-1	34303-007	
		Trip Blank	34303-008	
		E13S02-091515-2	34303-009	
		E11S02-091615-1	34303-010	
		E09S02-091615-1	34303-011	
		E06S02-091615-1	34303-012	
		E05S02-091615-1	34303-013	
		E05S02-091615-2	34303-014	
		E03S02-091615-1	34303-015	
		E10S01-091615-1	34303-016	
		E08S01-091615-1	34303-017	
		E07S01-091615-1	34303-018	
		E05S01-091615-1	34303-019	
		E03S01-091615-1	34303-020	

- QC Report -

Method QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5035A8260C MB8189	dichlorodifluoromethane	,	<	0.1	ug/g				
	chloromethane		<	0.1	ug/g				
	vinyl chloride		<	0.1	ug/g				
	bromomethane		<	0.2	ug/g				
	chloroethane		<	0.1	ug/g				
	trichlorofluoromethane		<	0.1	ug/g				
	1,1-dichloroethene		<	0.02	ug/g				
	methylene chloride		<	0.2	ug/g				
	trans-1,2-dichloroethene		<	0.1	ug/g				
	1,1-dichloroethane		<	0.1	ug/g				
	cis-1,2-dichloroethene		<	0.1	ug/g				
	chloroform		<	0.1	ug/g				
	1,1,1-trichloroethane		<	0.1	ug/g				
	carbon tetrachloride		<	0.1	ug/g				
	1,2-dichloroethane		<	0.1	ug/g				
	trichloroethene		<	0.1	ug/g				
	1,2-dichloropropane		<	0.1	ug/g				
	bromodichloromethane		<	0.1	ug/g				
	cis-1,3-dichloropropene		<	0.1	ug/g				
	trans-1,3-dichloropropene		<	0.1	ug/g				
	1,1,2-trichloroethane		<	0.1	ug/g				
	tetrachloroethene		<	0.1	ug/g				
	dibromochloromethane		<	0.1	ug/g				
	chlorobenzene		<	0.1	ug/g				
	1,1,1,2-tetrachloroethane		<	0.1	ug/g				
	bromoform		<	0.1	ug/g				
	1,1,2,2-tetrachloroethane		<	0.1	ug/g				
	1,3-dichlorobenzene		<	0.1	ug/g				
	1,4-dichlorobenzene		<	0.1	ug/g				
	1,2-dichlorobenzene		<	0.1	ug/g				
	1,2,4-trichlorobenzene		<	0.1	ug/g				
	1,2,3-trichlorobenzene		<	0.1	ug/g				
	dibromofluoromethane SUR			80	%		78 1	14	
	toluene-D8 SUR			102	%		88 1	10	
	4-bromofluorobenzene SUR			99	%		86 1	15	
	a,a,a-trifluorotoluene SUR			103	%		70 1	30	

Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Limits	R	PD	RPD Limi
SW5035A8260C	MLCS8189	dichlorodifluoromethane		1.0	ug/g	1	96	70	130		
		chloromethane		0.9	ug/g	1	87	70	130		
		vinyl chloride		1.3	ug/g	1	126	70	130		
		bromomethane		0.8	ug/g	1	83	70	130		
		chloroethane		2.5	ug/g	1	253 *	70	130		
		trichlorofluoromethane		1.2	ug/g	1	120	70	130		
		1,1-dichloroethene		1.0	ug/g	1	100	70	130		
		methylene chloride		1.2	ug/g	1	116	70	130		
		trans-1,2-dichloroethene		1.1	ug/g	1	108	70	130		
		1,1-dichloroethane		1.1	ug/g	1	110	70	130		
		cis-1,2-dichloroethene		1.1	ug/g	1	107	70	130		
		chloroform		1.1	ug/g	1	109	70	130		
		1,1,1-trichloroethane		1.1	ug/g	1	111	70	130		
		carbon tetrachloride		0.9	ug/g	1	95	70	130		
		1,2-dichloroethane		1.3	ug/g	1	126	70	130		
		trichloroethene		1.2	ug/g	1	119	70	130		
		1,2-dichloropropane		1.2	ug/g	1	119	70	130		
		bromodichloromethane		1.0	ug/g	1	101	70	130		
		cis-1,3-dichloropropene		1.1	ug/g	1	108	70	130		
		trans-1,3-dichloropropene		1.0	ug/g	1	105	70	130		
		1,1,2-trichloroethane		1.1	ug/g	1	109	70	130		
		tetrachloroethene		1.0	ug/g	1	96	70	130		
		dibromochloromethane		0.8	ug/g	1	79	70	130		
		chlorobenzene		0.9	ug/g	1	94	70	130		
		1,1,1,2-tetrachloroethane		0.9	ug/g	1	93	70	130		
		bromoform		0.8	ug/g	1	79	70	130		
		1,1,2,2-tetrachloroethane		1.1	ug/g	1	106	70	130		
		1,3-dichlorobenzene		1.0	ug/g	1	101	70	130		
		1,4-dichlorobenzene		1.0	ug/g	1	101	70	130		
		1,2-dichlorobenzene		1.0	ug/g	1	100	70	130		
		1,2,4-trichlorobenzene		1.1	ug/g	1	107	70	130		
		1,2,3-trichlorobenzene		1.1	ug/g	1	110	70	130		
		dibromofluoromethane SUR		99	%			78	114		
		toluene-D8 SUR		105	%			88	110		
		4-bromofluorobenzene SUR		107	%			86	115		
		a,a,a-trifluorotoluene SUR		104	%			70	130		

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits		RPD	RP	D Limit
SW5035A8260C MLCSE	08189 dichlorodifluoromethane		0.9	ug/g	1	85	70	130		12	30
	chloromethane		0.8	ug/g	1	79	70	130		9	30
	vinyl chloride		1.1	ug/g	1	111	70	130		12	30
	bromomethane		0.8	ug/g	1	83	70	130		1	30
	chloroethane		2.2	ug/g	1	216	* 70	130		16	30
	trichlorofluoromethane		1.1	ug/g	1	106	70	130		12	30
	1,1-dichloroethene		0.9	ug/g	1	93	70	130		8	30
	methylene chloride		1.1	ug/g	1	113	70	130		3	30
	trans-1,2-dichloroethene		1.0	ug/g	1	101	70	130		6	30
	1,1-dichloroethane		1.0	ug/g	1	104	70	130		6	30
	cis-1,2-dichloroethene		1.0	ug/g	1	98	70	130		8	30
	chloroform		1.0	ug/g	1	101	70	130		7	30
	1,1,1-trichloroethane		1.0	ug/g	1	104	70	130		7	30
	carbon tetrachloride		0.9	ug/g	1	91	70	130		4	30
	1,2-dichloroethane		1.1	ug/g	1	113	70	130		11	30
	trichloroethene		1.1	ug/g	1	111	70	130		6	30
	1,2-dichloropropane		1.1	ug/g	1	109	70	130		9	30
	bromodichloromethane		0.9	ug/g	1	94	70	130		7	30
	cis-1,3-dichloropropene		1.0	ug/g	1	98	70	130		10	30
	trans-1,3-dichloropropen	е	1.0	ug/g	1	99	70	130		5	30
	1,1,2-trichloroethane		1.0	ug/g	1	101	70	130		7	30
	tetrachloroethene		0.9	ug/g	1	91	70	130		6	30
	dibromochloromethane		0.7	ug/g	1	72	70	130		9	30
	chlorobenzene		0.9	ug/g	1	89	70	130		5	30
	1,1,1,2-tetrachloroethane		0.9	ug/g	1	88	70	130		6	30
	bromoform		0.7	ug/g	1	71	70	130		11	30
	1,1,2,2-tetrachloroethane		0.9	ug/g	1	94	70	130		12	30
	1,3-dichlorobenzene		0.9	ug/g	1	94	70	130		8	30
	1,4-dichlorobenzene		0.9	ug/g	1	92	70	130		10	30
	1,2-dichlorobenzene		0.9	ug/g	1	94	70	130		6	30
	1,2,4-trichlorobenzene		1.0	ug/g	1	96	70	130		11	30
	1,2,3-trichlorobenzene		1.0	ug/g	1	97	70	130		13	30
	dibromofluoromethane S	UR	95	%			78	114			
	toluene-D8 SUR		104	%			88	110			
	4-bromofluorobenzene S	UR	103	%			86	115			
	a,a,a-trifluorotoluene SU	R	97	%			70	130			

Absolute Resource	11
3660Giatas	K
accociator	
assuciales	ور

124 Heritage Avenue #16 Portsmouth, NH 03801 603-436-2001 CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST

34303

Protocol: RCRA NITE Dollo			social	tes	Cami	עיי			_						ates.com				111						NJ	MA	14	C E	1-76	111-	CIT	=						
Company Address: Capta Capta Address: Cap				-					Pro	oject	Name	8: k	ears	arge	e acopy od	City.		-			t			-4	111	-	2	3 1	1-24	112	2					-	1	
Company Address: Control Contr	Wes.	10 COG	Ntion	<u></u>					Pr	oject	#:	R()	Tud ic	ais	прегила	Mic					igerpri			-			ALC: N					Tuaridi		8				
None Dello Public Publ	Company Ad	dress:							N	HD	ES	198	708	00	2			_			유무				1	1	3			MPN		-	ty/FP	esticio	99			
None Dello Public Publ		orth M	ain St. C	onc	ord	11	14		Pr	oject	Loca	tion:			VIE C	Other	ADEP	D21VI	oxane								METAIN		8	at:at:	_	aclm	nitibil	CLPP	idehy			
None Dello Public Publ									-			RCR	-		A NPDI	ES	M 092	0C 8(1,4-D	-List	图		STAPCE	-	dib	1	4		[2 Bac	Ortho	□ Bro	0		отта			
Invoice to Email: Vincent, Delta Cassa Western Solution Hard Copy Invoice Required Company Pose Constitution Pose Con	Vinnie	Dello	Russo	-					_);;	MCP	(NHD	ES OTHE		OC 87			Gases	H WA	DB	8 Pe		Tub	=			TON	P/A								
Invoice to Email: Vincent, Delta Casaca Wecton Solution Hard Copy Invoice Required Did Did	Phone #:										ng	QAP	P	GW-	S-1	1	6	only.	3015		9 0		09 🗆	320F		Alka	Mela		N N	cteria	Nitrite	Suff	eactiv	CLPS	icides			
39308 O [E1509-091715-1 X X X X X X X X X																4	DES	MIBE	GRO	FLIS		625		SMS	ctivity	S	Mali		0	Ba	ate +		0		Hert			9
39308 O E17 507 - 09 FT 1 1 1 1 1 1 1 1 1	Invoice to En	nail: Vince	nt. Dello	Rug	1 (O) CK	Wer	100	Schut	or Qu	uote i	# 69	14:	3	Pr	icing	ment	80 N		90	24.21] ME	N	estici	0&G	ondo	5	2		NE	slon	NIT	Chlori	8	700	9			0
39308 O [E1509-091715-1 X X X X X X X X X	☐ Hard Copy	Invoice Re	quired	-				Con	PC)#(206	94	93				0C 82	C BTE	MEGS	70C 5	15 [70AB	180	linera		STC	PTIO	10	0	Phe	gle		eactive	TCLP	ain Siz			osite
39308 OF [F1509 - 091717-1 X X X 7/1711 120 Etf X 20 20 20 20 20 20 20	Lab			ERS	М	latrix		Pros	serva	ation	Meth	nod		Sar	npling		×	04			RO 80	□ 82			00	S	S Island	Aptale.	000		Suff	Series						Comp
39308 O E17 507 - 09 FT 1 1 1 1 1 1 1 1 1				TAIN	_		~									ER	8260	1	MADE	524.2		PAH	PCB	1664			Metal	Ivad A	omia	sphor	ge			Meta	act:			6
39308 O [E1509-091715-1 X X X X X X X X X		1	D	NO	ATER	CID	出	_	og Og	SO4	HO	P	H	1	Æ	MPL	700	VOC	VPH	VOC	TPH	8270	8082	086	표	TSS	A L	Diego	Amm	T-Pho	Cyan	Nitrat	Corro	TOP	poont			Grab (G)
TAT REQUESTED Priority (24 hr) See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. TAT REQUESTED Priority (24 hr) See absoluteresourceassociates.com SPECIAL INSTRUCTIONS TAT REQUESTED Priority (24 hr) See absoluteresourceassociates.com For sample acceptance policy and current accreditation lists. TAT REQUESTED Priority (24 hr) See absoluteresourceassociates.com For sample acceptance policy and current accreditation lists. TAT REQUESTED Priority (24 hr) See absoluteresourceassociates.com For sample acceptance policy and current accreditation lists. TAT REQUESTED Priority (24 hr) See absoluteresourceassociates.com For sample acceptance policy and current accreditation lists. SPECIAL INSTRUCTIONS SPECIAL INSTRUCTIONS TO Belinquished by Sampler: The priority (24 hr) Th		irio (a o		*	3	SC	0	포	Ī	T,	ž	Ž	2	2	F		-		-	<u> </u>						0 1		1 0		10					S	+	-	G
TAT REQUESTED Priority (24 hr)* See absoluteresourceassociates.com From the Company of the Co				1.		X		-	_				69:11	117	1120				-		-	-	_		-	-	-	+	-	+	+	-	-	\vdash		+	+	\vdash
TAT REQUESTED Priority (24 hr)* Tat Requested (48 hr)* Tat Requested (48 hr)* REPORTING INSTRUCTIONS TO SEPECIAL INSTRUCTIONS REPORTING INSTRUCTIONS TO SEPECIAL INSTRUCTIONS REPORTING INSTRUCTIONS TO SEPECIAL INSTRUCTIONS REPORTING INSTRUCTIONS TO See absoluteresourceassociates.com or sample acceptance policy and current accreditation lists. REPORTING INSTRUCTIONS TO POI results to vinc ent. dell'orussa Westen solutions.com of erik. hall a westen and the sample in the sample acceptance policy and current accreditation lists. REPORTING INSTRUCTIONS TO POI results to vinc ent. dell'orussa Westen solutions.com or Received on Ice press in the sample acceptance policy and current accreditation lists. Relinquished by Sampler: Relinquished by Sampler: Relinquished by Sampler: Pate Time Received by: Date Time Received by: Date Time Received by: Date Time Received by:	-01	11 7501	-09/5/5-1	1	-	×											-	-	-	-		-			-	-	+	+	+	+	+-	\vdash	-			-	_	+
-05 EINSOI-09NTG I X X 9 NT 1230 AB X -06 E15502 -091511 X X 9 NT 1250 AB X -07 E13502 -091511 X X 9 NT 1500 AB X -08 TRIC BLANK -09 FINCO Z-091615 I X X 9 NT 1500 AB X -10 E11502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -12 E09502 -091615 I X X 9 NT 1500 AB X -13 E09502 -091615 I X X 9 NT 1500 AB X -14 E09502 -091615 I X X 9 NT 1500 AB X -15 E09502 -091615 I X X 9 NT 1500 AB X -16 E11502 -091615 I X X 9 NT 1500 AB X -17 E11502 -091615 I X X 9 NT 1500 AB X -18 E09502 -091615 I X X 9 NT 1500 AB X -10 E11502 -091615 I X X 9 NT 1500 AB X -10 E11502 -091615 I X X 9 NT 1500 AB X -10 E11502 -091615 I X X 9 NT 1500 AB X -10 E11502 -091615 I X X 9 NT 1500 AB X -10 E11502 -091615 I X X 9 NT 1500 AB X -10 E11502 -091615 I X X 9 NT 1500 AB X -10 E11502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X X 9 NT 1500 AB X -11 E09502 -091615 I X Y 9 NT 1500	~~~	51706	- 91515-1	1		-	_			_								-	-		_					-	+	+	+	-	+-	-	-			1	-	-
TAT REQUESTED Priority (24 hr) See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. TAT REQUESTED Priority (24 hr) Standard (10 Business Days) "Date Needed 911215 HARD COPY REQUIRED FAX (FAX#) Pate Time Relinquished by Sampler: Relinquished by Sampler: Pate Time Date Time Received by: Date Time		E17505	-091515-1	1		-						_						-	+-		-			-	-	-+	-	+	-	+	-	-	-			+	+	+
TAT REQUESTED Priority (24 hr)* See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. REPORTING INSTRUCTIONS Tat REQUESTED Priority (24 hr)* See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. REPORTING INSTRUCTIONS Totale Needed 911215 Relinquished by Sampler: All Roller Relinquished by Sampler: All Roller Post (FAXE) Date Time Received by:		_		1														-	-			-		-	-	-	-	+	+	+	-	-	-			_	+	+
TAT REQUESTED Priority (24 hr)* See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. SPECIAL INSTRUCTIONS SPECIAL INSTRUC										_	-	1	9 1	711	1250				-	-		-			-	+	-	+	+	+	\vdash	-	\vdash				+	\vdash
TO ELISO2 - 091615-1 X X 91/11/300 AB X Y 91/	-07			11		X	_					X	911	die	1300	AB	X	-	+-			-	_	-	-	+	+	+	-	+	+	+-	\vdash	-		-	+	-
TAT REQUESTED Priority (24 hr)* See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. Evail POT results to vincent. delioruss of westen solutions.com a current accreditation lists. REPORTING INSTRUCTIONS of PDF (e-mail address) Pyric. hallowers solutions.com Received on ICE (IVES IN TEMPERATURE) Temperature Pate Time Received by: Relinquished by Sampler: All's Balty and Sampler: Pate Time Received by: Date Time Received by: Date Time Received by: Date Time		•								_		-	0	٦.	-	-		-	-	-	-	-			-	+		+	+	+-	-	-	-		-	-	+	+
TAT REQUESTED Priority (24 hr)* Expedited (48 hr)* [10 Business Days) Tate Needed 911315 CUSTODY Telinquished by Sampler: Telinquished by: Date Time Date Time Date Time Televated by: Date Time Time Televated by: Date Time Time Time Televated by: Date Time T					-		_					~	A IV	112	1300				-	-	_	-			-	+	-	+	+	+-	+	+	-			-	+	+
TAT REQUESTED Priority (24 hr)* Expedited (48 hr)* See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists. Standard (10 Business Days) *Date Needled 911315 Relinquished by Sampler: Priority (24 hr)* Expedited (48 hr)* Date REPORTING INSTRUCTIONS REPORTING INSTRUCTIONS Relinquished by Sampler: Date Time Received by: Date Time					-		_			_		~	1911	فاله	0810	AB		-	+-		-	-		-		-+	+	+-		+	\vdash	+-	\vdash	-		-	+	-
Priority (24 hr)* Expedited (48 hr)* Standard (10 Business Days) Date Needed 911215 REPORTING INSTRUCTIONS IN PDF (e-mail address) Prix. hall western solutions.com REPORTING INSTRUCTIONS IN PDF (e-mail address) Prix. hall western solutions.com RECEIVED ON ICE DYES IN TEMPERATURE TEMPERATURE Date Time Received by:							400 F.B		00							Hi	X	7		J		Kalin	Traces.				1			-		_						
Standard (10 Business Days) *Date Needed 9113 IS HARD COPY REQUIRED FAX (FAX#) Pate Needed 9113 IS Relinquished by Sampler:																						_									1			3				
Standard (10 Business Days) *Date Needed 911315 Relinquished by Sampler: Relinquished by Sampler: Relinquished by Sampler: Relinquished by Sampler: Date Time Received by: Date Time								ATTO	82	nail	bl	江	resu	11/2	10 AIN	icer	11-	CY	ci.	OYU	rll	c(a	W	esta	20	olu	tia	13.0	S	1 8	1 61	rik	. he	alk	0)	wegi	2013	SWC
*Date Needed 9113 HARD COPY REQUIRED FAX (FAX#) Relinquished by Sampler: Outer Date Time Received by: Relinquished by: Date Time Date Date Time Date Da		[]	REPORT	ING	INST	RUC	CTIC	NS	-			_			_			-									_									7 40	THE RESERVE	THE REAL PROPERTY.
Relinquished by Sampler: All's Balter and Pile III III Received by: Date Time Received by: Date Time Received by: Date Time Received by:											(6 1116	ui taq	urodo		y-, 1621 B	-	4-21	7847	301		PALL	3cc	Mr.	,						_						1 :		°C
CUSTODY All Balt and 916 11 10: If Months 12 15 1885 Relinquished by: Date Time Received by: Date Time	Date Hoode			-			-0	4	AX (F	-AA#)_	_		T	Da	ate .	Tim	ne		Rec	evie	d by	: 7	-	-	-	_		_	_			<u> </u>	_	_	_		Time	
Relinquished by: Date Time Received by:	CUST	ODV				1	a	1	~			>	10		6/15	115	1		1	פני	4	bn	ne	0	/							1		Nel	15	N	63	
QSD-01 Revision 01/09/15 Relinquished by: QSD-01 Revision 01/09/15 Received by Laboratory: QSD	f					1		pron,					T	/	ate La	Tiri	ne	- 1	Rec	eive	d by	<i>r</i> :	MITTER.										1	Date		ī	Time	
QSD-01 Revision 01/09/15 Helinquished by: OSD-01 Revision 01/09/15 Helinquished by: OSD-01 Revision 01/09			Dellassifi	7-1	.6	1914	18	di.	-	_			1	1//	4/15	12	\$Z		Doo	olyo	d by	1101	oro	N	2	110		_				#		Data	_	二	Time	_
	QSD-01 Revisi	on 01/09/15	Heiinquisne	o by			-						-	Lie	10	1111	10	-	nec	AGI V BI	u by	Lal	A	C	1	10	es	-					91	16	15	1	2 S	0
			SI.										-		-			_					1	,,,	2		_		-		-		///	2			-	

Abso	lute F	Resou	rce	2	F.					8	603-	436-	200	1			A	NL	JA	NA	4 <i>L</i> Y	SI	SI	1E	UU	ES	1				34	łЗ	U	3					
Company Na	a s	socia	tes	5	2										es.cor			•							Al	A	YS	S	RE	QL	JES	T							
Company Na								iN	ve te	illui	e: K	ieals	Su	per	fund	Sit	-	Г	T		ij		Т				10		-			-	ep de			T	T	T	
Company Ad	o Solut	hons in	nc.					Pr	niect	#.		187							1		TPH Fingerprint						Hardnes				_		Fluoride		용				
									piect	Tocs:	tion:	CIPA CIPA	MA	ME	_		9	5	90		TP4						lls 🗆				Bacteria MPN			☐ Ignitibility/FP	☐ TCLP Pesticide	ap/	1		
Report To:	th Ma	inst.	1017	Care	N,E	HO	330	21	,			VT				Otho	MADE	VDC 8021VT	Dioxai	1,			8				Metz			700	acteria	Ortho P	Bromide	Ignitth	TOLP	Formaldehyde			
								Pr	otoco		RCF	RA	SDV	VA	NPE		VOC 8260 MADEP	VOC	1,4-Dioxane	si-lis	EPH MADEP		98t/P	-	Turbidity		O TAL			O YOU		0	_			For	1		
Phone #:	Dellok	arro	THE PERSON IN				_	Re	eporti		MCF QAF		GW	_	S-1	IEF	- 8	only [Gas	HA	809	608 Pest/PCB	LL.	1	☐ Alkalinity					P/A Bir		Sulfate	Reactive S-	SVO	188			
603-6	56-54	67							mits:						VEJEC	+ ge	nl s	ui	GRO 8015	List		625		15520	A	DA	ant Me			NT O	Bacteria P/A	+		Read	TCLP SV0C	Herbicides			
Invoice to En	nail: VI voc	ent della	nuc	ca 6	D 1A	10(+	200	Q	uote i	# 6	99	43	_ n	IH R	eimburs 9	emen	T SE			2 NH	CI MEDRO	190	dicides	&G SN	Conductivity	SVI [Polluts					□ Nitrate	皇	- 1			1		
☐ Hard Copy			2,00	20.0	Sd	utic	ms.c	cm P(0 #	00	PS	49	3	ricin	g		38260	BTEX	□ MEGRO	C 524		MABN	8081 Pesticides	eral 0	000		Priority Pollutant Metals		44	O TKN	Phenols		등	Reactive C	TCLP VOC	Size			site (C)
Lab		-	33		Matri			serva			-	~		mn	ling	1	X VOC 8260 NHDES	VOC	N	☐ VOC 524.2 NH List	TPH DRO 8015	☐ 8270ABN	908	☐ Mineral 0&G SM5520F		ST [st	Dissolved Metals-list	0000		Suffide	□ Nitrite	8		Grain			Composite
Sample	Fie	eld	CONTAINERS	-			-				100	-		T	9	70	. 0		ADEP		J DRC	A.	8		□ 80D	□ TDS	RCRA Metals	☐ Total Metals-list:	ed Me		☐ T-Phospharus			vity	120	- H			6
ID		D	TNC	E	9	OTHER		e e	0,4	Z.	H		ш		ш	104	CI VOC 8260	VOC 624	VPH MADEP	VOC 524.2	田田	8270PAH	8082 PCB	□ 0&G 1664		TSS	ICRA I	otal M	issolv	☐ Ammonia	-Phos	Cyanide	Nitrate	Corrosivity	CLPA	Subconfract:			0
(Lab Use Only)			Ö *	WATER	SOLID	6	豆	HNO3	H ₂ SO ₄	NaOH	МеОН	-	DAIE		TIME	-	5 0	C		10		0	0	Ö	표미		Ü	0								Sub			Grab
34303-12	E0 6502	1-091615-1	1	_	X										: 25						-			_															
-13	E05502	2-091615-1	1	_	X	_	1_					9/1	6/15	- 8	:45	A	BX	_	+	1	+	1	+	-	_									-			_		1-
1.00	1	-091615-		_	X		_				X				: -15				-	-	-	+	-	-	-									_			_		-
-15	E03SOZ	-091615-1	1	_	X	-	_	-		_	X				5:40				+	+-	-	+	-	+-	-		_		_	_		-		-			-	-	+
-18	EIOSOI-	091615-1	1	-	X	-	-				X		-		3:20			- 1	+	+	+-	-	-	-									-				-	-	+
-17	Eogot -	091615-1	1	-	X	+-	-	-			X				8:50				+	+	-	+-	+	+-	-		_				-	-	-	-			-	-	+
10	E07-09	11615-1	-	-	X	+-	+	-		-	X				8.12				+	+-	+	+	+-	+	-	-	_		-	_		-	-	-			-	+	+
	FOSSOI-		1		X	-	-	-	-	-	×				8:5				+	+	+	+	+	+		-	-		-	_		\dashv			\vdash	-	-	-	+-
-00	£0.28.01.	1-2111FO-	1		X	-	9	180	1.8	_	^	13/1	6/12	10	8:39	1	X	+	+	+-	+	+	+-	+		-	-	-		-			-		\vdash		-	-	+-
					-		-		1	31		1	-	-	_	-	1	+	+	+	+-	+	+	+	-	-						-					\rightarrow	-	+-
TAT REQ	HESTED	See absolu	toroe	ource	12000	ciatos	L com	SP	To have	STATE OF THE PARTY.	STF	RUCT	ION	IS	MAN THE COLUMN	-	-	The state of		-	72 0.00		-				NA COLUMN	-	MINTEN N						-				
Priority (24 hr		for sampl	le acc	eptar	nce p	olicy									s to	VIM	Cer	1+.	de	110	on	177	00) W	este	h.	Sol	uti	Das	. (m	엄							
Expedited (48	3 hr)* 🗆	curre		_											K. h						-										_						-		
Standard (10 Business Da	ays)	REPORT	ING	INS	TRU	CTIC	ONS	X	PDF	(e-ma	ii ad	dress	V(8)	ma	ent	d	ella	M	SIE	21	WEG	John	50	lub	pring	.0	m			_	-	REC	EIV	ED (ON	ICE.	MY	ES [] NO
*Date Needed	911715	☐ HARD						FAX (I	FAX#)					_							_										1	TEM	IPE	RATI	-		(1	_°C
0110-	ODV	Relinquish	ed by	Sam	pler:	-	2 /	^			>			ate	1-1	110	Time کُ		Red	oeiv	12	Es	71	6)	1								a	1,0	Date	-	17	Time	3
CUST		Relinquist	el by	717	-01					_		-	40	6 ate		110	حي (Time	_							_	_	_					_	-7	1/4	Date		111	Time	9
REC	ORD	Allie	1.6	m	ung	R						_1/2	1/16	ate		12	50) "						0/	2_	_	_						Í		niturape)	ore ordinary	1		torithena
QSD-01 Revision	on 01/09/15	Relinguish	ed by	:	-	-						1	0	ate	1	7	Time		Red	ceiv	ved by	y La	abora	thry	11	110	n						T	9/1	ate	15	1 /	a St	1
-		1	_	-		_	_		_	_		_	_	_		_		_			-	-	4	XX	N		-	_	_	_	_	-		11	41	1	1	- 00	

CHAIN-OF-CUSTODY RECORD

124 Heritage Avenue #16

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Vinnie DellaRusso PO Number: 0089493

Weston Solutions,Inc.

Job ID: 34321
45 Constitution Ave

Date Received: 9/17/15

Suite 100

Concord, NH 03301

Project: Kearsarge Metallurgical Superfund Site NHDES198708002

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Principal, General Manager

lluer

Date of Approval: 9/25/2015

Total number of pages: 18

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Lab ID: 34321

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
Trip Blank	Solid	9/17/2015 0:00	34321-001	
				VOCs 8021 Halocarbons in solid by 8260
E16S14-091715-1	Solid	9/17/2015 8:30	34321-002	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E05S03-091715-1	Solid	9/17/2015 8:15	34321-003	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E04S03-091715-1	Solid	9/17/2015 8:00	34321-004	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E16S06-091715-1	Solid	9/17/2015 8:45	34321-005	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E16S09-091715-1	Solid	9/17/2015 8:40	34321-006	D
				Percent Dry Matter for Sample Calc by SM2540B,G
E40044 004745 4	0 " 1	0/47/0045 0 05	0.4004.007	VOCs 8021 Halocarbons in solid by 8260
E16S11-091715-1	Solid	9/17/2015 8:35	34321-007	December Dec Matter for Consult Collabor CMCF 40D C
				Percent Dry Matter for Sample Calc by SM2540B,G
E16002 00171F 4	Solid	9/17/2015 8:50	34321-008	VOCs 8021 Halocarbons in solid by 8260
E16S03-091715-1	Solid	9/1//2010 6.00	34321-006	Parcent Dry Matter for Sample Cale by SM2540P C
				Percent Dry Matter for Sample Calc by SM2540B,G VOCs 8021 Halocarbons in solid by 8260
E01S02-091715-1	Solid	9/17/2015 8:55	34321-009	VOOS 002 1 1 IdioCalbolis III Solid by 0200
L01302-091713-1	Juliu	3/11/2010 0.00	34321-009	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
				VOCS 602 i Haiocardons in solid by 8260

Job ID: 34321

Sample#: 34321-001 Sample ID: Trip Blank Matrix: Solid

		Reporting		Instr Dil'r	1	Pre	ер		Anal	•
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,1-dichloroethene	U	0.02	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	85	78-114	%	1	LMM	9/17/15	14:00	8190		16:58 SW5035A8260C
toluene-D8 SUR	106	88-110	%	1	LMM	9/17/15		8190		16:58 SW5035A8260C
4-bromofluorobenzene SUR	99	86-115	%	1	LMM	9/17/15		8190		16:58 SW5035A8260C
a,a,a-trifluorotoluene SUR	103	70-130	%	1	LMM	9/17/15	14:00	8190	9/17/15	16:58 SW5035A8260C

Job ID: 34321

Sample#: 34321-002

Sample ID: E16S14-091715-1

Matrix: Solid Percent Dry: 75.2% Results expressed on a dry weight basis.

Rep		Reporting	Instr Dil'n			Prep		Analysis			
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Ref	ference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	87	78-114	%	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
toluene-D8 SUR	106	88-110	%	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C
4-bromofluorobenzene SUR	103	86-115	%	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	′5035A8260C
a,a,a-trifluorotoluene SUR	105	70-130	%	1	LMM	9/17/15	14:00	8190	9/17/15	17:27 SW	5035A8260C

Job ID: 34321

Sample#: 34321-003

Sample ID: E05S03-091715-1

Matrix: Solid Percent Dry: 74.1% Results expressed on a dry weight basis.

		Reporting		Instr Dil'r		Pre	<u>-</u> .	Datab	Anal		
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference	1
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
chloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
bromomethane	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
chloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
methylene chloride	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
chloroform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
trichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
bromoform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	80	78-114	%	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
toluene-D8 SUR	104	88-110	%	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
4-bromofluorobenzene SUR	99	86-115	%	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C
a,a,a-trifluorotoluene SUR	102	70-130	%	1	LMM	9/17/15	14:00	8190	9/17/15	17:57 SW5035A82	260C

Job ID: 34321

Sample#: 34321-004

Sample ID: E04S03-091715-1

Matrix: Solid Percent Dry: 74.9% Results expressed on a dry weight basis.

Campica. 3/17/10 0.00		Reporting	Instr Dil'n Prep			Prep Analysis					
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	•	Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,1-dichloroethene	0.04	0.03	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,1-dichloroethane	0.05 J	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,1,1-trichloroethane	0.1	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	85	78-114	%	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
toluene-D8 SUR	103	88-110	%	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
4-bromofluorobenzene SUR	99	86-115	%	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C
a,a,a-trifluorotoluene SUR	102	70-130	%	1	LMM	9/17/15	14:00	8190	9/17/15	18:27	SW5035A8260C

Job ID: 34321

Sample#: 34321-005

Sample ID: E16S06-091715-1

Matrix: Solid Percent Dry: 74.4% Results expressed on a dry weight basis.

		Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	86	78-114	%	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
toluene-D8 SUR	105	88-110	%	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
4-bromofluorobenzene SUR	101	86-115	%	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C
a,a,a-trifluorotoluene SUR	99	70-130	%	1	LMM	9/17/15	14:00	8190	9/17/15	18:56 SW5035A8260C

Job ID: 34321

Sample#: 34321-006

Sample ID: E16S09-091715-1

Matrix: Solid Percent Dry: 73.9% Results expressed on a dry weight basis.

Jampied. 9/11/10 0.40		Reporting	Instr Dil'n Prep			Prep Analysis				
Parameter	Result	Limit	Units		Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	83	78-114	%	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
toluene-D8 SUR	105	88-110	%	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
4-bromofluorobenzene SUR	100	86-115	%	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C
a,a,a-trifluorotoluene SUR	104	70-130	%	1	LMM	9/17/15	14:00	8190	9/17/15	19:26 SW5035A8260C

Job ID: 34321

Sample#: 34321-007

Sample ID: E16S11-091715-1

Matrix: Solid Percent Dry: 75.5% Results expressed on a dry weight basis.

R		Reporting	ng Instr Dil'n			Prep		Analysis			
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference	
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
chloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
vinyl chloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
bromomethane	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
chloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
methylene chloride	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
chloroform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
trichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
bromodichloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
tetrachloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
dibromochloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
chlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
bromoform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
Surrogate Recovery		Limits									
dibromofluoromethane SUR	85	78-114	%	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
toluene-D8 SUR	106	88-110	%	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
4-bromofluorobenzene SUR	99	86-115	%	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	
a,a,a-trifluorotoluene SUR	105	70-130	%	1	LMM	9/17/15	14:00	8190	9/17/15	19:55 SW5035A8260C	

Job ID: 34321

Sample#: 34321-008

Sample ID: E16S03-091715-1

Matrix: Solid Percent Dry: 73.3% Results expressed on a dry weight basis.

Jampied: 9/1//10 0.00		Reporting	orting Instr Dil'n			Prep			Analysis			
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference		
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
chloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
vinyl chloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
bromomethane	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
chloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
methylene chloride	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
chloroform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
trichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
bromodichloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
tetrachloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
dibromochloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
chlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
bromoform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
Surrogate Recovery		Limits										
dibromofluoromethane SUR	85	78-114	%	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
toluene-D8 SUR	105	88-110	%	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
4-bromofluorobenzene SUR	100	86-115	%	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		
a,a,a-trifluorotoluene SUR	109	70-130	%	1	LMM	9/17/15	14:00	8190	9/17/15	20:24 SW5035A8260C		

Job ID: 34321

Sample#: 34321-009

Sample ID: E01S02-091715-1

Matrix: Solid Percent Dry: 77.5% Results expressed on a dry weight basis.

F		Reporting	Instr Dil'n			Prep		Analysis			
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference	
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
chloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
vinyl chloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
bromomethane	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
chloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
methylene chloride	U	0.3	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
chloroform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
trichloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
bromodichloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
tetrachloroethene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
dibromochloromethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
chlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
bromoform	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
Surrogate Recovery		Limits									
dibromofluoromethane SUR	85	78-114	%	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
toluene-D8 SUR	106	88-110	%	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
4-bromofluorobenzene SUR	98	86-115	%	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	
a,a,a-trifluorotoluene SUR	102	70-130	%	1	LMM	9/17/15	14:00	8190	9/17/15	20:53 SW5035A8260C	

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 34321

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 2 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The MLCS/D8190 did not meet the acceptance criteria for chloroethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples. The MLCS8190 did not meet the acceptance criteria for dibromochloromethane and bromoform. The recoveries were acceptable in the MLCSD, no impact to samples suspected.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Data Qualifiers

U = This compound was analyzed for, but not detected above half the reporting limit.

J = The analytical result was below the instrument calibration range, but above half the reporting limit, regardless of detectability. The reported concentration is an estimate.

- QC Association Table -

Analysis	QC Number	Field ID	Lab ID	
VOCs 8021 Halocarbons SW5035A8260C				
	8190	Trip Blank	34321-001	
		E16S14-091715-1	34321-002	
		E05S03-091715-1	34321-003	
		E04S03-091715-1	34321-004	
		E16S06-091715-1	34321-005	
		E16S09-091715-1	34321-006	
		E16S11-091715-1	34321-007	
		E16S03-091715-1	34321-008	
		E01S02-091715-1	34321-009	

- QC Report -

							0.5			
Method	QC ID	Parameter	Associated Sample		Result		%R	Limits	RPD	RPD Limit
SW5035A8260C	MB8190	dichlorodifluoromethane		<	0.1	ug/g				
		chloromethane		<	0.1	ug/g				
		vinyl chloride		<	0.1	ug/g				
		bromomethane		<	0.2	ug/g				
		chloroethane		<	0.1	ug/g				
		trichlorofluoromethane		<	0.1	ug/g				
		1,1-dichloroethene		<	0.02	ug/g				
		methylene chloride		<	0.2	ug/g				
		trans-1,2-dichloroethene		<	0.1	ug/g				
		1,1-dichloroethane		<	0.1	ug/g				
		cis-1,2-dichloroethene		<	0.1	ug/g				
		chloroform		<	0.1	ug/g				
		1,1,1-trichloroethane		<	0.1	ug/g				
		carbon tetrachloride		<	0.1	ug/g				
		1,2-dichloroethane		<	0.1	ug/g				
		trichloroethene		<	0.1	ug/g				
		1,2-dichloropropane		<	0.1	ug/g				
		bromodichloromethane		<	0.1	ug/g				
		cis-1,3-dichloropropene		<	0.1	ug/g				
		trans-1,3-dichloropropene		<	0.1	ug/g				
		1,1,2-trichloroethane		<	0.1	ug/g				
		tetrachloroethene		<	0.1	ug/g				
		dibromochloromethane		<	0.1	ug/g				
		chlorobenzene		<	0.1	ug/g				
		1,1,1,2-tetrachloroethane		<	0.1	ug/g				
		bromoform		<	0.1	ug/g				
		1,1,2,2-tetrachloroethane		<	0.1	ug/g				
		1,3-dichlorobenzene		<	0.1	ug/g				
		1,4-dichlorobenzene		<	0.1	ug/g				
		1,2-dichlorobenzene		<	0.1	ug/g				
		1,2,4-trichlorobenzene		<	0.1	ug/g				
		1,2,3-trichlorobenzene		<	0.1	ug/g				
		dibromofluoromethane SUR			84	%		78 1	114	
		toluene-D8 SUR			100	%		88 1	110	
		4-bromofluorobenzene SUR			104	%		86 1	115	
		a,a,a-trifluorotoluene SUR			97	%		70 1	130	

SW5035A8260C MLCSS190 dichlorodifluoromethane 0.8 ug/g 1 7.8 7.0 130 Informathane 0.8 ug/g 1 8.3 7.0 130 Informathane 0.7 ug/g 1 1.83 7.0 130 Informathane 0.7 ug/g 1 1.0 7.0 130 Informathane 1.1 ug/g 1 1.0 7.0 130 Information of Information 1.1 ug/g 1 1.0 7.0 130 Information of Information 1.2 ug/g 1 1.17 7.0 130 Information of Information 1.0 ug/g 1 1.0 7.0 130 Information of Information 1.0 ug/g 1 1.0 7.0 130 Information of Information 1.0 ug/g 1 1.0 7.0 130 Information of Information 1.0 ug/g 1 1.0 1.0 1.0	Method	QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Lir	nits	RPD	RPD Limit
vinyl chloride 1.2 ug/g 1 118 70 130 bromomethane 0.7 ug/g 1 75 70 130 chloroethane 2.0 ug/g 1 106 70 130 trichlorofluoromethane 1.1 ug/g 1 106 70 130 1.1-dichloroethane 1.0 ug/g 1 117 70 130 cis-1,2-dichloroethane 1.0 ug/g 1 103 70 130 cis-1,2-dichloroethane 1.0 ug/g 1 102 70 130 cis-1,2-dichloroethane 1.0 ug/g 1 96 70 130 cis-1,3-dichloropropen 1.0 ug/g 1 96 70 130 1,2-dichloroethane 1.1 ug/g 1 107 70 130 1,2-dichloropropene 1.1 ug/g 1 117 70 130 cis-1,3-dichloropropene 0.9	SW5035A8260C	MLCS8190	dichlorodifluoromethane		0.8	ug/g	1	78	70	130)	
bromomethane 0.7 ug/g 1 75 70 130 chloroethane 2.0 ug/g 1 202 70 130 Inchlorofluormethane 1.1 ug/g 1 106 70 130 1.1-dichloroethene 0.9 ug/g 1 17 70 130 trans-1.2-dichloroethene 1.0 ug/g 1 177 70 130 1.1-dichloroethane 1.0 ug/g 1 103 70 130 cis-1.2-dichloroethane 1.0 ug/g 1 96 70 130 chloroform 1.0 ug/g 1 96 70 130 chlorobethane 1.0 ug/g 1 96 70 130 chlorobethane 1.2 ug/g 1 102 70 130 trans-13-dichloroethane 1.2 ug/g 1 117 70 130 trans-13-dichloroethane 0.9 ug/g			chloromethane		0.8	ug/g	1	83	70	130)	
chloroethane 2.0 ug/g 1 202 ° 70 130 thchlorofluoromethane 1.1 ug/g 1 106 70 130 1,1-dichloroethane 0.9 ug/g 1 106 70 130 methylene chloride 1.2 ug/g 1 117 70 130 trans-1,2-dichloroethane 1.0 ug/g 1 100 70 130 cis-1,2-dichloroethane 1.0 ug/g 1 102 70 130 chloroform 1.0 ug/g 1 102 70 130 chloroform 1.0 ug/g 1 96 70 130 chloroethane 1.0 ug/g 1 96 70 130 1,2-dichloroethane 1.2 ug/g 1 107 70 130 1,2-dichloropropane 1.1 ug/g 1 107 70 130 trans-1,3-dichloropropane 0.9 ug/g			vinyl chloride		1.2	ug/g	1	118	70	130)	
trichlorofluoromethane 1.1 ug/g 1 106 70 130 1,1-dichloroethene 0.9 ug/g 1 92 70 130 methylene chloride 1.2 ug/g 1 117 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 100 70 130 1,1-dichloroethane 1.0 ug/g 1 102 70 130 cis-1,2-dichloroethane 1.0 ug/g 1 102 70 130 1,1,1-trichloroethane 1.0 ug/g 1 96 70 130 1,2-dichloroethane 1.2 ug/g 1 96 70 130 1,2-dichloroethane 1.1 ug/g 1 119 70 130 1,2-dichloroperpane 1.1 ug/g 1 117 70 130 1,2-dichloroperpane 0.9 ug/g 1 89 70 130 cis-1,3-dichloroperpane <t< td=""><td></td><td></td><td>bromomethane</td><td></td><td>0.7</td><td>ug/g</td><td>1</td><td>75</td><td>70</td><td>130</td><td>)</td><td></td></t<>			bromomethane		0.7	ug/g	1	75	70	130)	
1,1-dichloroethene 0,9 ug/g 1 92 70 130 methylene chloride 1.2 ug/g 1 117 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 100 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 103 70 130 chloroform 1.0 ug/g 1 96 70 130 1,1-ti-kinchroethane 1.0 ug/g 1 96 70 130 carbon tetrachloride 0.8 ug/g 1 82 70 130 1,2-dichloroethane 1.1 ug/g 1 107 70 130 1,2-dichloropropane 1.1 ug/g 1 107 70 130 bromodichloromethane 0.9 ug/g 1 89 70 130 cis-1,3-dichloropropene 0.9 ug/g 1 89 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,2-tirchloroet			chloroethane		2.0	ug/g	1	202	* 70	130)	
methylene chloride 1.2 ug/g 1 117 70 130 trans-1.2-dichloroethene 1.0 ug/g 1 100 70 130 1,1-dichloroethane 1.0 ug/g 1 103 70 130 chloroform 1.0 ug/g 1 102 70 130 1,1-l-fichloroethane 1.0 ug/g 1 96 70 130 1,1-l-fichloroethane 1.0 ug/g 1 96 70 130 carbon tetrachloride 0.8 ug/g 1 119 70 130 trichloroethane 1.1 ug/g 1 119 70 130 trichloroethane 1.1 ug/g 1 110 70 130 trichloroethane 1.1 ug/g 1 111 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropenzene 0.9			trichlorofluoromethane		1.1	ug/g	1	106	70	130)	
trans-1,2-dichloroethene 1.0 ug/g 1 100 70 130 1,1-dichloroethane 1.0 ug/g 1 103 70 130 cis-1,2-dichloroethane 1.0 ug/g 1 102 70 130 chloroform 1.0 ug/g 1 102 70 130 1,1,1-trichloroethane 1.0 ug/g 1 96 70 130 carbon tetrachloride 0.8 ug/g 1 82 70 130 1,2-dichloroethane 1.2 ug/g 1 117 70 130 1,2-dichloropropane 1.1 ug/g 1 117 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 89 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropeneme 0.9 ug/g 1 85 70 130 tetrachloroethane			1,1-dichloroethene		0.9	ug/g	1	92	70	130)	
1,1-dichloroethane 1.0 ug/g 1 103 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 96 70 130 chloroform 1.0 ug/g 1 102 70 130 1,1,1-trichloroethane 1.0 ug/g 1 96 70 130 carbon tetrachloride 0.8 ug/g 1 82 70 130 1,2-dichloroethane 1.1 ug/g 1 11 70 130 1,2-dichloropropane 1.1 ug/g 1 111 70 130 cis-1,3-dichloropropene 0.9 ug/g 1 95 70 130 cis-1,2-dichloropropene 0.9 ug/g 1 95 70 130 cis-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloroethane 1.0 ug/g 1 85 70 130 dibromochlorom			methylene chloride		1.2	ug/g	1	117	70	130)	
cis-1,2-dichloroethene 1.0 ug/g 1 96 70 130 chloroform 1.0 ug/g 1 102 70 130 1,1,1-trichloroethane 1.0 ug/g 1 96 70 130 carbon tetrachloride 0.8 ug/g 1 82 70 130 1,2-dichloroethane 1.1 ug/g 1 119 70 130 trichloroethene 1.1 ug/g 1 111 70 130 1,2-dichloropropane 1.1 ug/g 1 111 70 130 bromodichloromethane 0.9 ug/g 1 95 70 130 cis-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloroethane 0.9 ug/g 1 95 70 130 tetrachloroethane 0.9 ug/g 1 85 70 130 dibromochloromethane 0.6 ug/g 1 85 70 130 chlorobenzene 0			trans-1,2-dichloroethene		1.0	ug/g	1	100	70	130)	
chloroform 1.0 ug/g 1 102 70 130 1,1,1-trichloroethane 1.0 ug/g 1 96 70 130 carbon tetrachloride 0.8 ug/g 1 82 70 130 1,2-dichloroethane 1.2 ug/g 1 119 70 130 trichloroethane 1.1 ug/g 1 107 70 130 1,2-dichloropropane 1.1 ug/g 1 111 70 130 bromodichloropropane 1.1 ug/g 1 111 70 130 cis-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropthane 1.0 ug/g 1 104 70 130 tetrachloroethane 0.9 ug/g 1 85 70 130 tetrachlorobenzene 0.9			1,1-dichloroethane		1.0	ug/g	1	103	70	130)	
1,1,1-trichloroethane 1.0 ug/g 1 96 70 130 carbon tetrachloride 0.8 ug/g 1 82 70 130 1,2-dichloroethane 1.2 ug/g 1 119 70 130 trichloroethene 1.1 ug/g 1 107 70 130 1,2-dichloropropane 1.1 ug/g 1 111 70 130 bromodichloromethane 0.9 ug/g 1 89 70 130 cis-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,2-dichloroethane 1.0 ug/g 1 104 70 130 tetrachloroethane 0.9 ug/g 1 85 70 130 chlorobenzene 0.9 ug/g 1 87 70 130 1,1,2,2-tetrachloro			cis-1,2-dichloroethene		1.0	ug/g	1	96	70	130)	
carbon tetrachloride 0.8 ug/g 1 82 70 130 1,2-dichloroethane 1.2 ug/g 1 119 70 130 trichloroethene 1.1 ug/g 1 107 70 130 1,2-dichloropropane 1.1 ug/g 1 111 70 130 bromodichloromethane 0.9 ug/g 1 89 70 130 cis-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 104 70 130 trans-1,3-dichloropethane 1.0 ug/g 1 104 70 130 tetrachloroethane 0.9 ug/g 1 85 70 130 dibromochloromethane 0.6 ug/g 1 85 70 130 chlorobenzene 0.9 ug/g 1 89 70 130 1,1,2-etrachloroethane 0.8 ug/g 1 87 70 130 1,2-dichlorobenzene </td <td></td> <td></td> <td>chloroform</td> <td></td> <td>1.0</td> <td>ug/g</td> <td>1</td> <td>102</td> <td>70</td> <td>130</td> <td>)</td> <td></td>			chloroform		1.0	ug/g	1	102	70	130)	
1,2-dichloroethane 1.2 ug/g 1 119 70 130 trichloroethene 1.1 ug/g 1 107 70 130 1,2-dichloropropane 1.1 ug/g 1 111 70 130 bromodichloromethane 0.9 ug/g 1 89 70 130 cis-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 1,1,2-trichloroethane 1.0 ug/g 1 95 70 130 tetrachloroethene 0.9 ug/g 1 85 70 130 dibromochloromethane 0.6 ug/g 1 65 * 70 130 chlorobenzene 0.9 ug/g 1 89 70 130 1,1,2-tetrachloroethane 0.8 ug/g 1 83 70 130 1,1,2-tetrachloroethane 0.9 ug/g 1 91 70 130 1,2-2-tetrachloroetha			1,1,1-trichloroethane		1.0	ug/g	1	96	70	130)	
trichloroethene 1.1 ug/g 1 107 70 130 1,2-dichloropropane 1.1 ug/g 1 111 70 130 bromodichloromethane 0.9 ug/g 1 89 70 130 cis-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropropene 1.0 ug/g 1 95 70 130 1,1,2-trichloroethane 1.0 ug/g 1 104 70 130 tetrachloroethene 0.9 ug/g 1 85 70 130 dibromochloromethane 0.6 ug/g 1 85 70 130 chlorobenzene 0.9 ug/g 1 87 70 130 1,1,1,2-tetrachloroethane 0.8 ug/g 1 88 70 130 bromoform 0.7 ug/g 1 83 70 130 1,1,2-tetrachloroethane 1.0 ug/g 1 83 70 130 1,1,2-tetrachloroethane 1.0 ug/g 1 93 70 130 1,1,2-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dichlorobenzene 1.0 ug/g 1 93 70 130 1,2-dichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 95 70 130 dibromofluoromethane SUR 94 %			carbon tetrachloride		0.8	ug/g	1	82	70	130)	
1,2-dichloropropane 1.1 ug/g 1 11.1 70 130 bromodichloromethane 0.9 ug/g 1 89 70 130 cis-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 1,1,2-trichloroethane 1.0 ug/g 1 104 70 130 tetrachloroethane 0.9 ug/g 1 85 70 130 dibromochloromethane 0.6 ug/g 1 85 70 130 chlorobenzene 0.9 ug/g 1 89 70 130 1,1,1,2-tetrachloroethane 0.8 ug/g 1 89 70 130 1,1,2,2-tetrachloroethane 0.9 ug/g 1 67 * 70 130 1,2,2-tetrachloroethane 1.0 ug/g 1 93 70 130 1,2-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dich			1,2-dichloroethane		1.2	ug/g	1	119	70	130)	
bromodichloromethane 0.9 ug/g 1 89 70 130 cis-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 104 70 130 tetrachloroethane 0.9 ug/g 1 85 70 130 dibromochloromethane 0.6 ug/g 1 85 70 130 chlorobenzene 0.9 ug/g 1 85 70 130 chlorobenzene 0.9 ug/g 1 89 70 130 tetrachloroethane 0.8 ug/g 1 89 70 130 tetrachloroethane 0.8 ug/g 1 89 70 130 tetrachloroethane 0.8 ug/g 1 83 70 130 tetrachloroethane 0.8 ug/g 1 83 70 130 trans-1,1,2,2-tetrachloroethane 0.7 ug/g 1 67 70 130 trans-1,2,2-tetrachloroethane 0.9 ug/g 1 97 70 130 trans-1,3-dichlorobenzene 0.9 ug/g 1 93 70 130 trans-1,2-dichlorobenzene 0.9 ug/g 1 93 70 130 trans-1,2-dichlorobenzene 0.9 ug/g 1 93 70 130 trans-1,2,3-trichlorobenzene 0.9 ug/g 1 95 70 130 trans-1,2,3-trichlorobenzene 0.9 ug/g 1 95 70 130 trans-1,2,3-trichlorobenzene 0.0 ug/g 1 99 70 130 trans-1,2,3-trichlorobenzene 0.0 ug/g 1 90 70 130 trans-1,2,3-trichlorobenzene 0.0 ug/g 1 90 70 130 trans-1,2,3-tri			trichloroethene		1.1	ug/g	1	107	70	130)	
cis-1,3-dichloropropene 0.9 ug/g 1 95 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 1,1,2-trichloroethane 1.0 ug/g 1 104 70 130 tetrachloroethane 0.9 ug/g 1 85 70 130 dibromochloromethane 0.6 ug/g 1 65 70 130 chlorobenzene 0.9 ug/g 1 89 70 130 1,1,1,2-tetrachloroethane 0.8 ug/g 1 83 70 130 bromoform 0.7 ug/g 1 67 70 130 1,2-2-tetrachloroethane 1.0 ug/g 1 101 70 130 1,3-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dichlorobenzene 0.9 ug/g 1 94 70 130 1,2,4-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene <td></td> <td></td> <td>1,2-dichloropropane</td> <td></td> <td>1.1</td> <td>ug/g</td> <td>1</td> <td>111</td> <td>70</td> <td>130</td> <td>)</td> <td></td>			1,2-dichloropropane		1.1	ug/g	1	111	70	130)	
trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 1,1,2-trichloroethane 1.0 ug/g 1 104 70 130 tetrachloroethene 0.9 ug/g 1 85 70 130 dibromochloromethane 0.6 ug/g 1 65 70 130 chlorobenzene 0.9 ug/g 1 89 70 130 1,1,1,2-tetrachloroethane 0.8 ug/g 1 83 70 130 bromoform 0.7 ug/g 1 67 70 130 1,1,2,2-tetrachloroethane 1.0 ug/g 1 101 70 130 1,3-dichlorobenzene 0.9 ug/g 1 93 70 130 1,4-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2,4-trichlorobenzene 1.0 ug/g 1 94 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 95 70 130 dibromofluoromethane SUR			bromodichloromethane		0.9	ug/g	1	89	70	130)	
1,1,2-trichloroethane 1.0 ug/g 1 104 70 130 tetrachloroethene 0.9 ug/g 1 85 70 130 dibromochloromethane 0.6 ug/g 1 65 * 70 130 chlorobenzene 0.9 ug/g 1 89 70 130 1,1,1,2-tetrachloroethane 0.8 ug/g 1 83 70 130 bromoform 0.7 ug/g 1 67 * 70 130 1,1,2,2-tetrachloroethane 1.0 ug/g 1 101 70 130 1,3-dichlorobenzene 0.9 ug/g 1 93 70 130 1,4-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dichlorobenzene 0.9 ug/g 1 94 70 130 1,2,4-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 99 70 130 1,2,3-trichlorobenzene <td></td> <td></td> <td>cis-1,3-dichloropropene</td> <td></td> <td>0.9</td> <td>ug/g</td> <td>1</td> <td>95</td> <td>70</td> <td>130</td> <td>)</td> <td></td>			cis-1,3-dichloropropene		0.9	ug/g	1	95	70	130)	
tetrachloroethene 0.9 ug/g 1 85 70 130 dibromochloromethane 0.6 ug/g 1 65 * 70 130 chlorobenzene 0.9 ug/g 1 89 70 130 1,1,1,2-tetrachloroethane 0.8 ug/g 1 83 70 130 bromoform 0.7 ug/g 1 67 * 70 130 1,1,2,2-tetrachloroethane 1.0 ug/g 1 101 70 130 1,3-dichlorobenzene 0.9 ug/g 1 93 70 130 1,4-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dichlorobenzene 0.9 ug/g 1 94 70 130 1,2,4-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 95 70 130 dibromofluoromethane SUR 94 % 78 114 toluene-D8 SUR 107 % <			trans-1,3-dichloropropene		0.9	ug/g	1	95	70	130)	
dibromochloromethane 0.6 ug/g 1 65 * 70 130 chlorobenzene 0.9 ug/g 1 89 70 130 1,1,1,2-letrachloroethane 0.8 ug/g 1 83 70 130 bromoform 0.7 ug/g 1 67 * 70 130 1,1,2,2-tetrachloroethane 1.0 ug/g 1 101 70 130 1,3-dichlorobenzene 0.9 ug/g 1 93 70 130 1,4-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dichlorobenzene 0.9 ug/g 1 94 70 130 1,2,4-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 95 70 130 dibromofluoromethane SUR 94 % 78 114 toluene-D8 SUR 107 % 88 110 4-bromofluorobenzene SUR 106 % 86 115			1,1,2-trichloroethane		1.0	ug/g	1	104	70	130)	
chlorobenzene 0.9 ug/g 1 89 70 130 1,1,1,2-tetrachloroethane 0.8 ug/g 1 83 70 130 bromoform 0.7 ug/g 1 67 * 70 130 1,1,2,2-tetrachloroethane 1.0 ug/g 1 101 70 130 1,3-dichlorobenzene 0.9 ug/g 1 93 70 130 1,4-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dichlorobenzene 0.9 ug/g 1 94 70 130 1,2,4-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 95 70 130 dibromofluoromethane SUR 94 % 78 114 toluene-D8 SUR 107 % 88 110 4-bromofluorobenzene SUR 106 % 86 115			tetrachloroethene		0.9	ug/g	1	85	70	130)	
1,1,1,2-tetrachloroethane 0.8 ug/g 1 83 70 130 bromoform 0.7 ug/g 1 67 * 70 130 1,1,2,2-tetrachloroethane 1.0 ug/g 1 101 70 130 1,3-dichlorobenzene 0.9 ug/g 1 93 70 130 1,4-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dichlorobenzene 0.9 ug/g 1 94 70 130 1,2,4-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 99 70 130 dibromofluoromethane SUR 94 % 78 114 toluene-D8 SUR 107 % 88 110 4-bromofluorobenzene SUR 106 % 86 115			dibromochloromethane		0.6	ug/g	1	65	* 70	130)	
bromoform 0.7 ug/g 1 67 * 70 130 1,1,2,2-tetrachloroethane 1.0 ug/g 1 101 70 130 1,3-dichlorobenzene 0.9 ug/g 1 93 70 130 1,4-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dichlorobenzene 0.9 ug/g 1 94 70 130 1,2,4-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 99 70 130 dibromofluoromethane SUR 94 % 78 114 toluene-D8 SUR 107 % 88 110 4-bromofluorobenzene SUR 106 % 86 115			chlorobenzene		0.9	ug/g	1	89	70	130)	
1,1,2,2-tetrachloroethane 1.0 ug/g 1 101 70 130 1,3-dichlorobenzene 0.9 ug/g 1 93 70 130 1,4-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dichlorobenzene 0.9 ug/g 1 94 70 130 1,2,4-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 99 70 130 dibromofluoromethane SUR 94 % 78 114 toluene-D8 SUR 107 % 88 110 4-bromofluorobenzene SUR 106 % 86 115			1,1,1,2-tetrachloroethane		0.8	ug/g	1	83	70	130)	
1,3-dichlorobenzene 0.9 ug/g 1 93 70 130 1,4-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dichlorobenzene 0.9 ug/g 1 94 70 130 1,2,4-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 99 70 130 dibromofluoromethane SUR 94 % 78 114 toluene-D8 SUR 107 % 88 110 4-bromofluorobenzene SUR 106 % 86 115			bromoform		0.7	ug/g	1	67	* 70	130)	
1,4-dichlorobenzene 0.9 ug/g 1 93 70 130 1,2-dichlorobenzene 0.9 ug/g 1 94 70 130 1,2,4-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 99 70 130 dibromofluoromethane SUR 94 % 78 114 toluene-D8 SUR 107 % 88 110 4-bromofluorobenzene SUR 106 % 86 115			1,1,2,2-tetrachloroethane		1.0	ug/g	1	101	70	130)	
1,2-dichlorobenzene 0.9 ug/g 1 94 70 130 1,2,4-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 99 70 130 dibromofluoromethane SUR 94 % 78 114 toluene-D8 SUR 107 % 88 110 4-bromofluorobenzene SUR 106 % 86 115			1,3-dichlorobenzene		0.9	ug/g	1	93	70	130)	
1,2,4-trichlorobenzene 1.0 ug/g 1 95 70 130 1,2,3-trichlorobenzene 1.0 ug/g 1 99 70 130 dibromofluoromethane SUR 94 % 78 114 toluene-D8 SUR 107 % 88 110 4-bromofluorobenzene SUR 106 % 86 115			1,4-dichlorobenzene		0.9	ug/g	1	93	70	130)	
1,2,3-trichlorobenzene 1.0 ug/g 1 99 70 130 dibromofluoromethane SUR 94 % 78 114 toluene-D8 SUR 107 % 88 110 4-bromofluorobenzene SUR 106 % 86 115			1,2-dichlorobenzene		0.9	ug/g	1	94	70	130)	
dibromofluoromethane SUR 94 % 78 114 toluene-D8 SUR 107 % 88 110 4-bromofluorobenzene SUR 106 % 86 115			1,2,4-trichlorobenzene		1.0	ug/g	1	95	70	130)	
toluene-D8 SUR 107 % 88 110 4-bromofluorobenzene SUR 106 % 86 115			1,2,3-trichlorobenzene		1.0	ug/g	1	99	70	130)	
4-bromofluorobenzene SUR 106 % 86 115			dibromofluoromethane SUR		94	%			78	114	ļ.	
			toluene-D8 SUR		107	%			88	110)	
a,a,a-trifluorotoluene SUR 95 % 70 130			4-bromofluorobenzene SUR		106	%			86	115)	
			a,a,a-trifluorotoluene SUR		95	%			70	130)	

SW5035A8260C MLCSD8190 dichlorodifluoromethane 0.8 ug/g 1 83 70 130 chloromethane 0.8 ug/g 1 82 70 130 vinyl chloride 1.2 ug/g 1 117 70 130 bromomethane 0.8 ug/g 1 79 70 130 chloroethane 2.1 ug/g 1 210 * 70 130 trichloroethane 1.1 ug/g 1 110 70 130 1,1-dichloroethene 0.9 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 tichloroethane 1.0 ug/g 1 104 70 130 chloroform 1.0 ug/g 1 103 70 130 chloroform 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9	5 0 1 6 4 3 2	30 30 30 30 30 30
vinyl chloride 1.2 ug/g 1 117 70 130 bromomethane 0.8 ug/g 1 79 70 130 chloroethane 2.1 ug/g 1 210 * 70 130 trichlorofluoromethane 1.1 ug/g 1 110 70 130 1,1-dichloroethene 0.9 ug/g 1 94 70 130 methylene chloride 1.2 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	1 6 4 3 2	30 30 30
bromomethane 0.8 ug/g 1 79 70 130 chloroethane 2.1 ug/g 1 210 * 70 130 trichlorofluoromethane 1.1 ug/g 1 110 70 130 130 1,1-dichloroethene 0.9 ug/g 1 94 70 130 methylene chloride 1.2 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 104 70 130 chloroform 1.0 ug/g 1 103 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	6 4 3 2	30 30
chloroethane 2.1 ug/g 1 210 * 70 130 trichlorofluoromethane 1.1 ug/g 1 110 70 130 1,1-dichloroethene 0.9 ug/g 1 94 70 130 methylene chloride 1.2 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	4 3 2	30
trichlorofluoromethane 1.1 ug/g 1 110 70 130 1,1-dichloroethene 0.9 ug/g 1 94 70 130 methylene chloride 1.2 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	3 2	
1,1-dichloroethene 0.9 ug/g 1 94 70 130 methylene chloride 1.2 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	2	30
methylene chloride 1.2 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130		30
trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	4	30
1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	1	30
cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	3	30
chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	1	30
1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	3	30
carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	2	30
1,2-dichloroethane 1.2 ug/g 1 118 70 130	3	30
	6	30
trichloroethene 1.0 ug/g 1 104 70 130	0	30
	3	30
1,2-dichloropropane 1.1 ug/g 1 110 70 130	0	30
bromodichloromethane 0.9 ug/g 1 94 70 130	6	30
cis-1,3-dichloropropene 1.0 ug/g 1 98 70 130	3	30
trans-1,3-dichloropropene 1.0 ug/g 1 100 70 130	6	30
1,1,2-trichloroethane 1.1 ug/g 1 107 70 130	3	30
tetrachloroethene 0.9 ug/g 1 87 70 130	2	30
dibromochloromethane 0.7 ug/g 1 73 70 130	12	30
chlorobenzene 0.9 ug/g 1 90 70 130	2	30
1,1,1,2-tetrachloroethane 0.8 ug/g 1 84 70 130	2	30
bromoform 0.7 ug/g 1 71 70 130	7	30
1,1,2,2-tetrachloroethane 1.1 ug/g 1 106 70 130	5	30
1,3-dichlorobenzene 0.9 ug/g 1 94 70 130	1	30
1,4-dichlorobenzene 0.9 ug/g 1 95 70 130	2	30
1,2-dichlorobenzene 1.0 ug/g 1 97 70 130	3	30
1,2,4-trichlorobenzene 1.0 ug/g 1 96 70 130	1	30
1,2,3-trichlorobenzene 1.0 ug/g 1 100 70 130	1	30
dibromofluoromethane SUR 96 % 78 114		
toluene-D8 SUR 104 % 88 110		
4-bromofluorobenzene SUR 106 % 86 115		
a,a,a-trifluorotoluene SUR 95 % 70 130		

Absolute	F	3	e:	S	0	u	ır	C	e
а	5	5	0	C	i	a	t	e	5

124 Heritage Avenue #16 Portsmouth, NH 03801 603-436-2001 CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST

34321

	as.	sociat	es	CIM	9				absoluteresourceassociates.com								100				A		TV.	410	-	501	II-3	CT									
Company Na Weston Company Ad US Nort Report To: Vinnie Phone #: 603-6	me: Calutin dress: th Main (Dellori	is, Inc. Street (03			Pro N Pro	otocol: RCRA SDWA NPDES MCP (NFIDES OTHER eporting QAPP GW-1 S-1 mits: EPA DW Other practabal uote # (844) NH Reimbursement Pricing				S 🗆 VOC 8260 MADEP	BE, only VOC 8021VT	GRO 8015 🗆 1,4-Dloxane	list □ Gases-List:	□ EPH MADEP □ TPH Fingerprint		□ 608 Pest/PCB	Turbidity	J Alkalinity	nt Metals TAL Metals Hardness	218	Ri	TN CT TON CT TOC	Bacteria P/A Bacteria MPN		□ Sulfate □ Bromide □ Fluoride	Reactive S-	TCLP SV0C C) TCLP Pesticide	erbicides Formaldehyde						
Invoice to En	nail: Vince	nt.della	rus	110			thons	1		te # 6945 NH Reimbursement Pricing Pricing # 0089 493			BTEX [] MI	MEGRO 🗆 G	☐ VOC 524.2 NH List ☐	5 CI MEDRO	□ 8270ABN □ 625	31 Pesticides	Mineral O&G SMDSZUP		5.00		#	□ TKN □	Phenols []	e 🗆 Nitrate	Chloride	Reactive CN	TCLP VOC	H 🗆 szis t			site (C)				
Lab			ERS	N	latrix		Pres		of the second line.	and in contract of		1		mpling		ON TO	D V0C			□ DRO 8015	□ 827						letals-li	000 C	C Su	Sulfide	Nitrite	П		C Grale			Composite
Sample ID (Lab Uso Oaly)	Fie		# CONTAINERS	WATER	SOUID	ОТНЕЯ	HCI	HNO3	H ₂ SO ₄	NaOH	MeOH		DATE	TIME	SAMPLER	□ VOC 8260	□ VOC 624	☐ VPH MADEP	□ V0C 524.2	O TPH O D	8270PAH		1 0863 1864 L			☐ Total Metals-list:	☐ Dissolved Metals-list	☐ Ammonia	T-Phosphorus	☐ Cyanide ☐	□ Nitrate □	☐ Corrosivity	☐ TCLP Metals	Subcontract:			Grab (G) or
34321-0	ITRIP	BLAN	K																																		
-02	E16514-	091715-1	1		X									8:30	AB	-							1	1	-												
-03	EOSSC	3-091715	11	_	X									8:15	AB			-			+	+		+	-	-	-	-			_			-	+	+	\vdash
-04	EO4503	191745-1	1	-	X	_	_							8:00	AB			\vdash		_	+	+	+	+	+										+	+	H
	EN4203	-0917151	+		×							8 .	715		913	X							I													T	+
	E16206		1		X		-		_				2/15	8:45			-							$^{+}$	+		-							\Box	+	+	H
	£16 509		i		X						X	9/1-	7/15	8:40	AB	X						1		T												T	\Box
	ELESII-		1		X						X	91	7/15	8:35	AB	X																					
-08	E16503-		1		X						X	9)	17/1	8:50	AB	X	_							_													
1	E01502	171110	1		X				ero_iting_o	ACHICO.	C. M. San	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, which i	rekare finkt	8:57		of Tenantics				Deliver No.		1	-		and State		7.0				-						
Priority (24 hr Expedited (48 Standard). X	See absolute for sample curren	accent acc	eptan redita	ce po ation I	licy a	and			9	rik	·h	116	ts to 1	SNE	olu	ti	200	. (m	_				luch	۵۸۶	.c	m					-				
(10 Business Da	ays)	REPORTI					NS	X	PDF	(e-ma	ai! ad	Idress	VQ (a	ik. ho	111 (ω v	ves	tan	501	tun	nor	5.0	on	_											Y	ES D	
*Date Needed	जासाय	☐ HARD C		_	_	D	□ F	AX (F	AX#)_		-	_	Di		TI-	20	_	Rece	oil and	d des	-	-			er .		-			TEN	IPE	RAT	-	_	0		_°C
CUST		Allie Bo	He	1	2	1	<)			-	2/17	FIST/	Tin Tin	30		Rece	M.	1	4	no	m	0						_	8	1/2	Date 2/ Jate	5	K	Time	0
REC	ORD	1	7	let	nis	ye-	2					17	1/17	15/	21	15	1			-		_	-	_							T						
QSD-01 Revision	on 01/09/15	Relinquishe	d by:							Date Time						ne		Regis	eive			rate	75c	a	1	w	,				6	211	Date 7//	5	1/2	Time	

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Vinnie DellaRusso PO Number: 0089493

Weston Solutions,Inc.

Job ID: 34357
45 Constitution Ave

Date Received: 9/18/15

Suite 100

Concord, NH 03301

Project: Kearsarge Metallurgical Superfund Site NHDES198708002

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Principal, General Manager

lluer

Date of Approval: 9/25/2015

Total number of pages: 26

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Lab ID: 34357

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
E10S03-091815-1	Solid	9/18/2015 8:15	34357-001	
				Percent Dry Matter for Sample Calc by SM2540B,G
E14S03-091815-1	Solid	9/18/2015 8:20	34357-002	VOCs 8021 Halocarbons in solid by 8260
L 14303-091013-1	Solid	9/10/2013 0.20	34337-002	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E15S03-091815-1	Solid	9/18/2015 8:25	34357-003	
				Percent Dry Matter for Sample Calc by SM2540B,G
E15S08-091815-1	Solid	9/18/2015 8:19	34357-004	VOCs 8021 Halocarbons in solid by 8260
L13000-031013-1	Jolia	3/10/2013 0.13	3-337-00-	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E15S10-091815-1	Solid	9/18/2015 8:40	34357-005	
				Percent Dry Matter for Sample Calc by SM2540B,G
E14S12-091815-1	Solid	9/18/2015 8:27	34357-006	VOCs 8021 Halocarbons in solid by 8260
211012 001010 1	Colla	0/10/2010 0.27	01007 000	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E15S14-091815-1	Solid	9/18/2015 8:32	34357-007	
				Percent Dry Matter for Sample Calc by SM2540B,G VOCs 8021 Halocarbons in solid by 8260
E15S14-091815-2	Solid	9/18/2015 8:32	34357-008	VOCS 8021 Halocarbons III solid by 8200
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E12S01-091815-1	Solid	9/18/2015 9:45	34357-009	Develop t Dw. Matter for Commission Cole by CMOT 40D C
				Percent Dry Matter for Sample Calc by SM2540B,G VOCs 8021 Halocarbons in solid by 8260
E12S02-091815-1	Solid	9/18/2015 9:46	34357-010	V 3 3 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				Percent Dry Matter for Sample Calc by SM2540B,G
E40004 00404E 4	0 11 1	0/40/0045 0 40	0.4057.044	VOCs 8021 Halocarbons in solid by 8260
E13S01-091815-1	Solid	9/18/2015 9:42	34357-011	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E13S02-091815-1	Solid	9/18/2015 9:40	34357-012	·
				Percent Dry Matter for Sample Calc by SM2540B,G
E44804 004945 4	Calid	0/49/2045 0:20	24257 042	VOCs 8021 Halocarbons in solid by 8260
E14S01-091815-1	Solid	9/18/2015 9:30	34357-013	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E14S02-091815-1	Solid	9/18/2015 9:35	34357-014	
				Percent Dry Matter for Sample Calc by SM2540B,G
Trip Blank	Solid	9/18/2015 0:00	34357-015	VOCs 8021 Halocarbons in solid by 8260
THE BIGHT	Colla	5, 15, 20 10 0.00	0.1007.010	VOCs 8021 Halocarbons in solid by 8260
E13S03-091815-1	Solid	9/18/2015 8:10	34357-016	•
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260

Job ID: 34357

Sample#: 34357-001

Sample ID: E10S03-091815-1

Matrix: Solid Percent Dry: 73.8% Results expressed on a dry weight basis.

Campica: 5/16/16	0.10	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis
Parameter	Result	Limit	Units		Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,1-dichloroethene	0.03 J	0.03	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,1,1-trichloroethane	0.1	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	82	78-114	%	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
toluene-D8 SUR	95	88-110	%	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
4-bromofluorobenzene SUR	94	86-115	%	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C
a,a,a-trifluorotoluene SUR	85	70-130	%	1	LMM	9/18/15	14:34	8194	9/19/15	21:08 SW5035A8260C

Job ID: 34357

Sample#: 34357-002

Sample ID: E14S03-091815-1

Matrix: Solid Percent Dry: 71.6% Results expressed on a dry weight basis.

odinpied: 5/16/16	0.20	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
tetrachloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	82	78-114	%	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
toluene-D8 SUR	97	88-110	%	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
4-bromofluorobenzene SUR	94	86-115	%	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C
a,a,a-trifluorotoluene SUR	83	70-130	%	1	LMM	9/18/15	14:34	8194	9/19/15	21:37 SW5035A8260C

Job ID: 34357

Sample#: 34357-003

Sample ID: E15S03-091815-1

Matrix: Solid Percent Dry: 73.3% Results expressed on a dry weight basis.

Sampled: 9/18/15 8:25

·		Reporting		Instr Dil'n		Pre	р		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Re	eference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
bromomethane	U	0.5	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,1-dichloroethene	U	0.05	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
methylene chloride	U	0.5	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
tetrachloroethene	0.1 J B	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	78	78-114	%	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
toluene-D8 SUR	96	88-110	%	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
4-bromofluorobenzene SUR	90	86-115	%	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C
a,a,a-trifluorotoluene SUR	80	70-130	%	1	LMM	9/18/15	14:34	8194	9/18/15	17:39 SV	W5035A8260C

B = The reported concentration is due to carryover from the previous analysis.

Job ID: 34357

Sample#: 34357-004

Sample ID: E15S08-091815-1

Matrix: Solid Percent Dry: 74.8% Results expressed on a dry weight basis.

Sampled: 9/18/15 8:19

Campica. 5/16/16	5.10	Reporting		Instr Dil'n	1	Pre	ep q		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch		Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
tetrachloroethene	0.09 J B	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	84	78-114	%	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
toluene-D8 SUR	98	88-110	%	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C
4-bromofluorobenzene SUR	90	86-115	%	1	LMM	9/18/15		8194	9/18/15	18:08 SW5035A8260C
a,a,a-trifluorotoluene SUR	84	70-130	%	1	LMM	9/18/15	14:34	8194	9/18/15	18:08 SW5035A8260C

B = The reported concentration is due to carryover from the previous analysis.

Job ID: 34357

Sample#: 34357-005

Sample ID: E15S10-091815-1

Matrix: Solid Percent Dry: 74.5% Results expressed on a dry weight basis.

Jampica: 3/10/10	0.10	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
tetrachloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	78	78-114	%	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
toluene-D8 SUR	96	88-110	%	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
4-bromofluorobenzene SUR	95	86-115	%	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C
a,a,a-trifluorotoluene SUR	88	70-130	%	1	LMM	9/18/15	14:34	8194	9/18/15	18:38 SW5035A8260C

Job ID: 34357

Sample#: 34357-006

Sample ID: E14S12-091815-1

Matrix: Solid Percent Dry: 73.4% Results expressed on a dry weight basis.

, , , , , , , , , , , , , , , , , , , ,		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	80	78-114	%	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
toluene-D8 SUR	98	88-110	%	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
4-bromofluorobenzene SUR	96	86-115	%	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C
a,a,a-trifluorotoluene SUR	82	70-130	%	1	LMM	9/18/15	14:34	8194	9/19/15	22:06 SW5035A8260C

Job ID: 34357

Sample#: 34357-007

Sample ID: E15S14-091815-1

Matrix: Solid Percent Dry: 78.8% Results expressed on a dry weight basis.

		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	80	78-114	%	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
toluene-D8 SUR	97	88-110	%	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
4-bromofluorobenzene SUR	96	86-115	%	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C
a,a,a-trifluorotoluene SUR	86	70-130	%	1	LMM	9/18/15	14:34	8194	9/18/15	19:38 SW5035A8260C

Job ID: 34357

Sample#: 34357-008

Sample ID: E15S14-091815-2

Matrix: Solid Percent Dry: 79.4% Results expressed on a dry weight basis.

odinpied: 5/16/16	0.02	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	82	78-114	%	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
toluene-D8 SUR	95	88-110	%	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
4-bromofluorobenzene SUR	88	86-115	%	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C
a,a,a-trifluorotoluene SUR	86	70-130	%	1	LMM	9/18/15	14:34	8194	9/18/15	20:08 SW5035A8260C

Job ID: 34357

Sample#: 34357-009

Sample ID: E12S01-091815-1

Matrix: Solid Percent Dry: 71.8% Results expressed on a dry weight basis.

Jampica: 3/10/10	0.10	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
tetrachloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	78	78-114	%	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
toluene-D8 SUR	92	88-110	%	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
4-bromofluorobenzene SUR	95	86-115	%	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C
a,a,a-trifluorotoluene SUR	85	70-130	%	1	LMM	9/18/15	14:34	8194	9/18/15	20:38 SW5035A8260C

Job ID: 34357

Sample#: 34357-010

Sample ID: E12S02-091815-1

Matrix: Solid Percent Dry: 73.4% Results expressed on a dry weight basis.

Campica: 5/16/16	0.10	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis	
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference	
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	2
chloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
vinyl chloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
bromomethane	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600)
chloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	2
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
methylene chloride	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600)
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600)
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600)
chloroform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	2
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600)
trichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
bromodichloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
tetrachloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600)
dibromochloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	2
chlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
bromoform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	2
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600)
Surrogate Recovery		Limits									
dibromofluoromethane SUR	81	78-114	%	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	2
toluene-D8 SUR	99	88-110	%	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3
4-bromofluorobenzene SUR	91	86-115	%	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600)
a,a,a-trifluorotoluene SUR	87	70-130	%	1	LMM	9/18/15	14:34	8194	9/18/15	21:07 SW5035A82600	3

Job ID: 34357

Sample#: 34357-011

Sample ID: E13S01-091815-1

Matrix: Solid Percent Dry: 70.5% Results expressed on a dry weight basis.

Campica: 5/16/16	0.12	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
tetrachloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	81	78-114	%	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
toluene-D8 SUR	97	88-110	%	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
4-bromofluorobenzene SUR	89	86-115	%	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C
a,a,a-trifluorotoluene SUR	82	70-130	%	1	LMM	9/18/15	14:34	8194	9/19/15	22:35 SW5035A8260C

Job ID: 34357

Sample#: 34357-012

Sample ID: E13S02-091815-1

Matrix: Solid Percent Dry: 70.5% Results expressed on a dry weight basis.

Campica: 5/16/16	0.10	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
tetrachloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	81	78-114	%	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
toluene-D8 SUR	97	88-110	%	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
4-bromofluorobenzene SUR	94	86-115	%	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C
a,a,a-trifluorotoluene SUR	86	70-130	%	1	LMM	9/18/15	14:34	8194	9/18/15	22:05 SW5035A8260C

Job ID: 34357

Sample#: 34357-013

Sample ID: E14S01-091815-1

Matrix: Solid Percent Dry: 71.7% Results expressed on a dry weight basis.

·		Reporting		Instr Dil'n		Pre	ep		Anal	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	78	78-114	%	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
toluene-D8 SUR	96	88-110	%	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
4-bromofluorobenzene SUR	94	86-115	%	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C
a,a,a-trifluorotoluene SUR	85	70-130	%	1	LMM	9/18/15	14:34	8194	9/18/15	22:34 SW5035A8260C

Job ID: 34357

Sample#: 34357-014

Sample ID: E14S02-091815-1

Matrix: Solid Percent Dry: 73.1% Results expressed on a dry weight basis.

Janipica: 3/10/10	0.00	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
tetrachloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	75 *	78-114	%	1	LMM	9/18/15		8194	9/18/15	23:03 SW5035A8260C
toluene-D8 SUR	97	88-110	%	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C
4-bromofluorobenzene SUR	97	86-115	%	1	LMM	9/18/15		8194		23:03 SW5035A8260C
a,a,a-trifluorotoluene SUR	83	70-130	%	1	LMM	9/18/15	14:34	8194	9/18/15	23:03 SW5035A8260C

^{*} The surrogate showed recovery outside the acceptance limits. Reanalysis of the sample showed similar results.

Job ID: 34357

Sample#: 34357-015 Sample ID: Trip Blank Matrix: Solid

Sampleu. 9/10/13	0.00	Reporting		Instr Dil'r	1	Pre	ep		Anal	vsis	
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date		Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,1-dichloroethene	U	0.02	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	88	78-114	%	1	LMM	9/18/15		8194			SW5035A8260C
toluene-D8 SUR	97	88-110	%	1	LMM	9/18/15		8194			SW5035A8260C
4-bromofluorobenzene SUR	95	86-115	%	1	LMM	9/18/15		8194			SW5035A8260C
a,a,a-trifluorotoluene SUR	87	70-130	%	1	LMM	9/18/15	14:34	8194	9/18/15	15:12	SW5035A8260C

Job ID: 34357

Sample#: 34357-016

Sample ID: E13S03-091815-1

Matrix: Solid Percent Dry: 74.3% Results expressed on a dry weight basis.

Campica: 5/16/16	0.10	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,1-dichloroethene	0.04 J	0.04	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
tetrachloroethene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	78	78-114	%	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
toluene-D8 SUR	96	88-110	%	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
4-bromofluorobenzene SUR	92	86-115	%	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C
a,a,a-trifluorotoluene SUR	84	70-130	%	1	LMM	9/18/15	14:34	8194	9/18/15	23:32 SW5035A8260C

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 34357

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 4 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

VOC: The percent recovery for the surrogate dibromofluoromethane in sample 34357-014 was below the acceptance criteria. Re-analysis showed similar results. Matrix interference suspected.

Laboratory Control Sample Results

VOC: The MLCS/D8194 did not meet the acceptance criteria for chloroethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples. The MLCS8194 did not meet the acceptance criteria for dibromochloromethane. The recovery was acceptable in the MLCSD, no impact to samples suspected.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Data Qualifiers

U = This compound was analyzed for, but not detected above half the reporting limit.

J = The analytical result was below the instrument calibration range, but above half the reporting limit, regardless of detectability. The reported concentration is an estimate.

- QC Association Table -

Analysis VOCs 8021 Halocarbons SW5035A8260C	QC Number	Field ID	Lab ID	
	8194	E10S03-091815-1	34357-001	
		E14S03-091815-1	34357-002	
		E15S03-091815-1	34357-003	
		E15S08-091815-1	34357-004	
		E15S10-091815-1	34357-005	
		E14S12-091815-1	34357-006	
		E15S14-091815-1	34357-007	
		E15S14-091815-2	34357-008	
		E12S01-091815-1	34357-009	
		E12S02-091815-1	34357-010	
		E13S01-091815-1	34357-011	
		E13S02-091815-1	34357-012	
		E14S01-091815-1	34357-013	
		E14S02-091815-1	34357-014	
		Trip Blank	34357-015	
		E13S03-091815-1	34357-016	

- QC Report -

Method QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5035A8260C MB8194	dichlorodifluoromethane		<	0.1	ug/g				
	chloromethane		<	0.1	ug/g				
	vinyl chloride		<	0.1	ug/g				
	bromomethane		<	0.2	ug/g				
	chloroethane		<	0.1	ug/g				
	trichlorofluoromethane		<	0.1	ug/g				
	1,1-dichloroethene		<	0.02	ug/g				
	methylene chloride		<	0.2	ug/g				
	trans-1,2-dichloroethene		<	0.1	ug/g				
	1,1-dichloroethane		<	0.1	ug/g				
	cis-1,2-dichloroethene		<	0.1	ug/g				
	chloroform		<	0.1	ug/g				
	1,1,1-trichloroethane		<	0.1	ug/g				
	carbon tetrachloride		<	0.1	ug/g				
	1,2-dichloroethane		<	0.1	ug/g				
	trichloroethene		<	0.1	ug/g				
	1,2-dichloropropane		<	0.1	ug/g				
	bromodichloromethane		<	0.1	ug/g				
	cis-1,3-dichloropropene		<	0.1	ug/g				
	trans-1,3-dichloropropene		<	0.1	ug/g				
	1,1,2-trichloroethane		<	0.1	ug/g				
	tetrachloroethene		<	0.1	ug/g				
	dibromochloromethane		<	0.1	ug/g				
	chlorobenzene		<	0.1	ug/g				
	1,1,1,2-tetrachloroethane		<	0.1	ug/g				
	bromoform		<	0.1	ug/g				
	1,1,2,2-tetrachloroethane		<	0.1	ug/g				
	1,3-dichlorobenzene		<	0.1	ug/g				
	1,4-dichlorobenzene		<	0.1	ug/g				
	1,2-dichlorobenzene		<	0.1	ug/g				
	1,2,4-trichlorobenzene		<	0.1	ug/g				
	1,2,3-trichlorobenzene		<	0.1	ug/g				
	dibromofluoromethane SUR			81	%		78	114	
	toluene-D8 SUR			98	%		88	110	
	4-bromofluorobenzene SUR			102	%		86	115	
	a,a,a-trifluorotoluene SUR			88	%		70	130	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits		RPD	RPD Limit
SW5035A8260C MLCS8194	dichlorodifluoromethane		0.7	ug/g	1	66 *	* 70	130		
	chloromethane		0.7	ug/g	1	73	70	130		
	vinyl chloride		1.0	ug/g	1	105	70	130		
	bromomethane		0.9	ug/g	1	89	70	130		
	chloroethane		2.1	ug/g	1	206	* 70	130		
	trichlorofluoromethane		0.9	ug/g	1	94	70	130		
	1,1-dichloroethene		0.9	ug/g	1	86	70	130		
	methylene chloride		1.0	ug/g	1	102	70	130		
	trans-1,2-dichloroethene		0.9	ug/g	1	90	70	130		
	1,1-dichloroethane		1.0	ug/g	1	96	70	130		
	cis-1,2-dichloroethene		0.9	ug/g	1	86	70	130		
	chloroform		0.9	ug/g	1	92	70	130		
	1,1,1-trichloroethane		0.9	ug/g	1	88	70	130		
	carbon tetrachloride		0.8	ug/g	1	77	70	130		
	1,2-dichloroethane		1.0	ug/g	1	103	70	130		
	trichloroethene		1.0	ug/g	1	101	70	130		
	1,2-dichloropropane		1.0	ug/g	1	96	70	130		
	bromodichloromethane		0.8	ug/g	1	84	70	130		
	cis-1,3-dichloropropene		0.9	ug/g	1	87	70	130		
	trans-1,3-dichloropropene		0.8	ug/g	1	84	70	130		
	1,1,2-trichloroethane		0.9	ug/g	1	89	70	130		
	tetrachloroethene		0.9	ug/g	1	93	70	130		
	dibromochloromethane		0.7	ug/g	1	73	70	130		
	chlorobenzene		0.9	ug/g	1	90	70	130		
	1,1,1,2-tetrachloroethane		0.9	ug/g	1	88	70	130		
	bromoform		0.7	ug/g	1	72	70	130		
	1,1,2,2-tetrachloroethane		1.0	ug/g	1	97	70	130		
	1,3-dichlorobenzene		1.0	ug/g	1	99	70	130		
	1,4-dichlorobenzene		1.0	ug/g	1	99	70	130		
	1,2-dichlorobenzene		1.0	ug/g	1	99	70	130		
	1,2,4-trichlorobenzene		1.0	ug/g	1	104	70	130		
	1,2,3-trichlorobenzene		1.1	ug/g	1	105	70	130		
	dibromofluoromethane SUR		93	%			78	114		
	toluene-D8 SUR		97	%			88	110		
	4-bromofluorobenzene SUR		99	%			86	115		
	a,a,a-trifluorotoluene SUR		81	%			70	130		

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits		RPD	RPI	D Limit
SW5035A8260C MLCSD8194	dichlorodifluoromethane		0.8	ug/g	1	77	70	130		15	30
	chloromethane		0.8	ug/g	1	75	70	130		3	30
	vinyl chloride		1.1	ug/g	1	106	70	130		1	30
	bromomethane		0.9	ug/g	1	95	70	130		7	30
	chloroethane		2.1	ug/g	1	209	* 70	130		1	30
	trichlorofluoromethane		1.1	ug/g	1	105	70	130		11	30
	1,1-dichloroethene		0.9	ug/g	1	92	70	130		6	30
	methylene chloride		1.0	ug/g	1	103	70	130		1	30
	trans-1,2-dichloroethene		0.9	ug/g	1	94	70	130		4	30
	1,1-dichloroethane		1.0	ug/g	1	98	70	130		2	30
	cis-1,2-dichloroethene		0.9	ug/g	1	92	70	130		7	30
	chloroform		0.9	ug/g	1	94	70	130		3	30
	1,1,1-trichloroethane		0.9	ug/g	1	94	70	130		7	30
	carbon tetrachloride		8.0	ug/g	1	83	70	130		7	30
	1,2-dichloroethane		1.1	ug/g	1	108	70	130		5	30
	trichloroethene		1.0	ug/g	1	100	70	130		0	30
	1,2-dichloropropane		1.0	ug/g	1	99	70	130		3	30
	bromodichloromethane		0.9	ug/g	1	86	70	130		2	30
	cis-1,3-dichloropropene		0.9	ug/g	1	90	70	130		3	30
	trans-1,3-dichloropropene		0.9	ug/g	1	91	70	130		8	30
	1,1,2-trichloroethane		0.9	ug/g	1	92	70	130		4	30
	tetrachloroethene		1.0	ug/g	1	101	70	130		9	30
	dibromochloromethane		8.0	ug/g	1	77	70	130		5	30
	chlorobenzene		1.0	ug/g	1	98	70	130		8	30
	1,1,1,2-tetrachloroethane		1.0	ug/g	1	95	70	130		8	30
	bromoform		8.0	ug/g	1	79	70	130		9	30
	1,1,2,2-tetrachloroethane		1.1	ug/g	1	107	70	130		10	30
	1,3-dichlorobenzene		1.0	ug/g	1	102	70	130		3	30
	1,4-dichlorobenzene		1.0	ug/g	1	101	70	130		2	30
	1,2-dichlorobenzene		1.0	ug/g	1	100	70	130		1	30
	1,2,4-trichlorobenzene		1.0	ug/g	1	102	70	130		2	30
	1,2,3-trichlorobenzene		1.1	ug/g	1	108	70	130		3	30
	dibromofluoromethane SUR		92	%			78	114			
	toluene-D8 SUR		95	%			88	110			
	4-bromofluorobenzene SUR		104	%			86	115			
	a,a,a-trifluorotoluene SUR		84	%			70	130			

Absolute R	esource
ass	ociates

124 Heritage Avenue #16 Portsmouth, NH 03801 603-436-2001 CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST

34357

	ass	ociat	es	で「影	3			а	bsol	utere	esou	ırcea	SSOC	ciate	as.com	1					11-			T	T # . T	EVZ	IO	Di.	OU	173	-							ď
Company Na	me:							Pro	oject	Nam	e: k	Legi	sai	19	2	C'\-					te l	-	-		1	175	19	11:	TIL	140		-	-	7			7	4
Weston	Solution	B, Inc						Pro	eta	211u #:	9.	Cal	cul	per	fund	LITE					TPH Fingerprint					Hardne		1	1		13	- Puoride	1					1
Company Add	dress:							IN	141	TEC	10	183	D&C	50	2						HFING	1								MPN	i	= 1	☐ Ignitibility/FP	90000				1
43 Worth	Mains	+ Conc	ord	NE	+ 0	33	10	Pro	oject	Loca	tion	VI VI	AM	ME		Other	MADEP	8021VT	xane		TTP					Metals				.02		apil	□ Ignitibility/FP	Formaldehyde				-1
Report To:				4-4-7-5				_			RCF		SDY	MA	NPD		W 09	VOC 80	1,4-Dioxane	tst		5	3	A)		TALM		1		Bacteria	Ortho P	Bromide	10 L	malo	1			1
Vinne Phone #:	Dellor	ODD						Pro	otoco		MCI	2	NHE	DES			VOC 8260	N I		Gases-List	C EPH MADEP	8	9/F	Turbidity	alty				2		-	0 0						١
									porti		QAF		GW-		S-1		0 0	only	GRO 8015		B	O EDB	100 J		Alkalinity	Aetals				Bacteria P/A	聖	Sulfate	Reactive S-	Sides				1
603-65	6-546	7	_					Lin	nits:		EPA	DW			riject		NHDES	MIBE,	GRO	1 List		1	W L	Mity		Pollutant Metals			2	Bac	7 [8 5	Herbicides				1
Invoice to Em	nail: Vince	nt. del	lor	uss	0 6	We	stan		iote #	6	94	3	_ D N	VH R	eimbursa g	ment	N O			4.2 N	CI MEDRO		ol O&G SAFE	Conductivity	SVL []	, Pollu			N N	S	Nitra	Chloride	8 8				,	
☐ Hard Copy				Scio	uta	ns. c	Con)#_	00	50	49					C 826	VOC BTEX	MEGRO	VOC 524.2 NH List		DABN	neral	0	O TS	Priority.		St:		Phenols	0		Reactive CN	n Size			A. C.	Site of
Lab			RS	N	Matrix	(Pre	serva	tion	Met	hod		Se	qmp	ling		12	7 000	ā	>	☐ DRO 8015	□ 8270ABN	Mineral O&G SM5520F	800			ilst:	☐ Dissolved Metals-list	000	S	Sulfid	Nitrite	2	3 8			Jump	Composite (C)
Sample	Fie	ld	CONTAINERS											T		g	289	24 E	ADEP	24.2	13				SCT CJ SST	RCRA Metals	Total Metals-fist	W pa	nia C	T-Phosphorus			0	8				5
1D	ID)	ONT	TER	0	OTHER		5	H ₂ SO ₄	E	프		u		ш	SAMPLER	8 00/	VOC 624	VPH MADEP	VOC 524.2	HAT [8270PAH	086 1664	H	SS	CRA	ortal N	issolv	Ammonia	-Phos	yanid	Nifrate	Corrosivity TCI P Meta	Subcontract			6	[0]
(Lab Use Only)			*	WA	SOLID	5	오	HNO3	H25	NaOH	MeOH		DAIR	\perp	TIME		0		0											0				3 8			doro	Grab (6)
34357-01	Elosci3-0	1-51816	1	_	X										SIL		_																					
	E14503-		1		X			\square							2820								1	_														
703	E15303-	-091815-1	1		X						X	2/1	slis	-0	128	AB	X							_														
-04	EISSO8-	1-518160-	1		X						X	91	8 15	5	819	AB	X						1	-	1	_												
705	EITSIO-	C91815-1	1		X						X				1840								_															
-06	E14512-0	1-7181PC	1		X		_				X				X27			_					_	_	_					7				1				
-87	E15314-0	91815-1	1		x										835								1	_							_			1				
-8 (H)	ETE EISS	14-091815			X										832								-												\perp		1/7	
-99	E12Sc1-	1-11816	1	,	X						X	9 18	117	0	6945	AY	X						_	-	1_										1			
-10	E12502-0	1-2181PC	1		X										946																							4
-11	E13501-0	A1812-1	1		X						X	9	8/12	0	942	AB	X	1			-																	
TAT REQU		See absolut						SPE	ECIA	LIN	STF	RUCT	ION	IS	nt.d	1011	···	(10)	01	wes	the	Sal	uti	205	-	200	4	00		inc	.110	2	100	no c	'aiu'	hans	.0.0	\square
Priority (24 hr) Expedited (48		for sample curren					and	E 11	and t	"	1	, 0	441	1166		1-111		33-	_			100				2171	•	CI		, 110	cu C		0011	-4 · 5				
Standard	n =	DEPORT	NIC	INICT	TIDL I/	2.00	AIC	300	DE /			almana	126	~	- and L	10	11.			0			1.	44				_	_	T	DEC	EIVE	-D.O	AL IC	c va	YES	I N	
(10 Business Da *Date Needed	alialie	REPORTI								e-ma	m ao	aress) 11	un	ent	as	no	YU	1700	J V	Ma	TOU	OIV	110/	1CC	em				- 1						4		- 1
Date Needed		☐ HARD C		_	_	ED		AX (F	AX#)_		_	_	D	ate	_	Tin	20		Rece	(Vac	Jid.			17	-				-	1	EMI	PER	RATUI	-		Tie	Marie Street	°C
CUST		5 lh	M	Gailij	pier.							0		8/	111	103			nece	Y	V	Lui	200									0	/ Da	/11	1	Tin 103		
H	lil	Refinquishe	dyby:						3			+	D	até,		Tin		1	Rece	eivec	by:	:	S. V.	_				-	_			1/	Ųa	ite	1/	Tin	ne	٦
REC		1	6	lon	our.	2						7		1	51	11		1		-				1-1	-	_		_	_			£			+		_	
QSD-01 Revision	on 01/09/15	Relinguishe	d by:	_							_	-	9	ate	+	Tin	ne		Hece	eivec	d by	Labo	rator	10	PL	16	1					1	15 Da	to -	1	Tin		
)L	_			_					-				-		-	_			_	_	_	1	L.S.	100	-	-	-		STATE OF THE PARTY	MOGA	17	11)	// 1		122	- 2	_

Absolute	F	3	e	S	0	u	ır	C	e	W
а	5	5	0	C	j	a	t	e	5	Colonia

124 Heritage Avenue #16 Portsmouth, NH 03801 603-436-2001 CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST

34357

	associat	e 5	-	2)			8	abso	luter	esou	urce	asso	ociat	ANALYSIS REQUEST						1																	
Company Name:							Pr	roject	Nam	ie:						-	1			1		-	- 1	11/2	1 (2)	15	11)	111	1-	_	m	- = 4	-	-	1	-	-
Company Address Report To: Phone #: Invoice to Email:	S:						Pr Pr Re Li	roject roject rotocc eport mits:	Loca ol:	RCF MCI QAF	P P P	SD NH GV Ott	WA HDES W-1	NPD	IER	X VOC 8260 NHDES	X C MIBE, only C VOC 8021VT	0 ☐ GR0 8015 ☐ 1,4-Dioxane	524.2 NH List C Gases-List:	1 MEDRO 🗆 EPH MADEP 🗀 TPH Fingerprint	N □ 625 □ EDB	Pesticides	☐ Mineral O&G SM5520F	Alkall	☐ Priority Pollutant Metals ☐ TAL Metals ☐ Hardnes			OT [] NT [] NXT	☐ Bacteria P/A	Nitrate + Nitrite Ortho P	Chloride Sulfate Bromide Tilluoride	☐ Reactive S- ☐		B			(0)
☐ Hard Copy Invo	pice Required				E mai		P	Pricing Pricin							Aineral		Priori		-list:	□ 000	□ Phenols	lde 🗆		Reactive CN	TCLP VOC	Grain Size			Composite (
Lab Sample ID (Lab Uso Only)	Field ID	CONTAINERS	WATER	latrix Ollos	ОТНЕВ	Pre	Serva	H ₂ SO ₄	Met	MeOH		DATE	Samp	Dling	SAMPLER	□ VOC 8260 X	□ VOC 624 □ VC	☐ VPH MADEP ☐	□ voc 524.2 □	☐ TPH ☐ DRO 8015	☐ 8270PAH ☐ 82		□ 0&G 1664 □	O TDS	Metals	☐ Total Metals-list:	□ Dissolved Metals		☐ T-Phosphorus ☐	☐ Cyanide ☐ Sulfide	☐ Nitrate ☐ Nitrite	\neg	SIE	Subconfract:			Grab (G) or Com
34357-12 E13 -13 E14 -14 E14 -15 T4 -16 E1	1502-091815-1 1501-091815-1 1502-091815-1 21P BLANE	4 1		XXXX	34	7	te //	8/	15	XXX	9/1	18/11/18/18	5 6	59 YO 0930 5930 0810	Ats	XXX																					
TAT REQUES Priority (24 hr)* Expedited (48 hr)* Standard (10 Business Days) *Date Needed CUSTO RECOF QSD-01 Revision 01	for sample currer REPORT HARD C Relinquishe Relinquishe	ING OPY d by	eptan redita INST REC Samp	RUC	sts.	ONS		PDF	(e-ma		dres	9/1	Date	5/		39	1	Reco	eive	ed by	:	_	ad	-		10,	5-		- 1		IPE	RATION IN	Date	3	4	Time	_°C

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Vinnie DellaRusso PO Number: 0089493

Weston Solutions,Inc.

Job ID: 34364
45 Constitution Ave

Date Received: 9/19/15

Suite 100

Concord, NH 03301

Project: Kearsarge Metallurgical Superfund Site NHDES198708002

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Principal, General Manager

lluer

Date of Approval: 9/25/2015

Total number of pages: 28

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Lab ID: 34364

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CB5-6-091915-1	Water	9/19/2015 9:17	34364-002	
500004 004045 4	0 " 1	0/40/0045 0.05	0.400.4.000	VOCs 8021 Halocarbons in water by 8260
E02S04-091915-1	Solid	9/19/2015 8:05	34364-003	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E04S04-091915-1	Solid	9/19/2015 8:10	34364-004	,
				Percent Dry Matter for Sample Calc by SM2540B,G
F0F004 00404F 4	المانية	0/40/0045 0:40	24204 005	VOCs 8021 Halocarbons in solid by 8260
E05S04-091915-1	Solid	9/19/2015 8:13	34364-005	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E07S04-091915-1	Solid	9/19/2015 8:17	34364-006	,
				Percent Dry Matter for Sample Calc by SM2540B,G
E40004 004045 4	0 - 1: -1	0/40/0045 0:00	04004 007	VOCs 8021 Halocarbons in solid by 8260
E10S04-091915-1	Solid	9/19/2015 8:20	34364-007	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E11S04-091915-1	Solid	9/19/2015 8:25	34364-008	·
				Percent Dry Matter for Sample Calc by SM2540B,G
E12004 00101E 1	Calid	0/40/2045 0.20	24264 000	VOCs 8021 Halocarbons in solid by 8260
E13S04-091915-1	Solid	9/19/2015 8:30	34364-009	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E14S04-091915-1	Solid	9/19/2015 8:33	34364-010	
				Percent Dry Matter for Sample Calc by SM2540B,G
E15S04-091915-1	Solid	9/19/2015 8:38	34364-011	VOCs 8021 Halocarbons in solid by 8260
L13304-091913-1	Solid	9/19/2013 0.30	34304-011	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E03S05-091915-1	Solid	9/19/2015 8:42	34364-012	
				Percent Dry Matter for Sample Calc by SM2540B,G
E03S05-091915-2	Solid	9/19/2015 8:42	34364-013	VOCs 8021 Halocarbons in solid by 8260
200000 001010 2	Colla	0/10/2010 0.12	01001 010	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E04S05-091915-1	Solid	9/19/2015 8:51	34364-014	
				Percent Dry Matter for Sample Calc by SM2540B,G
E05S05-091915-1	Solid	9/19/2015 8:55	34364-015	VOCs 8021 Halocarbons in solid by 8260
	20114	3, 13, 23 13 3.33	3.331.010	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
Trip Blank	Water	9/19/2015 0:00	34364-016	V00 2004111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				VOCs 8021 Halocarbons in water by 8260

Job ID: 34364

Sample#: 34364-003

Sample ID: E02S04-091915-1

Matrix: Solid Percent Dry: 77.8% Results expressed on a dry weight basis.

Sampleu. 9/19/15	0.05	Reporting		Instr Dil'r	1	Pre	ep		Anal	vsis	
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date		Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,1-dichloroethene	U	0.02	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	84	78-114	%	1	LMM	9/19/15		8195			SW5035A8260C
toluene-D8 SUR	95	88-110	%	1	LMM	9/19/15		8195			SW5035A8260C
4-bromofluorobenzene SUR	93	86-115	%	1	LMM	9/19/15		8195			SW5035A8260C
a,a,a-trifluorotoluene SUR	84	70-130	%	1	LMM	9/19/15	12:28	8195	9/19/15	14:51	SW5035A8260C

Job ID: 34364

Sample#: 34364-004

Sample ID: E04S04-091915-1

Matrix: Solid Percent Dry: 76.3% Results expressed on a dry weight basis.

Jampica: 3/13/10	0.10	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	81	78-114	%	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
toluene-D8 SUR	91	88-110	%	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
4-bromofluorobenzene SUR	90	86-115	%	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C
a,a,a-trifluorotoluene SUR	84	70-130	%	1	LMM	9/19/15	12:28	8195	9/19/15	15:20 SW5035A8260C

Job ID: 34364

Sample#: 34364-005

Sample ID: E05S04-091915-1

Matrix: Solid Percent Dry: 75.2% Results expressed on a dry weight basis.

Jampica: 3/13/10	0.10	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,1-dichloroethene	U	0.02	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	83	78-114	%	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
toluene-D8 SUR	96	88-110	%	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
4-bromofluorobenzene SUR	97	86-115	%	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C
a,a,a-trifluorotoluene SUR	88	70-130	%	1	LMM	9/19/15	12:28	8195	9/19/15	15:49 SW5035A8260C

Job ID: 34364

Sample#: 34364-006

Sample ID: E07S04-091915-1

Matrix: Solid Percent Dry: 73.9% Results expressed on a dry weight basis.

Campica: 0/10/10	0.17	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	78	78-114	%	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
toluene-D8 SUR	95	88-110	%	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
4-bromofluorobenzene SUR	94	86-115	%	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C
a,a,a-trifluorotoluene SUR	86	70-130	%	1	LMM	9/19/15	12:28	8195	9/19/15	16:18 SW5035A8260C

Job ID: 34364

Sample#: 34364-007

Sample ID: E10S04-091915-1

Matrix: Solid Percent Dry: 75% Results expressed on a dry weight basis.

odnipica: 5/15/16	0.20	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	84	78-114	%	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
toluene-D8 SUR	97	88-110	%	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
4-bromofluorobenzene SUR	90	86-115	%	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C
a,a,a-trifluorotoluene SUR	88	70-130	%	1	LMM	9/19/15	12:28	8195	9/19/15	16:47 SW5035A8260C

Job ID: 34364

Sample#: 34364-008

Sample ID: E11S04-091915-1

Matrix: Solid Percent Dry: 74.4% Results expressed on a dry weight basis.

, , , , , , , , , , , , , , , , , , , ,		Reporting		Instr Dil'r	า	Pre	ер		Anal	•
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	78	78-114	%	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
toluene-D8 SUR	92	88-110	%	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
4-bromofluorobenzene SUR	94	86-115	%	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C
a,a,a-trifluorotoluene SUR	83	70-130	%	1	LMM	9/19/15	12:28	8195	9/19/15	17:16 SW5035A8260C

Job ID: 34364

Sample#: 34364-009

Sample ID: E13S04-091915-1

Matrix: Solid Percent Dry: 72.4% Results expressed on a dry weight basis.

Danis de la constante de la co	Danul	Reporting Limit	11:44	Instr Dil'r		Pre	-	Datab	Anal	•
Parameter	Result		Units	Factor	Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15		8195	9/19/15	17:45 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/19/15		8195	9/19/15	17:45 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15		8195	9/19/15	17:45 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM		12:28	8195	9/19/15	17:45 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15		8195	9/19/15	17:45 SW5035A8260C
1,1-dichloroethene	0.08	0.03	ug/g	1	LMM	9/19/15		8195	9/19/15	17:45 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
1,1-dichloroethane	0.08 J	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	79	78-114	%	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
toluene-D8 SUR	100	88-110	%	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
4-bromofluorobenzene SUR	98	86-115	%	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C
a,a,a-trifluorotoluene SUR	89	70-130	%	1	LMM	9/19/15	12:28	8195	9/19/15	17:45 SW5035A8260C

Job ID: 34364

Sample#: 34364-010

Sample ID: E14S04-091915-1

Matrix: Solid Percent Dry: 73.2% Results expressed on a dry weight basis.

		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	81	78-114	%	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
toluene-D8 SUR	97	88-110	%	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
4-bromofluorobenzene SUR	94	86-115	%	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C
a,a,a-trifluorotoluene SUR	86	70-130	%	1	LMM	9/19/15	12:28	8195	9/19/15	18:14 SW5035A8260C

Job ID: 34364

Sample#: 34364-011

Sample ID: E15S04-091915-1

Matrix: Solid Percent Dry: 72.5% Results expressed on a dry weight basis.

		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	78	78-114	%	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
toluene-D8 SUR	95	88-110	%	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
4-bromofluorobenzene SUR	90	86-115	%	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C
a,a,a-trifluorotoluene SUR	85	70-130	%	1	LMM	9/19/15	12:28	8195	9/19/15	18:43 SW5035A8260C

Job ID: 34364

Sample#: 34364-012

Sample ID: E03S05-091915-1

Matrix: Solid Percent Dry: 76.7% Results expressed on a dry weight basis.

Campica: 3/13/10	0.12	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,1-dichloroethene	U	0.02	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	81	78-114	%	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
toluene-D8 SUR	99	88-110	%	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
4-bromofluorobenzene SUR	91	86-115	%	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C
a,a,a-trifluorotoluene SUR	85	70-130	%	1	LMM	9/19/15	12:28	8195	9/19/15	19:12 SW5035A8260C

Job ID: 34364

Sample#: 34364-013

Sample ID: E03S05-091915-2

Matrix: Solid Percent Dry: 76.8% Results expressed on a dry weight basis.

		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time	Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,1-dichloroethene	0.02 J	0.02	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	79	78-114	%	1	LMM	9/19/15		8195			SW5035A8260C
toluene-D8 SUR	95	88-110	%	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C
4-bromofluorobenzene SUR	99	86-115	%	1	LMM	9/19/15	12:28	8195			SW5035A8260C
a,a,a-trifluorotoluene SUR	88	70-130	%	1	LMM	9/19/15	12:28	8195	9/19/15	19:41	SW5035A8260C

Job ID: 34364

Sample#: 34364-014

Sample ID: E04S05-091915-1

Matrix: Solid Percent Dry: 77.4% Results expressed on a dry weight basis.

F	-	Reporting		Instr Dil'r	1	Pre			Anal		
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference	
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
chloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
bromomethane	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
chloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
methylene chloride	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
Surrogate Recovery		Limits									
dibromofluoromethane SUR	79	78-114	%	1	LMM	9/19/15		8195	9/19/15	20:10 SW5035A8260C	
toluene-D8 SUR	94	88-110	%	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
4-bromofluorobenzene SUR	95	86-115	%	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	
a,a,a-trifluorotoluene SUR	83	70-130	%	1	LMM	9/19/15	12:28	8195	9/19/15	20:10 SW5035A8260C	

Job ID: 34364

Sample#: 34364-015

Sample ID: E05S05-091915-1

Matrix: Solid Percent Dry: 76.1% Results expressed on a dry weight basis.

odnipica: 5/15/16	0.00	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,1-dichloroethene	0.03 J	0.03	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	81	78-114	%	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
toluene-D8 SUR	97	88-110	%	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
4-bromofluorobenzene SUR	90	86-115	%	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C
a,a,a-trifluorotoluene SUR	89	70-130	%	1	LMM	9/19/15	12:28	8195	9/21/15	16:25 SW5035A8260C

Job ID: 34364

Sample#: 34364-016 Sample ID: Trip Blank Matrix: Water

•		Reporting		Instr Dil'n		Prep		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
chloromethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
vinyl chloride	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
bromomethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
chloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
trichlorofluoromethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,1-dichloroethene	U	1	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
methylene chloride	U	5	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
trans-1,2-dichloroethene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,1-dichloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
cis-1,2-dichloroethene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
chloroform	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,1,1-trichloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
carbon tetrachloride	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,2-dichloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
trichloroethene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,2-dichloropropane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
bromodichloromethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
cis-1,3-dichloropropene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
trans-1,3-dichloropropene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,1,2-trichloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
tetrachloroethene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
dibromochloromethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
chlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,1,1,2-tetrachloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
bromoform	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,1,2,2-tetrachloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,3-dichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,4-dichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,2-dichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,2,4-trichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,2,3-trichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
Surrogate Recovery		Limits							
dibromofluoromethane SUR	94	78-114	%	1	LMM		1502690		13:53 SW5030C8260C
toluene-D8 SUR	98	88-110	%	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
4-bromofluorobenzene SUR	92	86-115	%	1	LMM		1502690	9/19/15	13:53 SW5030C8260C

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 34364

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 2 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The relative percent difference between the LCS and LCSD1502690 was outside the acceptance criteria for chloroethane. The percent recovery for this analyte in each QC parameter was within the acceptance criteria. No impact to the data suspected.

VOC: The MLCS/D8195 did not meet the acceptance criteria for chloroethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Data Qualifiers

U = This compound was analyzed for, but not detected above half the reporting limit.

J =The analytical result was below the instrument calibration range, but above half the reporting limit, regardless of detectability. The reported concentration is an estimate.

- QC Association Table -

Analysis	QC Number	Field ID	Lab ID	
VOCs 8021 Halocarbons SW5030C8260C				
	1502690	CB5-6-091915-1	34364-002	
		Trip Blank	34364-016	
VOCs 8021 Halocarbons SW5035A8260C				
	8195	E02S04-091915-1	34364-003	
		E04S04-091915-1	34364-004	
		E05S04-091915-1	34364-005	
		E07S04-091915-1	34364-006	
		E10S04-091915-1	34364-007	
		E11S04-091915-1	34364-008	
		E13S04-091915-1	34364-009	
		E14S04-091915-1	34364-010	
		E15S04-091915-1	34364-011	
		E03S05-091915-1	34364-012	
		E03S05-091915-2	34364-013	
		E04S05-091915-1	34364-014	
		E05S05-091915-1	34364-015	

- QC Report -

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5030C82600	C BLK1502690	dichlorodifluoromethane		<	2	ug/L				
		chloromethane		<	2	ug/L				
		vinyl chloride		<	2	ug/L				
		bromomethane		<	2	ug/L				
		chloroethane		<	2	ug/L				
		trichlorofluoromethane		<	2	ug/L				
		1,1-dichloroethene		<	1	ug/L				
		methylene chloride		<	5	ug/L				
		trans-1,2-dichloroethene		<	2	ug/L				
		1,1-dichloroethane		<	2	ug/L				
		cis-1,2-dichloroethene		<	2	ug/L				
		chloroform		<	2	ug/L				
		1,1,1-trichloroethane		<	2	ug/L				
		carbon tetrachloride		<	2	ug/L				
		1,2-dichloroethane		<	2	ug/L				
		trichloroethene		<	2	ug/L				
		1,2-dichloropropane		<	2	ug/L				
		bromodichloromethane		<	0.6	ug/L				
		cis-1,3-dichloropropene		<	2	ug/L				
		trans-1,3-dichloropropene		<	2	ug/L				
		1,1,2-trichloroethane		<	2	ug/L				
		tetrachloroethene		<	2	ug/L				
		dibromochloromethane		<	2	ug/L				
		chlorobenzene		<	2	ug/L				
		1,1,1,2-tetrachloroethane		<	2	ug/L				
		bromoform		<	2	ug/L				
		1,1,2,2-tetrachloroethane		<	2	ug/L				
		1,3-dichlorobenzene		<	2	ug/L				
		1,4-dichlorobenzene		<	2	ug/L				
		1,2-dichlorobenzene		<	2	ug/L				
		1,2,4-trichlorobenzene		<	2	ug/L				
		1,2,3-trichlorobenzene		<	2	ug/L				
		dibromofluoromethane SUR			92	%		78	114	
		toluene-D8 SUR			98	%		88	110	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limit	s	RPD	RPD Limit
SW5030C8260C LCS1502690	dichlorodifluoromethane		19	ug/L	20	93	70	130		
	chloromethane		24	ug/L	20	118	70	130		
	vinyl chloride		23	ug/L	20	113	70	130		
	bromomethane		23	ug/L	20	113	70	130		
	chloroethane		25	ug/L	20	126	70	130		
	trichlorofluoromethane		20	ug/L	20	101	70	130		
	1,1-dichloroethene		17	ug/L	20	87	70	130		
	methylene chloride		19	ug/L	20	97	70	130		
	trans-1,2-dichloroethene		20	ug/L	20	98	70	130		
	1,1-dichloroethane		20	ug/L	20	101	70	130		
	cis-1,2-dichloroethene		18	ug/L	20	89	70	130		
	chloroform		19	ug/L	20	96	70	130		
	1,1,1-trichloroethane		20	ug/L	20	98	70	130		
	carbon tetrachloride		18	ug/L	20	91	70	130		
	1,2-dichloroethane		22	ug/L	20	111	70	130		
	trichloroethene		21	ug/L	20	103	70	130		
	1,2-dichloropropane		21	ug/L	20	105	70	130		
	bromodichloromethane		18	ug/L	20	91	70	130		
	cis-1,3-dichloropropene		19	ug/L	20	93	70	130		
	trans-1,3-dichloropropene		19	ug/L	20	94	70	130		
	1,1,2-trichloroethane		19	ug/L	20	93	70	130		
	tetrachloroethene		19	ug/L	20	95	70	130		
	dibromochloromethane		16	ug/L	20	80	70	130		
	chlorobenzene		18	ug/L	20	91	70	130		
	1,1,1,2-tetrachloroethane		18	ug/L	20	89	70	130		
	bromoform		15	ug/L	20	77	70	130		
	1,1,2,2-tetrachloroethane		23	ug/L	20	114	70	130		
	1,3-dichlorobenzene		21	ug/L	20	103	70	130		
	1,4-dichlorobenzene		20	ug/L	20	102	70	130		
	1,2-dichlorobenzene		20	ug/L	20	102	70	130		
	1,2,4-trichlorobenzene		19	ug/L	20	97	70	130		
	1,2,3-trichlorobenzene		20	ug/L	20	99	70	130		
	dibromofluoromethane SUR		98	%			78	114		
	toluene-D8 SUR		102	%			88	110		
	4-bromofluorobenzene SUR		97	%			86	115		

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits		RPD	RPI) Limit
SW5030C8260C LCSD1502690	dichlorodifluoromethane		17	ug/L	20	87	70	130		6	20
	chloromethane		21	ug/L	20	107	70	130		9	20
	vinyl chloride		21	ug/L	20	103	70	130		9	20
	bromomethane		21	ug/L	20	105	70	130		7	20
	chloroethane		20	ug/L	20	100	70	130		23 *	20
	trichlorofluoromethane		20	ug/L	20	98	70	130		3	20
	1,1-dichloroethene		17	ug/L	20	86	70	130		2	20
	methylene chloride		19	ug/L	20	94	70	130		4	20
	trans-1,2-dichloroethene		19	ug/L	20	94	70	130		3	20
	1,1-dichloroethane		20	ug/L	20	98	70	130		3	20
	cis-1,2-dichloroethene		17	ug/L	20	85	70	130		5	20
	chloroform		18	ug/L	20	92	70	130		4	20
	1,1,1-trichloroethane		19	ug/L	20	97	70	130		1	20
	carbon tetrachloride		18	ug/L	20	90	70	130		1	20
	1,2-dichloroethane		21	ug/L	20	104	70	130		7	20
	trichloroethene		21	ug/L	20	103	70	130		1	20
	1,2-dichloropropane		20	ug/L	20	98	70	130		7	20
	bromodichloromethane		18	ug/L	20	92	70	130		1	20
	cis-1,3-dichloropropene		18	ug/L	20	90	70	130		3	20
	trans-1,3-dichloropropene		18	ug/L	20	91	70	130		4	20
	1,1,2-trichloroethane		18	ug/L	20	91	70	130		1	20
	tetrachloroethene		20	ug/L	20	101	70	130		6	20
	dibromochloromethane		18	ug/L	20	88	70	130		10	20
	chlorobenzene		19	ug/L	20	96	70	130		6	20
	1,1,1,2-tetrachloroethane		20	ug/L	20	98	70	130		9	20
	bromoform		17	ug/L	20	86	70	130		11	20
	1,1,2,2-tetrachloroethane		21	ug/L	20	105	70	130		8	20
	1,3-dichlorobenzene		20	ug/L	20	102	70	130		1	20
	1,4-dichlorobenzene		20	ug/L	20	100	70	130		2	20
	1,2-dichlorobenzene		20	ug/L	20	100	70	130		2	20
	1,2,4-trichlorobenzene		19	ug/L	20	95	70	130		1	20
	1,2,3-trichlorobenzene		20	ug/L	20	98	70	130		1	20
	dibromofluoromethane SUR		96	%			78	114			
	toluene-D8 SUR		96	%			88	110			
	4-bromofluorobenzene SUR		103	%			86	115			

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5035A8260C	MB8195	dichlorodifluoromethane		<	0.1	ug/g				
		chloromethane		<	0.1	ug/g				
		vinyl chloride		<	0.1	ug/g				
		bromomethane		<	0.2	ug/g				
		chloroethane		<	0.1	ug/g				
		trichlorofluoromethane		<	0.1	ug/g				
		1,1-dichloroethene		<	0.02	ug/g				
		methylene chloride		<	0.2	ug/g				
		trans-1,2-dichloroethene		<	0.1	ug/g				
		1,1-dichloroethane		<	0.1	ug/g				
		cis-1,2-dichloroethene		<	0.1	ug/g				
		chloroform		<	0.1	ug/g				
		1,1,1-trichloroethane		<	0.1	ug/g				
		carbon tetrachloride		<	0.1	ug/g				
		1,2-dichloroethane		<	0.1	ug/g				
		trichloroethene		<	0.1	ug/g				
		1,2-dichloropropane		<	0.1	ug/g				
		bromodichloromethane		<	0.1	ug/g				
		cis-1,3-dichloropropene		<	0.1	ug/g				
		trans-1,3-dichloropropene		<	0.1	ug/g				
		1,1,2-trichloroethane		<	0.1	ug/g				
		tetrachloroethene		<	0.1	ug/g				
		dibromochloromethane		<	0.1	ug/g				
		chlorobenzene		<	0.1	ug/g				
		1,1,1,2-tetrachloroethane		<	0.1	ug/g				
		bromoform		<	0.1	ug/g				
		1,1,2,2-tetrachloroethane		<	0.1	ug/g				
		1,3-dichlorobenzene		<	0.1	ug/g				
		1,4-dichlorobenzene		<	0.1	ug/g				
		1,2-dichlorobenzene		<	0.1	ug/g				
		1,2,4-trichlorobenzene		<	0.1	ug/g				
		1,2,3-trichlorobenzene		<	0.1	ug/g				
		dibromofluoromethane SUR			79	%		78 1	14	
		toluene-D8 SUR			97	%		88 1	10	
		4-bromofluorobenzene SUR			97	%		86 1	15	
		a,a,a-trifluorotoluene SUR			85	%		70 1	30	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits	6	RPD	RPD Limit
SW5035A8260C MLCS8195	dichlorodifluoromethane		0.8	ug/g	1	75	70	130		
	chloromethane		0.8	ug/g	1	78	70	130		
	vinyl chloride		1.1	ug/g	1	113	70	130		
	bromomethane		1.0	ug/g	1	104	70	130		
	chloroethane		2.2	ug/g	1	217	* 70	130		
	trichlorofluoromethane		1.0	ug/g	1	104	70	130		
	1,1-dichloroethene		0.9	ug/g	1	91	70	130		
	methylene chloride		1.1	ug/g	1	107	70	130		
	trans-1,2-dichloroethene		1.0	ug/g	1	96	70	130		
	1,1-dichloroethane		1.0	ug/g	1	102	70	130		
	cis-1,2-dichloroethene		0.9	ug/g	1	93	70	130		
	chloroform		1.0	ug/g	1	99	70	130		
	1,1,1-trichloroethane		1.0	ug/g	1	98	70	130		
	carbon tetrachloride		0.9	ug/g	1	86	70	130		
	1,2-dichloroethane		1.1	ug/g	1	112	70	130		
	trichloroethene		1.0	ug/g	1	104	70	130		
	1,2-dichloropropane		1.1	ug/g	1	107	70	130		
	bromodichloromethane		0.9	ug/g	1	89	70	130		
	cis-1,3-dichloropropene		0.9	ug/g	1	94	70	130		
	trans-1,3-dichloropropene		0.9	ug/g	1	93	70	130		
	1,1,2-trichloroethane		1.0	ug/g	1	98	70	130		
	tetrachloroethene		0.9	ug/g	1	95	70	130		
	dibromochloromethane		0.7	ug/g	1	74	70	130		
	chlorobenzene		0.9	ug/g	1	95	70	130		
	1,1,1,2-tetrachloroethane		0.9	ug/g	1	88	70	130		
	bromoform		0.7	ug/g	1	72	70	130		
	1,1,2,2-tetrachloroethane		1.2	ug/g	1	116	70	130		
	1,3-dichlorobenzene		1.0	ug/g	1	103	70	130		
	1,4-dichlorobenzene		1.0	ug/g	1	104	70	130		
	1,2-dichlorobenzene		1.0	ug/g	1	103	70	130		
	1,2,4-trichlorobenzene		1.1	ug/g	1	107	70	130		
	1,2,3-trichlorobenzene		1.1	ug/g	1	112	70	130		
	dibromofluoromethane SUR		94	%			78	114		
	toluene-D8 SUR		97	%			88	110		
	4-bromofluorobenzene SUR		102	%			86	115		
	a,a,a-trifluorotoluene SUR		86	%			70	130		

		Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits	1	RPD	RP	D Limit
SW5035A8260C MLC	SD8195	dichlorodifluoromethane		0.8	ug/g	1	76	70	130		0	30
		chloromethane		0.8	ug/g	1	75	70	130		4	30
		vinyl chloride		1.1	ug/g	1	111	70	130		2	30
		bromomethane		1.0	ug/g	1	100	70	130		4	30
		chloroethane		2.3	ug/g	1	228	* 70	130		5	30
		trichlorofluoromethane		1.0	ug/g	1	105	70	130		1	30
		1,1-dichloroethene		0.9	ug/g	1	90	70	130		1	30
		methylene chloride		1.1	ug/g	1	106	70	130		1	30
		trans-1,2-dichloroethene		1.0	ug/g	1	96	70	130		1	30
		1,1-dichloroethane		1.0	ug/g	1	99	70	130		2	30
		cis-1,2-dichloroethene		0.9	ug/g	1	94	70	130		1	30
		chloroform		1.0	ug/g	1	96	70	130		4	30
		1,1,1-trichloroethane		1.0	ug/g	1	98	70	130		1	30
		carbon tetrachloride		0.8	ug/g	1	85	70	130		1	30
		1,2-dichloroethane		1.1	ug/g	1	110	70	130		2	30
		trichloroethene		1.0	ug/g	1	102	70	130		2	30
		1,2-dichloropropane		1.0	ug/g	1	103	70	130		4	30
		bromodichloromethane		0.9	ug/g	1	88	70	130		1	30
		cis-1,3-dichloropropene		0.9	ug/g	1	94	70	130		0	30
		trans-1,3-dichloropropene		1.0	ug/g	1	96	70	130		3	30
		1,1,2-trichloroethane		1.0	ug/g	1	98	70	130		0	30
		tetrachloroethene		1.0	ug/g	1	102	70	130		7	30
		dibromochloromethane		0.8	ug/g	1	80	70	130		8	30
		chlorobenzene		1.0	ug/g	1	103	70	130		8	30
		1,1,1,2-tetrachloroethane		1.0	ug/g	1	100	70	130		12	30
		bromoform		0.8	ug/g	1	79	70	130		8	30
		1,1,2,2-tetrachloroethane		1.2	ug/g	1	122	70	130		5	30
		1,3-dichlorobenzene		1.1	ug/g	1	106	70	130		3	30
		1,4-dichlorobenzene		1.1	ug/g	1	107	70	130		3	30
		1,2-dichlorobenzene		1.1	ug/g	1	106	70	130		3	30
		1,2,4-trichlorobenzene		1.1	ug/g	1	109	70	130		2	30
		1,2,3-trichlorobenzene		1.1	ug/g	1	113	70	130		1	30
		dibromofluoromethane SUR		90	%			78	114			
		toluene-D8 SUR		97	%			88	110			
		4-bromofluorobenzene SUR		105	%			86	115			
		a,a,a-trifluorotoluene SUR		89	%			70	130			

	QSD-01 Revision 01/09/15	RECORD	CUSTODY	*Date Needed 4/2		(24 hr)* ed (48 hr)*	TAT REQUESTED	-11 E15S	Shee or	-59 E13 S		-67 E10SC		S503 Pe		-03 E02<	-න ces	34364-01-1-12	Lab Sample ID (Lab uso Only)	Absolute Resour a s s o c i a t Company Name: Weston Solution, Inc Company Address: 43 North Main St. Co Report To: Vinnie Dells Russo Phone #: Coll 676 5467 Invoice to Email: Vincent della	
	15 Remaished by:	Relingatished by:	,	HARD COPY REQUIRED	BEPORTING INSTRUCTIONS		See absoluteresourceassociates.com			_	1 ScH-091915=1 1 X	1 -318160-h0501	E07504-091915-11 1		EDYSOU-COIGIG 1 X	E02504-0919151 1 X	CB5-6-091915-1 1 X	からいること	# CONTAINERS WATER SOLID	ne: Solution: Inc. Pells Russ Dells Russ Dells Russ Sign Concord, NH 63301 The State of the suspense westerness Sign Control of the suspense westerness	
		D		□ F _A	-	n ye il naray	ociates.com SPECIAL										×		OTHER HCI HNO ₃ H ₂ SO ₄ NaOH MeOH		12
	Date	9/19/	09/19/		XPDF (e-mail address) VINCEST.	POF to	INSTRUCTION	× Pinding	X 00 19 15	x allelis	X 9/6/15	Albilia A	X 9(19)	X alializ	2113113	X Blight	2119116	*	DATE	S 1987601	124 Heritage Avenue #16
	te Time	1/5 / 1200	1/1/1/1/1		Went date russes	Vincent de la visça		0638 AB X	0853 ARS V	0830 PG X	-0825 AB V	Y BACSBO	X # £130	0813 AS X		2080 X	CE-CA-AB X	091 = 1 ×	TIME SAMPLER	S.com S.com Other NPDES OTHER S-1	J , * ===
	Received by Labo	rpeceived by.			(g)	wes trasdurions.		are the control of th										- not reid to	☐ TPH ☐ DRO 8	EGRO GRO 8015 1,4-Dioxane C 524.2 NH List Gases-List:	NOF
0	Laboratory: Willow	3	Om	1	wester solven are con	ations, cam and													□ 0&G 1664 □ □ pH □ BOD □ TSS □ TDS □	neral 0&G SM552CF Conductivity Turbidity TS TVS Alkalinity Priority Pollutant Metals TAL Metals Hardness	CUSTODY RECORD VSIS REQUEST
						id en k halle													☐ Dissolved Metal ☐ Ammonia ☐ C ☐ T-Phosphorus ☐ Cyanide ☐ Su	St: Chloride Sulfate Bromide Fluoride	
	9/19/15	Dano	9/19/15	TEMPERATURE	RECEIVED ON ICE	Mestansblutions. Com													☐ Corrosivity ☐ ☐ TCLP Metals ☐	active CN	72
	1000		Time	روا	YES NO	Jans, Can													Grab (G) or Co	osite (C)	

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Vinnie DellaRusso PO Number: 0089493

Weston Solutions,Inc.

Job ID: 34367
45 Constitution Ave

Date Received: 9/21/15

Suite 100

Concord, NH 03301

Project: Kearsarge Metallurgical Superfund Site NHDES198708002

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Principal, General Manager

lluer

Date of Approval: 9/25/2015

Total number of pages: 13

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Lab ID: 34367

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
Trip Blank	Solid	9/21/2015 0:00	34367-001	
				VOCs 8021 Halocarbons in solid by 8260
E08S05-092115-1	Solid	9/21/2015 7:37	34367-002	
				Percent Dry Matter for Sample Calc by SM2540B,G
E05S06-092115-1	Solid	9/21/2015 7:28	34367-003	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E13S05-092115-1	Solid	9/21/2015 7:42	34367-004	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E15S06-092115-1	Solid	9/21/2015 7:44	34367-005	
				Percent Dry Matter for Sample Calc by SM2540B,G VOCs 8021 Halocarbons in solid by 8260

Job ID: 34367

Sample#: 34367-001 Sample ID: Trip Blank Matrix: Solid

Sampled: 9/21/15 0:00

Jampica. 5/21/10 0.00		Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,1-dichloroethene	U	0.02	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	86	78-114	%	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
toluene-D8 SUR	100	88-110	%	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
4-bromofluorobenzene SUR	98	86-115	%	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C
a,a,a-trifluorotoluene SUR	88	70-130	%	1	LMM	9/21/15	12:23	8195	9/21/15	14:29 SW5035A8260C

Job ID: 34367

Sample#: 34367-003

Sample ID: E05S06-092115-1

Matrix: Solid Percent Dry: 79.3% Results expressed on a dry weight basis.

Sampled: 9/21/15 7:28

Jumpica: 0/21/10 7.20		Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis	
Parameter	Result	Limit	Units		Analyst	Date	Time	Batch	Date	Time Reference	
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
chloromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
vinyl chloride	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
bromomethane	U	0.3	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
chloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
methylene chloride	U	0.3	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
chloroform	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
trichloroethene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260	IC
chlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
bromoform	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	82	78-114	%	1	LMM	9/21/15		8195		14:58 SW5035A8260	
toluene-D8 SUR	95	88-110	%	1	LMM	9/21/15		8195		14:58 SW5035A8260	
4-bromofluorobenzene SUR	88	86-115	%	1	LMM	9/21/15		8195		14:58 SW5035A8260	
a,a,a-trifluorotoluene SUR	88	70-130	%	1	LMM	9/21/15	12:23	8195	9/21/15	14:58 SW5035A8260)C

Job ID: 34367

Sample#: 34367-004

Sample ID: E13S05-092115-1

Matrix: Solid Percent Dry: 74.9% Results expressed on a dry weight basis.

Sampled: 9/21/15 7:42

Campica: 0/21/10	7.72	Reporting		Instr Dil'r	1	Pre	ae		Anal	vsis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
chloromethane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
vinyl chloride	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
chloroethane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
trichlorofluoromethane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
trans-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,1-dichloroethane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
cis-1,2-dichloroethene	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
chloroform	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
carbon tetrachloride	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,2-dichloroethane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
trichloroethene	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,2-dichloropropane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
bromodichloromethane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
cis-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
trans-1,3-dichloropropene	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,1,2-trichloroethane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
tetrachloroethene	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
dibromochloromethane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
chlorobenzene	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
bromoform	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,3-dichlorobenzene	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,4-dichlorobenzene	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,2-dichlorobenzene	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,2,4-trichlorobenzene	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
1,2,3-trichlorobenzene	U	0.2	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	83	78-114	%	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
toluene-D8 SUR	97	88-110	%	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
4-bromofluorobenzene SUR	95	86-115	%	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C
a,a,a-trifluorotoluene SUR	90	70-130	%	1	LMM	9/21/15	12:23	8195	9/21/15	15:26 SW5035A8260C

Job ID: 34367

Sample#: 34367-005

Sample ID: E15S06-092115-1

Matrix: Solid Percent Dry: 76.8% Results expressed on a dry weight basis.

Sampled: 9/21/15 7:44

		Reporting Instr Dil'n		1	Pre	р	Analysis				
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference	
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
chloromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
vinyl chloride	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
bromomethane	U	0.3	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
chloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,1-dichloroethene	U	0.03	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
methylene chloride	U	0.3	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
chloroform	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
trichloroethene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
bromodichloromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
tetrachloroethene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
dibromochloromethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
chlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
bromoform	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	
Surrogate Recovery		Limits									
dibromofluoromethane SUR	86	78-114	%	1	LMM	9/21/15	12:23	8195		15:55 SW5035A8260C	
toluene-D8 SUR	100	88-110	%	1	LMM	9/21/15		8195		15:55 SW5035A8260C	
4-bromofluorobenzene SUR	97	86-115	%	1	LMM	9/21/15		8195		15:55 SW5035A8260C	
a,a,a-trifluorotoluene SUR	102	70-130	%	1	LMM	9/21/15	12:23	8195	9/21/15	15:55 SW5035A8260C	

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 34367

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 3 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The MLCS/D8195 did not meet the acceptance criteria for chloroethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Data Qualifiers

U = This compound was analyzed for, but not detected above half the reporting limit.

J = The analytical result was below the instrument calibration range, but above half the reporting limit, regardless of detectability. The reported concentration is an estimate.

- QC Association Table -

Analysis VOCs 8021 Halocarbons SW5035A8260C	QC Number	Field ID	Lab ID	
	8195	Trip Blank	34367-001	
		E05S06-092115-1	34367-003	
		E13S05-092115-1	34367-004	
		E15S06-092115-1	34367-005	

- QC Report -

Method QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5035A8260C MB8195	dichlorodifluoromethane	·	<	0.1	ug/g				
	chloromethane		<	0.1	ug/g				
	vinyl chloride		<	0.1	ug/g				
	bromomethane		<	0.2	ug/g				
	chloroethane		<	0.1	ug/g				
	trichlorofluoromethane		<	0.1	ug/g				
	1,1-dichloroethene		<	0.02	ug/g				
	methylene chloride		<	0.2	ug/g				
	trans-1,2-dichloroethene		<	0.1	ug/g				
	1,1-dichloroethane		<	0.1	ug/g				
	cis-1,2-dichloroethene		<	0.1	ug/g				
	chloroform		<	0.1	ug/g				
	1,1,1-trichloroethane		<	0.1	ug/g				
	carbon tetrachloride		<	0.1	ug/g				
	1,2-dichloroethane		<	0.1	ug/g				
	trichloroethene		<	0.1	ug/g				
	1,2-dichloropropane		<	0.1	ug/g				
	bromodichloromethane		<	0.1	ug/g				
	cis-1,3-dichloropropene		<	0.1	ug/g				
	trans-1,3-dichloropropene		<	0.1	ug/g				
	1,1,2-trichloroethane		<	0.1	ug/g				
	tetrachloroethene		<	0.1	ug/g				
	dibromochloromethane		<	0.1	ug/g				
	chlorobenzene		<	0.1	ug/g				
	1,1,1,2-tetrachloroethane		<	0.1	ug/g				
	bromoform		<	0.1	ug/g				
	1,1,2,2-tetrachloroethane		<	0.1	ug/g				
	1,3-dichlorobenzene		<	0.1	ug/g				
	1,4-dichlorobenzene		<	0.1	ug/g				
	1,2-dichlorobenzene		<	0.1	ug/g				
	1,2,4-trichlorobenzene		<	0.1	ug/g				
	1,2,3-trichlorobenzene		<	0.1	ug/g				
	dibromofluoromethane SUR			79	%		78 1°	14	
	toluene-D8 SUR			97	%		88 1	10	
	4-bromofluorobenzene SUR			97	%		86 1	15	
	a,a,a-trifluorotoluene SUR			85	%		70 13	30	

chloromethane 0.8 ug/g 1 78 70 7 vinyl chloride 1.1 ug/g 1 113 70 7 bromomethane 1.0 ug/g 1 104 70 7 chloroethane 2.2 ug/g 1 217 * 70 7	30 30 30 30 30 30	
vinyl chloride 1.1 ug/g 1 113 70 7 bromomethane 1.0 ug/g 1 104 70 7 chloroethane 2.2 ug/g 1 217 * 70 7	30 30 30 30	
bromomethane 1.0 ug/g 1 104 70 chloroethane 2.2 ug/g 1 217 * 70	30 30 30	
chloroethane 2.2 ug/g 1 217 * 70	30 30	
3 0	30	
trichlorofluoromothano 1.0 uala 1. 104 70		
inclination income in the state of the state	30	
1,1-dichloroethene 0.9 ug/g 1 91 70	,0	
methylene chloride 1.1 ug/g 1 107 70	30	
trans-1,2-dichloroethene 1.0 ug/g 1 96 70	30	
1,1-dichloroethane 1.0 ug/g 1 102 70 1	30	
cis-1,2-dichloroethene 0.9 ug/g 1 93 70	30	
chloroform 1.0 ug/g 1 99 70	30	
1,1,1-trichloroethane 1.0 ug/g 1 98 70 1	30	
carbon tetrachloride 0.9 ug/g 1 86 70	30	
1,2-dichloroethane 1.1 ug/g 1 112 70	30	
trichloroethene 1.0 ug/g 1 104 70	30	
1,2-dichloropropane 1.1 ug/g 1 107 70	30	
bromodichloromethane 0.9 ug/g 1 89 70	30	
cis-1,3-dichloropropene 0.9 ug/g 1 94 70	30	
trans-1,3-dichloropropene 0.9 ug/g 1 93 70	30	
1,1,2-trichloroethane 1.0 ug/g 1 98 70 1	30	
tetrachloroethene 0.9 ug/g 1 95 70	30	
dibromochloromethane 0.7 ug/g 1 74 70	30	
chlorobenzene 0.9 ug/g 1 95 70	30	
1,1,1,2-tetrachloroethane 0.9 ug/g 1 88 70	30	
bromoform 0.7 ug/g 1 72 70	30	
1,1,2,2-tetrachloroethane 1.2 ug/g 1 116 70	30	
1,3-dichlorobenzene 1.0 ug/g 1 103 70 1	30	
1,4-dichlorobenzene 1.0 ug/g 1 104 70	30	
1,2-dichlorobenzene 1.0 ug/g 1 103 70 1	30	
1,2,4-trichlorobenzene 1.1 ug/g 1 107 70 1	30	
1,2,3-trichlorobenzene 1.1 ug/g 1 112 70 1	30	
dibromofluoromethane SUR 94 % 78	14	
toluene-D8 SUR 97 % 88	10	
4-bromofluorobenzene SUR 102 % 86	15	
a,a,a-trifluorotoluene SUR 86 % 70	30	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limit	s	RPD	RP	D Limit
SW5035A8260C MLCSD8	195 dichlorodifluoromethane		0.8	ug/g	1	76	70	130		0	30
	chloromethane		8.0	ug/g	1	75	70	130		4	30
	vinyl chloride		1.1	ug/g	1	111	70	130		2	30
	bromomethane		1.0	ug/g	1	100	70	130		4	30
	chloroethane		2.3	ug/g	1	228	* 70	130		5	30
	trichlorofluoromethane		1.0	ug/g	1	105	70	130		1	30
	1,1-dichloroethene		0.9	ug/g	1	90	70	130		1	30
	methylene chloride		1.1	ug/g	1	106	70	130		1	30
	trans-1,2-dichloroethene		1.0	ug/g	1	96	70	130		1	30
	1,1-dichloroethane		1.0	ug/g	1	99	70	130		2	30
	cis-1,2-dichloroethene		0.9	ug/g	1	94	70	130		1	30
	chloroform		1.0	ug/g	1	96	70	130		4	30
	1,1,1-trichloroethane		1.0	ug/g	1	98	70	130		1	30
	carbon tetrachloride		8.0	ug/g	1	85	70	130		1	30
	1,2-dichloroethane		1.1	ug/g	1	110	70	130		2	30
	trichloroethene		1.0	ug/g	1	102	70	130		2	30
	1,2-dichloropropane		1.0	ug/g	1	103	70	130		4	30
	bromodichloromethane		0.9	ug/g	1	88	70	130		1	30
	cis-1,3-dichloropropene		0.9	ug/g	1	94	70	130		0	30
	trans-1,3-dichloropropene		1.0	ug/g	1	96	70	130		3	30
	1,1,2-trichloroethane		1.0	ug/g	1	98	70	130		0	30
	tetrachloroethene		1.0	ug/g	1	102	70	130		7	30
	dibromochloromethane		8.0	ug/g	1	80	70	130		8	30
	chlorobenzene		1.0	ug/g	1	103	70	130		8	30
	1,1,1,2-tetrachloroethane		1.0	ug/g	1	100	70	130		12	30
	bromoform		8.0	ug/g	1	79	70	130		8	30
	1,1,2,2-tetrachloroethane		1.2	ug/g	1	122	70	130		5	30
	1,3-dichlorobenzene		1.1	ug/g	1	106	70	130		3	30
	1,4-dichlorobenzene		1.1	ug/g	1	107	70	130		3	30
	1,2-dichlorobenzene		1.1	ug/g	1	106	70	130		3	30
	1,2,4-trichlorobenzene		1.1	ug/g	1	109	70	130		2	30
	1,2,3-trichlorobenzene		1.1	ug/g	1	113	70	130		1	30
	dibromofluoromethane SUR		90	%			78	114			
	toluene-D8 SUR		97	%			88	110			
	4-bromofluorobenzene SUR		105	%			86	115			
	a,a,a-trifluorotoluene SUR		89	%			70	130			

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Vinnie DellaRusso PO Number: 0089493

Weston Solutions,Inc.

Job ID: 34377

45 Constitution Ave

Date Received: 9/22/15

Suite 100

Concord, NH 03301

Project: Kearsarge Metallurgical Superfund Site NHDES198708002

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Maine

Principal, General Manager

lluer

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Date of Approval: 9/25/2015

Total number of pages: 12

NH903

Lab ID: 34377

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
E08S05-092115-1	Solid	9/21/2015 16:30	34377-001	Percent Dry Matter for Sample Calc by SM2540B,G VOCs 8021 Halocarbons in solid by 8260
E13S04-092115-1	Solid	9/21/2015 16:38	34377-002	Percent Dry Matter for Sample Calc by SM2540B,G
Trip Blank	Solid	9/21/2015 0:00	34377-003	VOCs 8021 Halocarbons in solid by 8260 VOCs 8021 Halocarbons in solid by 8260

Job ID: 34377

Sample#: 34377-001

Sample ID: E08S05-092115-1

Matrix: Solid Percent Dry: 76.4% Results expressed on a dry weight basis.

Sampled: 9/21/15 16:30

odinpied: 5/21/10	10.00	Reporting		Instr Dil'r	1	Pre	ep q		Anal	ysis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,1-dichloroethene	0.02 J	0.02	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,1,1-trichloroethane	0.07 J	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	81	78-114	%	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
toluene-D8 SUR	99	88-110	%	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
4-bromofluorobenzene SUR	97	86-115	%	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C
a,a,a-trifluorotoluene SUR	89	70-130	%	1	LMM	9/22/15	9:59	8190	9/22/15	11:42 SW5035A8260C

Job ID: 34377

Sample#: 34377-002

Sample ID: E13S04-092115-1

Matrix: Solid Percent Dry: 74.8% Results expressed on a dry weight basis.

Sampled: 9/21/15 16:38

Campica: 0/21/10	10.00	Reporting		Instr Dil'r	1	Pre	g		Anal	vsis
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
bromomethane	U	0.4	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,1-dichloroethene	U	0.04	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
methylene chloride	U	0.4	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	80	78-114	%	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
toluene-D8 SUR	95	88-110	%	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
4-bromofluorobenzene SUR	86	86-115	%	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C
a,a,a-trifluorotoluene SUR	87	70-130	%	1	LMM	9/22/15	9:59	8190	9/22/15	12:11 SW5035A8260C

Job ID: 34377

Sample#: 34377-003
Sample ID: Trip Blank
Matrix: Solid

Sampled: 9/21/15 0:00

Sampleu. 9/21/15	0.00	Reporting		Instr Dil'r	1	Pre	ep		Anal	ysis	
Parameter	Result	Limit	Units		Analyst		Time	Batch	Date		Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,1-dichloroethene	U	0.02	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
Surrogate Recovery		Limits									
dibromofluoromethane SUR	78	78-114	%	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
toluene-D8 SUR	97	88-110	%	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
4-bromofluorobenzene SUR	97	86-115	%	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C
a,a,a-trifluorotoluene SUR	84	70-130	%	1	LMM	9/22/15	9:59	8190	9/22/15	12:40	SW5035A8260C

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 34377

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 1 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The MLCS/D8190 did not meet the acceptance criteria for chloroethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples. The MLCS8190 did not meet the acceptance criteria for dibromochloromethane and bromoform. The recoveries were acceptable in the MLCSD, no impact to samples suspected.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Data Qualifiers

U = This compound was analyzed for, but not detected above half the reporting limit.

J = The analytical result was below the instrument calibration range, but above half the reporting limit, regardless of detectability. The reported concentration is an estimate.

- QC Association Table -

Analysis VOCs 8021 Halocarbons SW5035A8260C	QC Number	Field ID	Lab ID	
	8190	E08S05-092115-1	34377-001	
		E13S04-092115-1	34377-002	
		Trip Blank	34377-003	

- QC Report -

Method QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5035A8260C MB8190	dichlorodifluoromethane	,	<	0.1	ug/g				
	chloromethane		<	0.1	ug/g				
	vinyl chloride		<	0.1	ug/g				
	bromomethane		<	0.2	ug/g				
	chloroethane		<	0.1	ug/g				
	trichlorofluoromethane		<	0.1	ug/g				
	1,1-dichloroethene		<	0.02	ug/g				
	methylene chloride		<	0.2	ug/g				
	trans-1,2-dichloroethene		<	0.1	ug/g				
	1,1-dichloroethane		<	0.1	ug/g				
	cis-1,2-dichloroethene		<	0.1	ug/g				
	chloroform		<	0.1	ug/g				
	1,1,1-trichloroethane		<	0.1	ug/g				
	carbon tetrachloride		<	0.1	ug/g				
	1,2-dichloroethane		<	0.1	ug/g				
	trichloroethene		<	0.1	ug/g				
	1,2-dichloropropane		<	0.1	ug/g				
	bromodichloromethane		<	0.1	ug/g				
	cis-1,3-dichloropropene		<	0.1	ug/g				
	trans-1,3-dichloropropene		<	0.1	ug/g				
	1,1,2-trichloroethane		<	0.1	ug/g				
	tetrachloroethene		<	0.1	ug/g				
	dibromochloromethane		<	0.1	ug/g				
	chlorobenzene		<	0.1	ug/g				
	1,1,1,2-tetrachloroethane		<	0.1	ug/g				
	bromoform		<	0.1	ug/g				
	1,1,2,2-tetrachloroethane		<	0.1	ug/g				
	1,3-dichlorobenzene		<	0.1	ug/g				
	1,4-dichlorobenzene		<	0.1	ug/g				
	1,2-dichlorobenzene		<	0.1	ug/g				
	1,2,4-trichlorobenzene		<	0.1	ug/g				
	1,2,3-trichlorobenzene		<	0.1	ug/g				
	dibromofluoromethane SUR			84	%		78 1°	14	
	toluene-D8 SUR			100	%		88 1	10	
	4-bromofluorobenzene SUR			104	%		86 1	15	
	a,a,a-trifluorotoluene SUR			97	%		70 13	30	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	L	imits		RPD	RPD Limit
SW5035A8260C MLCS8190	dichlorodifluoromethane		0.8	ug/g	1	78	7	0	130		
	chloromethane		0.8	ug/g	1	83	7	0'	130		
	vinyl chloride		1.2	ug/g	1	118	7	0	130		
	bromomethane		0.7	ug/g	1	75	7	0	130		
	chloroethane		2.0	ug/g	1	202	* 7	0	130		
	trichlorofluoromethane		1.1	ug/g	1	106	7	0'	130		
	1,1-dichloroethene		0.9	ug/g	1	92	7	0'	130		
	methylene chloride		1.2	ug/g	1	117	7	0	130		
	trans-1,2-dichloroethene		1.0	ug/g	1	100	7	0	130		
	1,1-dichloroethane		1.0	ug/g	1	103	7	0	130		
	cis-1,2-dichloroethene		1.0	ug/g	1	96	7	0'	130		
	chloroform		1.0	ug/g	1	102	7	0	130		
	1,1,1-trichloroethane		1.0	ug/g	1	96	7	0	130		
	carbon tetrachloride		0.8	ug/g	1	82	7	0'	130		
	1,2-dichloroethane		1.2	ug/g	1	119	7	0'	130		
	trichloroethene		1.1	ug/g	1	107	7	0'	130		
	1,2-dichloropropane		1.1	ug/g	1	111	7	0'	130		
	bromodichloromethane		0.9	ug/g	1	89	7	0'	130		
	cis-1,3-dichloropropene		0.9	ug/g	1	95	7	0	130		
	trans-1,3-dichloropropene		0.9	ug/g	1	95	7	0	130		
	1,1,2-trichloroethane		1.0	ug/g	1	104	7	0'	130		
	tetrachloroethene		0.9	ug/g	1	85	7	0'	130		
	dibromochloromethane		0.6	ug/g	1	65	* 7	0'	130		
	chlorobenzene		0.9	ug/g	1	89	7	0'	130		
	1,1,1,2-tetrachloroethane		0.8	ug/g	1	83	7	0'	130		
	bromoform		0.7	ug/g	1	67	* 7	0'	130		
	1,1,2,2-tetrachloroethane		1.0	ug/g	1	101	7	0'	130		
	1,3-dichlorobenzene		0.9	ug/g	1	93	7	0'	130		
	1,4-dichlorobenzene		0.9	ug/g	1	93	7	0'	130		
	1,2-dichlorobenzene		0.9	ug/g	1	94	7	0'	130		
	1,2,4-trichlorobenzene		1.0	ug/g	1	95	7	0	130		
	1,2,3-trichlorobenzene		1.0	ug/g	1	99	7	0'	130		
	dibromofluoromethane SUR		94	%			7	8	114		
	toluene-D8 SUR		107	%			8	88	110		
	4-bromofluorobenzene SUR		106	%			8	86	115		
	a,a,a-trifluorotoluene SUR		95	%			7	0	130		

SW5035A8260C MLCSD8190 dichlorodifluoromethane 0.8 ug/g 1 83 70 130 chloromethane 0.8 ug/g 1 82 70 130 vinyl chloride 1.2 ug/g 1 117 70 130 bromomethane 0.8 ug/g 1 79 70 130 chloroethane 2.1 ug/g 1 210 * 70 130 trichloroethane 1.1 ug/g 1 110 70 130 1,1-dichloroethene 0.9 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 tichloroethane 1.0 ug/g 1 104 70 130 chloroform 1.0 ug/g 1 103 70 130 chloroform 1.0 ug/g 1 100 70 130 chloroform 1.0 <td< th=""><th>5 0 1 6 4 3 2</th><th>30 30 30 30 30 30</th></td<>	5 0 1 6 4 3 2	30 30 30 30 30 30
vinyl chloride 1.2 ug/g 1 117 70 130 bromomethane 0.8 ug/g 1 79 70 130 chloroethane 2.1 ug/g 1 210 * 70 130 trichlorofluoromethane 1.1 ug/g 1 110 70 130 1,1-dichloroethene 0.9 ug/g 1 94 70 130 methylene chloride 1.2 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	1 6 4 3 2	30 30 30
bromomethane 0.8 ug/g 1 79 70 130 chloroethane 2.1 ug/g 1 210 * 70 130 trichlorofluoromethane 1.1 ug/g 1 110 70 130 130 1,1-dichloroethene 0.9 ug/g 1 94 70 130 methylene chloride 1.2 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 104 70 130 chloroform 1.0 ug/g 1 103 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	6 4 3 2	30 30
chloroethane 2.1 ug/g 1 210 * 70 130 trichlorofluoromethane 1.1 ug/g 1 110 70 130 1,1-dichloroethene 0.9 ug/g 1 94 70 130 methylene chloride 1.2 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	4 3 2	30
trichlorofluoromethane 1.1 ug/g 1 110 70 130 1,1-dichloroethene 0.9 ug/g 1 94 70 130 methylene chloride 1.2 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	3 2	
1,1-dichloroethene 0.9 ug/g 1 94 70 130 methylene chloride 1.2 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	2	30
methylene chloride 1.2 ug/g 1 118 70 130 trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130		30
trans-1,2-dichloroethene 1.0 ug/g 1 102 70 130 1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	4	30
1,1-dichloroethane 1.0 ug/g 1 104 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	1	30
cis-1,2-dichloroethene 1.0 ug/g 1 99 70 130 chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	3	30
chloroform 1.0 ug/g 1 103 70 130 1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	1	30
1,1,1-trichloroethane 1.0 ug/g 1 100 70 130 carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	3	30
carbon tetrachloride 0.9 ug/g 1 87 70 130 1,2-dichloroethane 1.2 ug/g 1 118 70 130	2	30
1,2-dichloroethane 1.2 ug/g 1 118 70 130	3	30
	6	30
trichloroethene 1.0 ug/g 1 104 70 130	0	30
	3	30
1,2-dichloropropane 1.1 ug/g 1 110 70 130	0	30
bromodichloromethane 0.9 ug/g 1 94 70 130	6	30
cis-1,3-dichloropropene 1.0 ug/g 1 98 70 130	3	30
trans-1,3-dichloropropene 1.0 ug/g 1 100 70 130	6	30
1,1,2-trichloroethane 1.1 ug/g 1 107 70 130	3	30
tetrachloroethene 0.9 ug/g 1 87 70 130	2	30
dibromochloromethane 0.7 ug/g 1 73 70 130	12	30
chlorobenzene 0.9 ug/g 1 90 70 130	2	30
1,1,1,2-tetrachloroethane 0.8 ug/g 1 84 70 130	2	30
bromoform 0.7 ug/g 1 71 70 130	7	30
1,1,2,2-tetrachloroethane 1.1 ug/g 1 106 70 130	5	30
1,3-dichlorobenzene 0.9 ug/g 1 94 70 130	1	30
1,4-dichlorobenzene 0.9 ug/g 1 95 70 130	2	30
1,2-dichlorobenzene 1.0 ug/g 1 97 70 130	3	30
1,2,4-trichlorobenzene 1.0 ug/g 1 96 70 130	1	30
1,2,3-trichlorobenzene 1.0 ug/g 1 100 70 130	1	30
dibromofluoromethane SUR 96 % 78 114		
toluene-D8 SUR 104 % 88 110		
4-bromofluorobenzene SUR 106 % 86 115		
a,a,a-trifluorotoluene SUR 95 % 70 130		

Abso	lute F	Resou	rce	e	N S					Port	smo 603-	age Ave uth, NH -436-20 urceass	038		1					F-C				QU	ES	T						3	77	7				
Company Na			-				202	P	rolec	Nam	ne: K	Parsarse								J.				A	1	16	il.	R	=0	UE	ST							
	ton Solu	Lins							refal	J.91	culs	uper fund.	Site							rprint						Hardness						Fluoride						
Company Add		1101)		Chindry				- P	rojec	#: C.{	198	10800	2							TPH Fingerprint						☐ Har				2		O Pluc	0	icide				
U3 NIN	Oh Mi	inst, L	60	ist.	411	0	334	IP	rojec	Loca		MH M	A M	E_		0	Į.	ane								Metals [Bacteria MPN			☐ Ignitibility/FP	TCLP Pesticide	hyde			
Report To:	11/1/4		D. [1	1/11	-	,,,,,	4				VT N			Other	O MADEP	3 8021VT	-Diox	st	0		PCB		4		TAL Me			100	Bacter	Ortho P	Bromide	1 lgmit	70	Formaldehyde			
Report To:	e Dello	russo						P	rotoc	ol:	RCF MCF		HDE	S OTH		VOC 8260	7000	□ 1,4-Dioxane	Gases-List	MADE	m	Pest/PCB		Turbidity	A	1			TON [] TOC		00				- For			
Phone #			7	_					epor					S-1 Projets		0 0	only [☐ EPH MADEP	0 60	809 □	OF.		Alkalinity	letals				Bacteria P/A	trite	Sulfate	active	P SVC				
9	03 611	6546			***************************************			$\overline{}$	imits:	-						ES (□ MIBE,	GRO 8015		90	326		M552	Ivity		tant M			NE C	Bact Bact	N + 8		☐ Reactive S-	CI TCLP SVOC	Herbicides			
Invoice to Em	nail: Vu	ncent. D	ello	rus	00	We!	ton	C	uote	#(794	3 -	NH	Reimburse	ment	N N			4.2 NF	□ MEDRO		sticide	38G S	Conductivity	SAL	Pollu			TZ.	S	Nitrate	Chloride				1		-
☐ Hard Copy	Invoice Re			Soi	utio.	2.6	6-0	P	0#_	00	189	7493	7"	m·g		VOC 8260 NHDES	VOC BTEX	MEGRO	VOC 524.2 NH List	-	OABN	81 Pe	neral (8	O TS C	Priority		芸		☐ Phenols	0	0	Reactive CN	☐ TCLP VOC	n Size			Stife (C)
Lab			RS		vatri:	x	Pre	serv	mbally) pr				Sam	pling		1 SX	3 VOC		D VC	☐ TPH ☐ 0R0 8015	☐ 8270ABN ☐ 625 ☐ EDB	☐ 8081 Pesticides	☐ Mineral O&G SM5520F	00		RCRA Metals Priority Pollutant Metals	-IISH:	Dissolved Metals-list	000		Sulfide	□ Nitrite	□ Rec		Grain	1		Compo
Sample	Fi	eld	CONTAINERS										\Box		E.	280	324	VPH MADEP	VOC 524.2	0 0		PCB	0&G 1664	□ 800	D TDS	Metal	Total Metals-list:	wed M		☐ T-Phosphorus	de 🗆			☐ TCLP Metals				10
ID	1	D	NO	WATER	SOLID	OTHER		HNO3	H ₂ SO ₄	NaOH	МеОН	TE I		Щ	SAMPLER	VOC 8260	□ VOC 624	VPH N	VOC 5	표	8270PAH	8082 PCB	086	표	TSS	RCRA	Total 1	Dissol	☐ Ammonia	T-Pho	Cyanide	□ Nitrate	Corrosivity	TOLD	Subcontract:			(9) q
(Lab Use Only)	- X		*	×	So	6		로	H	N	Me	DATE	//	TIME	_		D																		Sub			Grab
34377-0	E OK SO	7-092/15	1		1	_		_	-		X	9/21/	1	1630	O	K	_												L								1	X
	60X 5	一 副			×			-			*	17217		1638	1		_		_																	_		
-02	E13 40	4-092115	1		X				-		-	9/11/11	-	1638	(7)	4X	_			_							-		_							4	_	X
-03	700	Blank	_	\vdash	X	-	_	-	-	-	1	-	+		-	X	-	-		-	-		_	-			_	-	-	-		_				_	+	1
	_			-	-	1	4 /	-			-	-	-		-	-	-		_	-	-	-				-	-	-	-		_	_				-	-	1
					-	1	1/2	4	-			-	+		-		-		-	-			-			-		-	-	-						+	-	+
				-			-				_		+		+	-	-			-			_	-	_	-	-	+	+	-	-	-				+	-	+
			-	\vdash	-	1	1/1						+		+	+	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		_		+	-	+
		-		-			9 [-		_					+	-	+		-	-	-	-	_		-		\vdash	+-	+	+	-	-		-		-	+	+
		-		-	+-		-	+	+-	-				No. of Concession, Name of Street, or other Persons, Name of Street, or ot	+	-	+	-	-		-	-		-		-	\vdash	+	+	+	-	\vdash	-			+	+	+
TAT REQU Priority (24 hr) Expedited (48	· X	See absolution for sample current	e acc	ceptar	nce p	olicy a						RUCTIO		to Vini	cept wes	-de	de	lov	1 St.	• 660	0h	-	+ 1	Or.	ik	. 4	1/1/	e	NI	tun	So	Jut	ion	5.1	Con	7		
Standard (10 Business Da	- Lava	REPORT	ING	INS	TRU	CTIC	NS	54	PDF	(e-m	ail ad	dress)_		the same of the same of the same of			-	Acres against			~+~	+ 277	***	MAKE A		-		-	-		RE	CEIV	/ED	ON	ICE	XY	ES []	NC
*Date Needed	VI 127 114	□ HARD (FAX			-																					MPE				1		0(
		Relinquishe	THE PARTY NAMED IN		-	1	h //	-	A.P	4.1	11	TO THE PARTY OF	Dat	е, ,	_ Tir	me		Rec	eive	d by	r:	71	10	11		_			-		,,,,	NAME OF TAXABLE PARTY.	-	MINE TO	30 750		Time	Consu
CUST	ODY				1	11		L	Sylk	1	111	91	121	15/1	91	2					/	14	1		126								9/2	1/19	,	11	9:12	
RECO		Relinquishe	d by	:	_			_		_	-	-	Dat	e	Tir	me	1	Rec	eive	d by	r: /												, [Date		L	Time	
QSD-01 Revision		Relinquishe	ed by	-/	17	2.			_				Pat	e	. Tir	me	+	Res	aive	d by	vb.at	oora	tony	1		6	4	L	1	_		+		Date			Time	_
COD OT REVISIO	JI 0 1/09/19			1	10	W	le	y				9	120	45	8:3	0		Z	a	d by	u	14	_	1	1	乱	4	1	11	1		4	Ela	2	119	9	Time)
				0															-						-													

Hall, Erik

Subject: FW: KMC- 1,4-Dioxane data and one missing EDD

Attachments: 34520 EnviroData 120315.xlsx; 34520 NH EMD EDD 120315.xlsx

From: Aaron DeWees [mailto:aarond@absoluteresourceassociates.com]

Sent: Thursday, December 03, 2015 9:39 AM

To: Hall, Erik

Subject: RE: KMC- 1,4-Dioxane data and one missing EDD

The EDD is attached.

The reporting limit range for 1,4-dioxane would be between 2.5ug/g and 5ug/g.

Let me know if you need anything else, -Aaron.

P.S. Did you know ARA offers a full range of <u>Indoor Air Quality</u> Services? Call us for any projects related to Asbestos, Mold, Lead, etc. We provide IAQ consulting, remediation planning and in house lab testing for many IAQ contaminants.

Aaron DeWees

Acting Lab Director

Absolute Resource Associates

124 Heritage Avenue #16

Portsmouth, NH 03801

603-436-2001 - office

aarond@absoluteresourceassociates.com

www.absoluteresourceassociates.com

WOSB, EDWOSB, SBA 8(a), SDB, DBE, NELAC, DoD ELAP, ISO/IEC 17025

The information contained in this email and any attachments may be privileged, confidential, and/or proprietary and is intended solely for the use of the person(s) to whom it is addressed. If you are not the intended recipient, any review, reliance, retransmission, dissemination or any other use of the information contained in this email and any attachments is strictly prohibited. If you have received this message in error, please notify the sender immediately by replying to this email and delete it from your data system. Thank you.

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Vinnie DellaRusso PO Number: 0089493

Weston Solutions,Inc.

Job ID: 34278

45 Constitution Ave

Date Received: 9/15/15

Suite 100

Concord, NH 03301

Project: Kearsarge Metallurgical Superfund Site NHDES198708002

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Principal, General Manager

lluer

Date of Approval: 9/25/2015

Total number of pages: 17

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Lab ID: 34278

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
E17S14-091515-1	Solid	9/15/2015 9:45	34278-001	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
CB5-6-091415-1	Water	9/14/2015 8:15	34278-002	
				VOCs 8021 Halocarbons in water by 8260
E17S13-091515-1	Solid	9/15/2015 10:40	34278-003	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E17S11-091515-1	Solid	9/15/2015 11:00	34278-004	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
Trip Blank	Water	9/15/2015 0:00	34278-005	
				VOCs 8021 Halocarbons in water by 8260

Job ID: 34278

Sample#: 34278-002

Sample ID: CB5-6-091415-1

Matrix: Water

Sampled: 9/14/15 8:15

		Reporting		Instr Dil'n		rep		Anal	
Parameter	Result	Limit	Units	Factor	Analyst Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
chloromethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
vinyl chloride	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
bromomethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
chloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
trichlorofluoromethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,1-dichloroethene	U	1	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
methylene chloride	U	5	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
trans-1,2-dichloroethene	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,1-dichloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
cis-1,2-dichloroethene	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
chloroform	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,1,1-trichloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
carbon tetrachloride	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,2-dichloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
trichloroethene	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,2-dichloropropane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
bromodichloromethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
cis-1,3-dichloropropene	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
trans-1,3-dichloropropene	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,1,2-trichloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
tetrachloroethene	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
dibromochloromethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
chlorobenzene	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,1,1,2-tetrachloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
bromoform	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,1,2,2-tetrachloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,3-dichlorobenzene	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,4-dichlorobenzene	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,2-dichlorobenzene	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,2,4-trichlorobenzene	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
1,2,3-trichlorobenzene	U	2	ug/L	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
Surrogate Recovery		Limits							
dibromofluoromethane SUR	90	78-114	%	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
toluene-D8 SUR	101	88-110	%	1	LMM		1502623	9/15/15	22:53 SW5030C8260C
4-bromofluorobenzene SUR	98	86-115	%	1	LMM		1502623	9/15/15	22:53 SW5030C8260C

Job ID: 34278

Sample#: 34278-005 Sample ID: Trip Blank Matrix: Water

Sampled: 9/15/15 0:00

odinpied: 0/10/10	0.00	Reporting		Instr Dil'r	1 I	Prep		Anal	vsis	
Parameter	Result	Limit	Units		Analyst Date	•	Batch	Date		Reference
dichlorodifluoromethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
chloromethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
vinyl chloride	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
bromomethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
chloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
trichlorofluoromethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
1,1-dichloroethene	U	1	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
methylene chloride	U	5	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
trans-1,2-dichloroethene	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
1,1-dichloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
cis-1,2-dichloroethene	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
chloroform	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
1,1,1-trichloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
carbon tetrachloride	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
1,2-dichloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
trichloroethene	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
1,2-dichloropropane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
bromodichloromethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
cis-1,3-dichloropropene	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
trans-1,3-dichloropropene	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
1,1,2-trichloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
tetrachloroethene	1 J	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
dibromochloromethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
chlorobenzene	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
1,1,1,2-tetrachloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
bromoform	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
1,1,2,2-tetrachloroethane	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
1,3-dichlorobenzene	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
1,4-dichlorobenzene	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
1,2-dichlorobenzene	U	2	ug/L	1	LMM		1502623			SW5030C8260C
1,2,4-trichlorobenzene	U	2	ug/L	1	LMM		1502623	9/15/15		SW5030C8260C
1,2,3-trichlorobenzene	U	2	ug/L	1	LMM		1502623	9/15/15	16:00	SW5030C8260C
Surrogate Recovery	_	Limits								
dibromofluoromethane SUR	95	78-114	%	1	LMM		1502623	9/15/15		SW5030C8260C
toluene-D8 SUR	106	88-110	%	1	LMM		1502623			SW5030C8260C
4-bromofluorobenzene SUR	97	86-115	%	1	LMM		1502623	9/15/15	16:00	SW5030C8260C

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 34278

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 5 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The MLCS/D8167 did not meet the acceptance criteria for chloroethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Data Qualifiers

U = This compound was analyzed for, but not detected above half the reporting limit.

J = The analytical result was below the instrument calibration range, but above half the reporting limit, regardless of detectability. The reported concentration is an estimate.

- QC Association Table -

Analysis VOCs 8021 Halocarbons SW5030C8260C	QC Number	Field ID	Lab ID	
	1502623	CB5-6-091415-1	34278-002 34278-005	
VOCs 8021 Halocarbons SW5035A8260C		Trip Blank	34278-005	
	8167	E17S14-091515-1	34278-001	
		E17S13-091515-1	34278-003	
		E17S11-091515-1	34278-004	

- QC Report -

Method QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5030C8260C BLK1502623	dichlorodifluoromethane		<	2	ug/L				
	chloromethane		<	2	ug/L				
	vinyl chloride		<	2	ug/L				
	bromomethane		<	2	ug/L				
	chloroethane		<	2	ug/L				
	trichlorofluoromethane		<	2	ug/L				
	1,1-dichloroethene		<	1	ug/L				
	methylene chloride		<	5	ug/L				
	trans-1,2-dichloroethene		<	2	ug/L				
	1,1-dichloroethane		<	2	ug/L				
	cis-1,2-dichloroethene		<	2	ug/L				
	chloroform		<	2	ug/L				
	1,1,1-trichloroethane		<	2	ug/L				
	carbon tetrachloride		<	2	ug/L				
	1,2-dichloroethane		<	2	ug/L				
	trichloroethene		<	2	ug/L				
	1,2-dichloropropane		<	2	ug/L				
	bromodichloromethane		<	0.6	ug/L				
	cis-1,3-dichloropropene		<	2	ug/L				
	trans-1,3-dichloropropene		<	2	ug/L				
	1,1,2-trichloroethane		<	2	ug/L				
	tetrachloroethene		J	2	ug/L				
	dibromochloromethane		<	2	ug/L				
	chlorobenzene		<	2	ug/L				
	1,1,1,2-tetrachloroethane		<	2	ug/L				
	bromoform		<	2	ug/L				
	1,1,2,2-tetrachloroethane		<	2	ug/L				
	1,3-dichlorobenzene		<	2	ug/L				
	1,4-dichlorobenzene		<	2	ug/L				
	1,2-dichlorobenzene		<	2	ug/L				
	1,2,4-trichlorobenzene		<	2	ug/L				
	1,2,3-trichlorobenzene		<	2	ug/L				
	dibromofluoromethane SUR			93	%		78 1	14	
	toluene-D8 SUR			104	%		88 1	10	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits	;	RPD	RPD Limit
SW5030C8260C LCS1502623	dichlorodifluoromethane		20	ug/L	20	100	70	130		
	chloromethane		22	ug/L	20	112	70	130		
	vinyl chloride		22	ug/L	20	109	70	130		
	bromomethane		15	ug/L	20	77	70	130		
	chloroethane		22	ug/L	20	112	70	130		
	trichlorofluoromethane		21	ug/L	20	107	70	130		
	1,1-dichloroethene		20	ug/L	20	98	70	130		
	methylene chloride		21	ug/L	20	105	70	130		
	trans-1,2-dichloroethene		21	ug/L	20	107	70	130		
	1,1-dichloroethane		21	ug/L	20	104	70	130		
	cis-1,2-dichloroethene		20	ug/L	20	98	70	130		
	chloroform		21	ug/L	20	103	70	130		
	1,1,1-trichloroethane		22	ug/L	20	108	70	130		
	carbon tetrachloride		20	ug/L	20	100	70	130		
	1,2-dichloroethane		23	ug/L	20	117	70	130		
	trichloroethene		22	ug/L	20	108	70	130		
	1,2-dichloropropane		22	ug/L	20	109	70	130		
	bromodichloromethane		21	ug/L	20	105	70	130		
	cis-1,3-dichloropropene		20	ug/L	20	102	70	130		
	trans-1,3-dichloropropene		21	ug/L	20	104	70	130		
	1,1,2-trichloroethane		20	ug/L	20	101	70	130		
	tetrachloroethene		19	ug/L	20	96	70	130		
	dibromochloromethane		17	ug/L	20	83	70	130		
	chlorobenzene		18	ug/L	20	90	70	130		
	1,1,1,2-tetrachloroethane		18	ug/L	20	92	70	130		
	bromoform		17	ug/L	20	83	70	130		
	1,1,2,2-tetrachloroethane		23	ug/L	20	115	70	130		
	1,3-dichlorobenzene		19	ug/L	20	95	70	130		
	1,4-dichlorobenzene		19	ug/L	20	95	70	130		
	1,2-dichlorobenzene		19	ug/L	20	96	70	130		
	1,2,4-trichlorobenzene		18	ug/L	20	92	70	130		
	1,2,3-trichlorobenzene		19	ug/L	20	94	70	130		
	dibromofluoromethane SUR		102	%			78	114		
	toluene-D8 SUR		104	%			88	110		
	4-bromofluorobenzene SUR		102	%			86	115		

Method	QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits	<u> </u>	RPD	RP	D Limit
SW5030C8260C	LCSD1502623	dichlorodifluoromethane		20	ug/L	20	102	70	130		2	20
		chloromethane		22	ug/L	20	112	70	130		0	20
		vinyl chloride		22	ug/L	20	109	70	130		0	20
		bromomethane		17	ug/L	20	85	70	130		10	20
		chloroethane		23	ug/L	20	113	70	130		1	20
		trichlorofluoromethane		22	ug/L	20	110	70	130		3	20
		1,1-dichloroethene		20	ug/L	20	99	70	130		1	20
		methylene chloride		21	ug/L	20	105	70	130		0	20
		trans-1,2-dichloroethene		21	ug/L	20	107	70	130		1	20
		1,1-dichloroethane		21	ug/L	20	106	70	130		2	20
		cis-1,2-dichloroethene		20	ug/L	20	101	70	130		3	20
		chloroform		21	ug/L	20	105	70	130		2	20
		1,1,1-trichloroethane		23	ug/L	20	113	70	130		4	20
		carbon tetrachloride		20	ug/L	20	102	70	130		2	20
		1,2-dichloroethane		23	ug/L	20	116	70	130		1	20
		trichloroethene		21	ug/L	20	106	70	130		1	20
		1,2-dichloropropane		22	ug/L	20	110	70	130		1	20
		bromodichloromethane		22	ug/L	20	108	70	130		3	20
		cis-1,3-dichloropropene		21	ug/L	20	106	70	130		3	20
		trans-1,3-dichloropropene		21	ug/L	20	107	70	130		4	20
		1,1,2-trichloroethane		21	ug/L	20	105	70	130		4	20
		tetrachloroethene		18	ug/L	20	91	70	130		5	20
		dibromochloromethane		17	ug/L	20	84	70	130		1	20
		chlorobenzene		18	ug/L	20	88	70	130		3	20
		1,1,1,2-tetrachloroethane		18	ug/L	20	89	70	130		3	20
		bromoform		17	ug/L	20	86	70	130		3	20
		1,1,2,2-tetrachloroethane		22	ug/L	20	112	70	130		3	20
		1,3-dichlorobenzene		19	ug/L	20	93	70	130		2	20
		1,4-dichlorobenzene		18	ug/L	20	92	70	130		3	20
		1,2-dichlorobenzene		19	ug/L	20	95	70	130		1	20
		1,2,4-trichlorobenzene		18	ug/L	20	89	70	130		3	20
		1,2,3-trichlorobenzene		19	ug/L	20	94	70	130		1	20
		dibromofluoromethane SUR		100	%			78	114			
		toluene-D8 SUR		103	%			88	110			
		4-bromofluorobenzene SUR		102	%			86	115			

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5035A8260C	MB8167	dichlorodifluoromethane		<	0.1	ug/g				
		chloromethane		<	0.1	ug/g				
		vinyl chloride		<	0.1	ug/g				
		bromomethane		<	0.2	ug/g				
		chloroethane		<	0.1	ug/g				
		trichlorofluoromethane		<	0.1	ug/g				
		1,1-dichloroethene		<	0.02	ug/g				
		methylene chloride		<	0.2	ug/g				
		trans-1,2-dichloroethene		<	0.1	ug/g				
		1,1-dichloroethane		<	0.1	ug/g				
		cis-1,2-dichloroethene		<	0.1	ug/g				
		chloroform		<	0.1	ug/g				
		1,1,1-trichloroethane		<	0.1	ug/g				
		carbon tetrachloride		<	0.1	ug/g				
		1,2-dichloroethane		<	0.1	ug/g				
		trichloroethene		<	0.1	ug/g				
		1,2-dichloropropane		<	0.1	ug/g				
		bromodichloromethane		<	0.1	ug/g				
		cis-1,3-dichloropropene		<	0.1	ug/g				
		trans-1,3-dichloropropene		<	0.1	ug/g				
		1,1,2-trichloroethane		<	0.1	ug/g				
		tetrachloroethene		<	0.1	ug/g				
		dibromochloromethane		<	0.1	ug/g				
		chlorobenzene		<	0.1	ug/g				
		1,1,1,2-tetrachloroethane		<	0.1	ug/g				
		bromoform		<	0.1	ug/g				
		1,1,2,2-tetrachloroethane		<	0.1	ug/g				
		1,3-dichlorobenzene		<	0.1	ug/g				
		1,4-dichlorobenzene		<	0.1	ug/g				
		1,2-dichlorobenzene		<	0.1	ug/g				
		1,2,4-trichlorobenzene		<	0.1	ug/g				
		1,2,3-trichlorobenzene		<	0.1	ug/g				
		dibromofluoromethane SUR			84	%		78 1	14	
		toluene-D8 SUR			100	%		88 1	10	
		4-bromofluorobenzene SUR			100	%		86 1	15	
		a,a,a-trifluorotoluene SUR			100	%		70 1	30	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits		RPD	RPD Limit
SW5035A8260C MLCS8167	dichlorodifluoromethane		1.0	ug/g	1	97	70	130		
	chloromethane		8.0	ug/g	1	83	70	130		
	vinyl chloride		1.1	ug/g	1	112	70	130		
	bromomethane		1.1	ug/g	1	106	70	130		
	chloroethane		2.1	ug/g	1	208	* 70	130		
	trichlorofluoromethane		1.1	ug/g	1	112	70	130		
	1,1-dichloroethene		1.0	ug/g	1	97	70	130		
	methylene chloride		1.1	ug/g	1	112	70	130		
	trans-1,2-dichloroethene		1.0	ug/g	1	104	70	130		
	1,1-dichloroethane		1.0	ug/g	1	102	70	130		
	cis-1,2-dichloroethene		1.0	ug/g	1	100	70	130		
	chloroform		1.0	ug/g	1	102	70	130		
	1,1,1-trichloroethane		1.0	ug/g	1	104	70	130		
	carbon tetrachloride		0.9	ug/g	1	94	70	130		
	1,2-dichloroethane		1.1	ug/g	1	109	70	130		
	trichloroethene		1.1	ug/g	1	107	70	130		
	1,2-dichloropropane		1.0	ug/g	1	103	70	130		
	bromodichloromethane		1.0	ug/g	1	99	70	130		
	cis-1,3-dichloropropene		1.0	ug/g	1	99	70	130		
	trans-1,3-dichloropropene		1.0	ug/g	1	99	70	130		
	1,1,2-trichloroethane		1.0	ug/g	1	99	70	130		
	tetrachloroethene		1.0	ug/g	1	100	70	130		
	dibromochloromethane		0.8	ug/g	1	83	70	130		
	chlorobenzene		1.0	ug/g	1	96	70	130		
	1,1,1,2-tetrachloroethane		1.0	ug/g	1	99	70	130		
	bromoform		0.8	ug/g	1	81	70	130		
	1,1,2,2-tetrachloroethane		1.1	ug/g	1	109	70	130		
	1,3-dichlorobenzene		1.0	ug/g	1	104	70	130		
	1,4-dichlorobenzene		1.0	ug/g	1	101	70	130		
	1,2-dichlorobenzene		1.0	ug/g	1	102	70	130		
	1,2,4-trichlorobenzene		1.0	ug/g	1	104	70	130		
	1,2,3-trichlorobenzene		1.1	ug/g	1	111	70	130		
	dibromofluoromethane SUR		94	%			78	114		
	toluene-D8 SUR		102	%			88	110		
	4-bromofluorobenzene SUR		101	%			86	115		
	a,a,a-trifluorotoluene SUR		96	%			70	130		

Method QC ID)	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits	-	RPD	RP	D Limit
SW5035A8260C MLCS	SD8167	dichlorodifluoromethane		1.0	ug/g	1	98	70	130		0	30
		chloromethane		0.8	ug/g	1	84	70	130		2	30
		vinyl chloride		1.1	ug/g	1	110	70	130		2	30
		bromomethane		1.1	ug/g	1	110	70	130		5	30
		chloroethane		1.8	ug/g	1	183	70	130		13	30
		trichlorofluoromethane		1.1	ug/g	1	111	70	130		1	30
		1,1-dichloroethene		1.0	ug/g	1	97	70	130		0	30
		methylene chloride		1.1	ug/g	1	108	70	130		4	30
		trans-1,2-dichloroethene		1.0	ug/g	1	104	70	130		0	30
		1,1-dichloroethane		1.0	ug/g	1	101	70	130		2	30
		cis-1,2-dichloroethene		1.0	ug/g	1	98	70	130		2	30
		chloroform		1.0	ug/g	1	102	70	130		0	30
		1,1,1-trichloroethane		1.0	ug/g	1	102	70	130		1	30
		carbon tetrachloride		0.9	ug/g	1	92	70	130		2	30
		1,2-dichloroethane		1.1	ug/g	1	109	70	130		0	30
		trichloroethene		1.0	ug/g	1	101	70	130		6	30
		1,2-dichloropropane		1.0	ug/g	1	103	70	130		0	30
		bromodichloromethane		0.9	ug/g	1	93	70	130		6	30
		cis-1,3-dichloropropene		1.0	ug/g	1	98	70	130		1	30
		trans-1,3-dichloropropene		1.0	ug/g	1	98	70	130		1	30
		1,1,2-trichloroethane		1.0	ug/g	1	98	70	130		0	30
		tetrachloroethene		1.0	ug/g	1	99	70	130		2	30
		dibromochloromethane		0.8	ug/g	1	80	70	130		3	30
		chlorobenzene		1.0	ug/g	1	96	70	130		0	30
		1,1,1,2-tetrachloroethane		0.9	ug/g	1	94	70	130		6	30
		bromoform		0.8	ug/g	1	79	70	130		3	30
		1,1,2,2-tetrachloroethane		1.1	ug/g	1	106	70	130		2	30
		1,3-dichlorobenzene		1.0	ug/g	1	98	70	130		6	30
		1,4-dichlorobenzene		1.0	ug/g	1	99	70	130		3	30
		1,2-dichlorobenzene		1.0	ug/g	1	99	70	130		4	30
		1,2,4-trichlorobenzene		1.0	ug/g	1	104	70	130		0	30
		1,2,3-trichlorobenzene		1.1	ug/g	1	105	70	130		5	30
		$\ dibromofluoromethane \ SUR$		97	%			78	114			
		toluene-D8 SUR		104	%			88	110			
		4-bromofluorobenzene SUR		102	%			86	115			
		a,a,a-trifluorotoluene SUR		97	%			70	130			

Abso	lute F	Resou	rce		X					Ports	603-	ige Aver uth, NH 436-20	038	301					IN- AN									RI	0		3	,4	2	78	3					
		socia	tes		2	_		3	abso	luter	esou	rceass	ocia	tes.co	m	-				1				- 1	AN	AL	YE	IS	RI	0	UE	ST								1
Company Na	m50/U.	tions						Pr	oject	Nam UDa #:	e: Ke	SIR TO	Me	Halle	3,4	1					☐ TPH Fingerprint	1					Hardness						□ Fluoride		9	1	Ī	1	T	
Company Add	dress:			,,	0	330	1,,		4	11/0	El la	10 10	Jg	DC							PHF						0	İ			MPN			ItyFP	esticio	9				
Heport To:	1th M	hinstn	Cer	(0	100	rel.	UIT	Pr	oject	Loca	tiona	VT N	A M	E _	Othe	er	MADEP	3021V	Jioxane				89				Metals			T0C	cteria	d C	□ Bromide	gnitibil	CLPP	aldehy				
Vinnie	DellaR	USO						Pr	otoco	ol:	RCF	RA SE	OWA	NP OT	DES		VOC 8260 MADEP	☐ VOC 8021VT	☐ 1,4-Dioxane	Gases-List:	H MADEP	88	Best/PC		Turbidity	uity	S CITAL			OT IN TOT IN TOC	☐ Bacteria P/A ☐ Bacteria MPN	☐ Nitrate + Nitrite ☐ Ortho P		☐ Reactive CN ☐ Reactive S- ☐ Ignitibility/FP	☐ TCLP SVOC ☐ TCLP Pesticide	Herbicides Formaldehyde				
Phone #:	13600	546	7					Li	eporti mits:	ing	QAP EPA	DW Ot	W-1 her:	S-1	+90	nl		☐ MtBE, only	☐ GRO 8015	List 🗆 G	0 0	26 D EDB	S [] 608	45520F	<u>₽</u>	☐ Alkalinity	Priority Pollutant Metals			O NT D	Bacteria	+ Nitrite	☐ Chloride ☐ Sulfate	Reactive	TCLP SA	erbicides				
Invoice to Em	nail: bit C	ent. Dell	OR	350	Pw	UNU	Solut	Q Q	uote	# 60	140	3	NH Pric	Reimbur	seme	ent	TEL VOC 8260 NHDES			☐ VOC 524.2 NH List ☐	☐ MEDR	3N □ 625	Pestlcide	☐ Mineral 0&G SM5520F	Conductivity	SVT [rity Pollutz			O TKN		□ Nitrate	Chloride	e CN	☐ TCLP VOC ☐				4	(0)
☐ Hard Copy	Invoice Re	quired	_				-	TP(0#5	Di	444	3			NAME OF THE	_	/OC 8	☐ VOC BTEX	□ MEGRO	VOC 5	015	☐ 8270ABN	3081	Minera		ST [D Prior		-list:		□ Phenols	1 1	0	leactiv	TCLP	Grain Size	1		1	Composite (C)
Lab			ERS	R	Matrix	2	Pre	serva	ation	Met	hod		Sam	pling	_					2	3RO 80				BOB		als 🗆	Ils-list:	Metals	0		□ Suffide	☐ Mitrite		60				0	5
Sample ID (Lab Usa Cniy)	I	eld D	CONTAINERS	WATER	SOLID	ОТНЕЯ	HCI	HNO3	H ₂ SO ₄	NaOH	MeOH	DATE		TIME		SAMPLER	TO-VOC 8260	☐ VOC 624	☐ VPH MADEP	☐ VOC 524.2	☐ TPH ☐ DRO 8015 ☐ MEDRO ☐ EPH MADEP	□ 8270PAH	☐ 8082 PCB ☐ 8081 PestIcides ☐ 608 Pest/PCB	086	표	SQT [] SST []	RCRA Metals	☐ Total Metals-list:	☐ Dissolved Metals-list:	☐ Ammonia ☐ COD	T-Phosphorus	□ Cyanide	□ Nitrate □	☐ Corrosivity	☐ TCLP Metals	Subconfract:		İ	100	Grab (G) or
2417811	FIASIL	1-06000	L	>	×	0	-			2	×	9/15/	1	094		-	-	_	-							-										0,	-	+	+	
202	CBG-60-	0914195-1	2	X			V					9/11/1	5	0815	- 8	514													-								1		\top	
24861 -02 -04 -04	E17513	-09/5/5-1	1		X		1				X	9/15/	1	10 40		EH																								
-04	E/7511	-091515-	1		×							4/15/	3			SIF																								
-05	trip b	lank											1		1																									_
		40	_		_		_					-	_		+	_	_	_				_	_		_		_		_	_								_	+	_
			-	-		-		-		-		-	\dashv		-	-	-	_		_	_	_	_	-	-	_	_		-				\vdash	Ш				-	+	_
			-	-	-	-						-	-		+	-						-		-	-		-			-				H				+	-	-
				\vdash			-		-	-	-	1	+		+													-		-								+	+	-
													_																				H						+	
TAT REQ	UESTED	See absolu	teres	ource	assoc	ciates	.com	SP	ECI/	AL IN	STF	RUCTIO	NS	A A MARKET AND ASSESSMENT		arrad	Lecture	WEOL	the same of		and the same of						-		_	10.0										
Priority (24 hr Expedited (48		for sampl			ation		and	E	Mail	PI)F	Resul	ts	to. N	In	72	D.	16	S.K.	60	LA	ork.	SN	1	- 1	0		16	Cl	h	411	0	610	Ha	2 0	La	1.	1		
Standard		REPORT	INIC	INIC	TDII	CTIC	NIC	_	DDE	la m	ail ad	Idroce)	Fr	V.H	71	P	w	21 1	m C	Vit	-0	5	100	200	7,)	w	4	1		1-1	1	BEC	CEIV	/FD	ON	ICE	673	YES	7 N	ıc
*Date Needed	9/16	□ HARD						FAX (an au	luiess)		- 011		_		w j	- 21	U	101	y	C. 00	-14							_		MPE				2	5		٥٥
		Relinquishe	_		_			AA (i AA#)				Dat	θ /		Tim	0	T	Reet	ive	d by	1	-/	1	J.	1)	11	^	1		T]] 1	Date	: 0	_	Tim	ne .	
CUST	ODY	4	11			1	_	_				9/1	1/	1	14	1		1	1	2	M	no	M	1	1)	K	1	1)	N.	2		_		_	Date 15		止	-	15	2
REC		Relinguish	2 1	. A		1	Sil	11	1	1)	11	Dat	151	14	Tim	0		Rece	eive	а бу		_												Date			Tim	16	
QSD-01 Revision		Relinquish			-	//	-u			0		1	Dat	e		Tim	-	\dagger	Rece	eive	d by	Less	orat	ory:		1	7		1		0		1	9	Date 15/	IIF	1	Tim	ne /	-/
1														_							(X	2	00	26	5	2		2	16	R	_	_	1	17/	19	1/	3.	10	1

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Vinnie DellaRusso PO Number: 0089493

Weston Solutions,Inc.

Job ID: 34364
45 Constitution Ave

Date Received: 9/19/15

Suite 100

Concord, NH 03301

Project: Kearsarge Metallurgical Superfund Site NHDES198708002

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Principal, General Manager

lluer

Date of Approval: 9/25/2015

Total number of pages: 28

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Lab ID: 34364

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CB5-6-091915-1	Water	9/19/2015 9:17	34364-002	
500004 004045 4	0 " 1	0/40/0045 0 05	0.400.4.000	VOCs 8021 Halocarbons in water by 8260
E02S04-091915-1	Solid	9/19/2015 8:05	34364-003	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E04S04-091915-1	Solid	9/19/2015 8:10	34364-004	,
				Percent Dry Matter for Sample Calc by SM2540B,G
F0F004 00404F 4	المانية	0/40/0045 0:40	24204 005	VOCs 8021 Halocarbons in solid by 8260
E05S04-091915-1	Solid	9/19/2015 8:13	34364-005	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E07S04-091915-1	Solid	9/19/2015 8:17	34364-006	,
				Percent Dry Matter for Sample Calc by SM2540B,G
E40004 004045 4	0 - 1: -1	0/40/0045 0:00	0.4004.007	VOCs 8021 Halocarbons in solid by 8260
E10S04-091915-1	Solid	9/19/2015 8:20	34364-007	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E11S04-091915-1	Solid	9/19/2015 8:25	34364-008	·
				Percent Dry Matter for Sample Calc by SM2540B,G
T12C04 00101E 1	Calid	0/40/2045 0.20	24264 000	VOCs 8021 Halocarbons in solid by 8260
E13S04-091915-1	Solid	9/19/2015 8:30	34364-009	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E14S04-091915-1	Solid	9/19/2015 8:33	34364-010	
				Percent Dry Matter for Sample Calc by SM2540B,G
E15S04-091915-1	Solid	9/19/2015 8:38	34364-011	VOCs 8021 Halocarbons in solid by 8260
L13304-091913-1	Solid	9/19/2013 0.30	34304-011	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E03S05-091915-1	Solid	9/19/2015 8:42	34364-012	
				Percent Dry Matter for Sample Calc by SM2540B,G
E03S05-091915-2	Solid	9/19/2015 8:42	34364-013	VOCs 8021 Halocarbons in solid by 8260
200000 001010 2	Colla	0/10/2010 0.12	01001 010	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
E04S05-091915-1	Solid	9/19/2015 8:51	34364-014	
				Percent Dry Matter for Sample Calc by SM2540B,G
E05S05-091915-1	Solid	9/19/2015 8:55	34364-015	VOCs 8021 Halocarbons in solid by 8260
	20114	3, 13, 23 13 3.33	3.331.010	Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
Trip Blank	Water	9/19/2015 0:00	34364-016	V00 2004111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				VOCs 8021 Halocarbons in water by 8260

Job ID: 34364

Sample#: 34364-002

Sample ID: CB5-6-091915-1

Matrix: Water

Sampled: 9/19/15 9:17

F		Reporting		Instr Dil'r	1	Prep		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst D	ate Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
chloromethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
vinyl chloride	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
bromomethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
chloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
trichlorofluoromethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,1-dichloroethene	U	1	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
methylene chloride	U	5	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
trans-1,2-dichloroethene	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,1-dichloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
cis-1,2-dichloroethene	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
chloroform	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,1,1-trichloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
carbon tetrachloride	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,2-dichloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
trichloroethene	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,2-dichloropropane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
bromodichloromethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
cis-1,3-dichloropropene	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
trans-1,3-dichloropropene	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,1,2-trichloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
tetrachloroethene	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
dibromochloromethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
chlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,1,1,2-tetrachloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
bromoform	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,1,2,2-tetrachloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,3-dichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,4-dichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,2-dichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,2,4-trichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
1,2,3-trichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	14:22 SW5030C8260C
Surrogate Recovery		Limits							
dibromofluoromethane SUR	93	78-114	%	1	LMM		1502690		14:22 SW5030C8260C
toluene-D8 SUR	94	88-110	%	1	LMM		1502690		14:22 SW5030C8260C
4-bromofluorobenzene SUR	99	86-115	%	1	LMM		1502690	9/19/15	14:22 SW5030C8260C

Job ID: 34364

Sample#: 34364-016 Sample ID: Trip Blank Matrix: Water

Sampled: 9/19/15 0:00

•		Reporting		Instr Dil'n		Prep		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
chloromethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
vinyl chloride	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
bromomethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
chloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
trichlorofluoromethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,1-dichloroethene	U	1	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
methylene chloride	U	5	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
trans-1,2-dichloroethene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,1-dichloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
cis-1,2-dichloroethene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
chloroform	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,1,1-trichloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
carbon tetrachloride	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,2-dichloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
trichloroethene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,2-dichloropropane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
bromodichloromethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
cis-1,3-dichloropropene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
trans-1,3-dichloropropene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,1,2-trichloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
tetrachloroethene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
dibromochloromethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
chlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,1,1,2-tetrachloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
bromoform	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,1,2,2-tetrachloroethane	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,3-dichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,4-dichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,2-dichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,2,4-trichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
1,2,3-trichlorobenzene	U	2	ug/L	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
Surrogate Recovery		Limits							
dibromofluoromethane SUR	94	78-114	%	1	LMM		1502690		13:53 SW5030C8260C
toluene-D8 SUR	98	88-110	%	1	LMM		1502690	9/19/15	13:53 SW5030C8260C
4-bromofluorobenzene SUR	92	86-115	%	1	LMM		1502690	9/19/15	13:53 SW5030C8260C

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 34364

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 2 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The relative percent difference between the LCS and LCSD1502690 was outside the acceptance criteria for chloroethane. The percent recovery for this analyte in each QC parameter was within the acceptance criteria. No impact to the data suspected.

VOC: The MLCS/D8195 did not meet the acceptance criteria for chloroethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Data Qualifiers

U = This compound was analyzed for, but not detected above half the reporting limit.

J =The analytical result was below the instrument calibration range, but above half the reporting limit, regardless of detectability. The reported concentration is an estimate.

- QC Association Table -

Analysis	QC Number	Field ID	Lab ID	
VOCs 8021 Halocarbons SW5030C8260C				
	1502690	CB5-6-091915-1	34364-002	
		Trip Blank	34364-016	
VOCs 8021 Halocarbons SW5035A8260C				
	8195	E02S04-091915-1	34364-003	
		E04S04-091915-1	34364-004	
		E05S04-091915-1	34364-005	
		E07S04-091915-1	34364-006	
		E10S04-091915-1	34364-007	
		E11S04-091915-1	34364-008	
		E13S04-091915-1	34364-009	
		E14S04-091915-1	34364-010	
		E15S04-091915-1	34364-011	
		E03S05-091915-1	34364-012	
		E03S05-091915-2	34364-013	
		E04S05-091915-1	34364-014	
		E05S05-091915-1	34364-015	

- QC Report -

		-,								
Method QC ID	Parameter	Associated Sample		Result	Units Amt A	dded	%R	Limits	RPD	RPD Limit
SW5030C8260C BLK1502690	dichlorodifluoromethane		<	2	ug/L					
	chloromethane		<	2	ug/L					
	vinyl chloride		<	2	ug/L					
	bromomethane		<	2	ug/L					
	chloroethane		<	2	ug/L					
	trichlorofluoromethane		<	2	ug/L					
	1,1-dichloroethene		<	1	ug/L					
	methylene chloride		<	5	ug/L					
	trans-1,2-dichloroethene		<	2	ug/L					
	1,1-dichloroethane		<	2	ug/L					
	cis-1,2-dichloroethene		<	2	ug/L					
	chloroform		<	2	ug/L					
	1,1,1-trichloroethane		<	2	ug/L					
	carbon tetrachloride		<	2	ug/L					
	1,2-dichloroethane		<	2	ug/L					
	trichloroethene		<	2	ug/L					
	1,2-dichloropropane		<	2	ug/L					
	bromodichloromethane		<	0.6	ug/L					
	cis-1,3-dichloropropene		<	2	ug/L					
	trans-1,3-dichloropropene		<	2	ug/L					
	1,1,2-trichloroethane		<	2	ug/L					
	tetrachloroethene		<	2	ug/L					
	dibromochloromethane		<	2	ug/L					
	chlorobenzene		<	2	ug/L					
	1,1,1,2-tetrachloroethane		<	2	ug/L					
	bromoform		<	2	ug/L					
	1,1,2,2-tetrachloroethane		<	2	ug/L					
	1,3-dichlorobenzene		<	2	ug/L					
	1,4-dichlorobenzene		<	2	ug/L					
	1,2-dichlorobenzene		<	2	ug/L					
	1,2,4-trichlorobenzene		<	2	ug/L					
	1,2,3-trichlorobenzene		<	2	ug/L					
	dibromofluoromethane SUR			92	%			78	114	
	toluene-D8 SUR			98	%			88	110	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limit	s	RPD	RPD Limit
SW5030C8260C LCS1502690	dichlorodifluoromethane		19	ug/L	20	93	70	130		
	chloromethane		24	ug/L	20	118	70	130		
	vinyl chloride		23	ug/L	20	113	70	130		
	bromomethane		23	ug/L	20	113	70	130		
	chloroethane		25	ug/L	20	126	70	130		
	trichlorofluoromethane		20	ug/L	20	101	70	130		
	1,1-dichloroethene		17	ug/L	20	87	70	130		
	methylene chloride		19	ug/L	20	97	70	130		
	trans-1,2-dichloroethene		20	ug/L	20	98	70	130		
	1,1-dichloroethane		20	ug/L	20	101	70	130		
	cis-1,2-dichloroethene		18	ug/L	20	89	70	130		
	chloroform		19	ug/L	20	96	70	130		
	1,1,1-trichloroethane		20	ug/L	20	98	70	130		
	carbon tetrachloride		18	ug/L	20	91	70	130		
	1,2-dichloroethane		22	ug/L	20	111	70	130		
	trichloroethene		21	ug/L	20	103	70	130		
	1,2-dichloropropane		21	ug/L	20	105	70	130		
	bromodichloromethane		18	ug/L	20	91	70	130		
	cis-1,3-dichloropropene		19	ug/L	20	93	70	130		
	trans-1,3-dichloropropene		19	ug/L	20	94	70	130		
	1,1,2-trichloroethane		19	ug/L	20	93	70	130		
	tetrachloroethene		19	ug/L	20	95	70	130		
	dibromochloromethane		16	ug/L	20	80	70	130		
	chlorobenzene		18	ug/L	20	91	70	130		
	1,1,1,2-tetrachloroethane		18	ug/L	20	89	70	130		
	bromoform		15	ug/L	20	77	70	130		
	1,1,2,2-tetrachloroethane		23	ug/L	20	114	70	130		
	1,3-dichlorobenzene		21	ug/L	20	103	70	130		
	1,4-dichlorobenzene		20	ug/L	20	102	70	130		
	1,2-dichlorobenzene		20	ug/L	20	102	70	130		
	1,2,4-trichlorobenzene		19	ug/L	20	97	70	130		
	1,2,3-trichlorobenzene		20	ug/L	20	99	70	130		
	dibromofluoromethane SUR		98	%			78	114		
	toluene-D8 SUR		102	%			88	110		
	4-bromofluorobenzene SUR		97	%			86	115		

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits		RPD	RPI) Limit
SW5030C8260C LCSD1502690	dichlorodifluoromethane		17	ug/L	20	87	70	130		6	20
	chloromethane		21	ug/L	20	107	70	130		9	20
	vinyl chloride		21	ug/L	20	103	70	130		9	20
	bromomethane		21	ug/L	20	105	70	130		7	20
	chloroethane		20	ug/L	20	100	70	130		23 *	20
	trichlorofluoromethane		20	ug/L	20	98	70	130		3	20
	1,1-dichloroethene		17	ug/L	20	86	70	130		2	20
	methylene chloride		19	ug/L	20	94	70	130		4	20
	trans-1,2-dichloroethene		19	ug/L	20	94	70	130		3	20
	1,1-dichloroethane		20	ug/L	20	98	70	130		3	20
	cis-1,2-dichloroethene		17	ug/L	20	85	70	130		5	20
	chloroform		18	ug/L	20	92	70	130		4	20
	1,1,1-trichloroethane		19	ug/L	20	97	70	130		1	20
	carbon tetrachloride		18	ug/L	20	90	70	130		1	20
	1,2-dichloroethane		21	ug/L	20	104	70	130		7	20
	trichloroethene		21	ug/L	20	103	70	130		1	20
	1,2-dichloropropane		20	ug/L	20	98	70	130		7	20
	bromodichloromethane		18	ug/L	20	92	70	130		1	20
	cis-1,3-dichloropropene		18	ug/L	20	90	70	130		3	20
	trans-1,3-dichloropropene		18	ug/L	20	91	70	130		4	20
	1,1,2-trichloroethane		18	ug/L	20	91	70	130		1	20
	tetrachloroethene		20	ug/L	20	101	70	130		6	20
	dibromochloromethane		18	ug/L	20	88	70	130		10	20
	chlorobenzene		19	ug/L	20	96	70	130		6	20
	1,1,1,2-tetrachloroethane		20	ug/L	20	98	70	130		9	20
	bromoform		17	ug/L	20	86	70	130		11	20
	1,1,2,2-tetrachloroethane		21	ug/L	20	105	70	130		8	20
	1,3-dichlorobenzene		20	ug/L	20	102	70	130		1	20
	1,4-dichlorobenzene		20	ug/L	20	100	70	130		2	20
	1,2-dichlorobenzene		20	ug/L	20	100	70	130		2	20
	1,2,4-trichlorobenzene		19	ug/L	20	95	70	130		1	20
	1,2,3-trichlorobenzene		20	ug/L	20	98	70	130		1	20
	dibromofluoromethane SUR		96	%			78	114			
	toluene-D8 SUR		96	%			88	110			
	4-bromofluorobenzene SUR		103	%			86	115			

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5035A8260C	MB8195	dichlorodifluoromethane		<	0.1	ug/g				
		chloromethane		<	0.1	ug/g				
		vinyl chloride		<	0.1	ug/g				
		bromomethane		<	0.2	ug/g				
		chloroethane		<	0.1	ug/g				
		trichlorofluoromethane		<	0.1	ug/g				
		1,1-dichloroethene		<	0.02	ug/g				
		methylene chloride		<	0.2	ug/g				
		trans-1,2-dichloroethene		<	0.1	ug/g				
		1,1-dichloroethane		<	0.1	ug/g				
		cis-1,2-dichloroethene		<	0.1	ug/g				
		chloroform		<	0.1	ug/g				
		1,1,1-trichloroethane		<	0.1	ug/g				
		carbon tetrachloride		<	0.1	ug/g				
		1,2-dichloroethane		<	0.1	ug/g				
		trichloroethene		<	0.1	ug/g				
		1,2-dichloropropane		<	0.1	ug/g				
		bromodichloromethane		<	0.1	ug/g				
		cis-1,3-dichloropropene		<	0.1	ug/g				
		trans-1,3-dichloropropene		<	0.1	ug/g				
		1,1,2-trichloroethane		<	0.1	ug/g				
		tetrachloroethene		<	0.1	ug/g				
		dibromochloromethane		<	0.1	ug/g				
		chlorobenzene		<	0.1	ug/g				
		1,1,1,2-tetrachloroethane		<	0.1	ug/g				
		bromoform		<	0.1	ug/g				
		1,1,2,2-tetrachloroethane		<	0.1	ug/g				
		1,3-dichlorobenzene		<	0.1	ug/g				
		1,4-dichlorobenzene		<	0.1	ug/g				
		1,2-dichlorobenzene		<	0.1	ug/g				
		1,2,4-trichlorobenzene		<	0.1	ug/g				
		1,2,3-trichlorobenzene		<	0.1	ug/g				
		dibromofluoromethane SUR			79	%		78 1	14	
		toluene-D8 SUR			97	%		88 1	10	
		4-bromofluorobenzene SUR			97	%		86 1	15	
		a,a,a-trifluorotoluene SUR			85	%		70 1	30	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits	6	RPD	RPD Limit
SW5035A8260C MLCS8195	dichlorodifluoromethane		0.8	ug/g	1	75	70	130		
	chloromethane		0.8	ug/g	1	78	70	130		
	vinyl chloride		1.1	ug/g	1	113	70	130		
	bromomethane		1.0	ug/g	1	104	70	130		
	chloroethane		2.2	ug/g	1	217	* 70	130		
	trichlorofluoromethane		1.0	ug/g	1	104	70	130		
	1,1-dichloroethene		0.9	ug/g	1	91	70	130		
	methylene chloride		1.1	ug/g	1	107	70	130		
	trans-1,2-dichloroethene		1.0	ug/g	1	96	70	130		
	1,1-dichloroethane		1.0	ug/g	1	102	70	130		
	cis-1,2-dichloroethene		0.9	ug/g	1	93	70	130		
	chloroform		1.0	ug/g	1	99	70	130		
	1,1,1-trichloroethane		1.0	ug/g	1	98	70	130		
	carbon tetrachloride		0.9	ug/g	1	86	70	130		
	1,2-dichloroethane		1.1	ug/g	1	112	70	130		
	trichloroethene		1.0	ug/g	1	104	70	130		
	1,2-dichloropropane		1.1	ug/g	1	107	70	130		
	bromodichloromethane		0.9	ug/g	1	89	70	130		
	cis-1,3-dichloropropene		0.9	ug/g	1	94	70	130		
	trans-1,3-dichloropropene		0.9	ug/g	1	93	70	130		
	1,1,2-trichloroethane		1.0	ug/g	1	98	70	130		
	tetrachloroethene		0.9	ug/g	1	95	70	130		
	dibromochloromethane		0.7	ug/g	1	74	70	130		
	chlorobenzene		0.9	ug/g	1	95	70	130		
	1,1,1,2-tetrachloroethane		0.9	ug/g	1	88	70	130		
	bromoform		0.7	ug/g	1	72	70	130		
	1,1,2,2-tetrachloroethane		1.2	ug/g	1	116	70	130		
	1,3-dichlorobenzene		1.0	ug/g	1	103	70	130		
	1,4-dichlorobenzene		1.0	ug/g	1	104	70	130		
	1,2-dichlorobenzene		1.0	ug/g	1	103	70	130		
	1,2,4-trichlorobenzene		1.1	ug/g	1	107	70	130		
	1,2,3-trichlorobenzene		1.1	ug/g	1	112	70	130		
	dibromofluoromethane SUR		94	%			78	114		
	toluene-D8 SUR		97	%			88	110		
	4-bromofluorobenzene SUR		102	%			86	115		
	a,a,a-trifluorotoluene SUR		86	%			70	130		

		Parameter	Associated Sample	Result	Units	Amt Added	%R	Limits	1	RPD	RP	D Limit
SW5035A8260C MLC	SD8195	dichlorodifluoromethane		0.8	ug/g	1	76	70	130		0	30
		chloromethane		0.8	ug/g	1	75	70	130		4	30
		vinyl chloride		1.1	ug/g	1	111	70	130		2	30
		bromomethane		1.0	ug/g	1	100	70	130		4	30
		chloroethane		2.3	ug/g	1	228	* 70	130		5	30
		trichlorofluoromethane		1.0	ug/g	1	105	70	130		1	30
		1,1-dichloroethene		0.9	ug/g	1	90	70	130		1	30
		methylene chloride		1.1	ug/g	1	106	70	130		1	30
		trans-1,2-dichloroethene		1.0	ug/g	1	96	70	130		1	30
		1,1-dichloroethane		1.0	ug/g	1	99	70	130		2	30
		cis-1,2-dichloroethene		0.9	ug/g	1	94	70	130		1	30
		chloroform		1.0	ug/g	1	96	70	130		4	30
		1,1,1-trichloroethane		1.0	ug/g	1	98	70	130		1	30
		carbon tetrachloride		0.8	ug/g	1	85	70	130		1	30
		1,2-dichloroethane		1.1	ug/g	1	110	70	130		2	30
		trichloroethene		1.0	ug/g	1	102	70	130		2	30
		1,2-dichloropropane		1.0	ug/g	1	103	70	130		4	30
		bromodichloromethane		0.9	ug/g	1	88	70	130		1	30
		cis-1,3-dichloropropene		0.9	ug/g	1	94	70	130		0	30
		trans-1,3-dichloropropene		1.0	ug/g	1	96	70	130		3	30
		1,1,2-trichloroethane		1.0	ug/g	1	98	70	130		0	30
		tetrachloroethene		1.0	ug/g	1	102	70	130		7	30
		dibromochloromethane		0.8	ug/g	1	80	70	130		8	30
		chlorobenzene		1.0	ug/g	1	103	70	130		8	30
		1,1,1,2-tetrachloroethane		1.0	ug/g	1	100	70	130		12	30
		bromoform		0.8	ug/g	1	79	70	130		8	30
		1,1,2,2-tetrachloroethane		1.2	ug/g	1	122	70	130		5	30
		1,3-dichlorobenzene		1.1	ug/g	1	106	70	130		3	30
		1,4-dichlorobenzene		1.1	ug/g	1	107	70	130		3	30
		1,2-dichlorobenzene		1.1	ug/g	1	106	70	130		3	30
		1,2,4-trichlorobenzene		1.1	ug/g	1	109	70	130		2	30
		1,2,3-trichlorobenzene		1.1	ug/g	1	113	70	130		1	30
		dibromofluoromethane SUR		90	%			78	114			
		toluene-D8 SUR		97	%			88	110			
		4-bromofluorobenzene SUR		105	%			86	115			
		a,a,a-trifluorotoluene SUR		89	%			70	130			

	QSD-01 Revision 01/09/15	RECORD	CUSTODY	*Date Needed 4/2		(24 hr)* ed (48 hr)*	TAT REQUESTED	-11 E15S	Shee or	-59 E13 S		-67 E1050		S503 Pe		-03 E02<	-න ces	34364-01-1-12	Lab Sample ID (Lab uso Only)	Absolute Resour a s s o c i a t Company Name: Weston Solution, Inc Company Address: 43 North Main St. Co Report To: Vinnie Dells Russo Phone #: Coll 676 5467 Invoice to Email: Vincent della	
	15 Remaished by:	Relingatished by:	,	HARD COPY REQUIRED	BEPORTING INSTRUCTIONS		See absoluteresourceassociates.com			_	1 ScH-091915=1 1 X	1 -318160-h0501	E07504-091915-11 1		EDYSOU-COIGIG 1 X	E02504-0919151 1 X	CB5-6-091915-1 1 X	からいること	# CONTAINERS WATER SOLID	ne: Solution: Inc. Pells Russ Dells Russ Dells Russ Sign Concord, NH 63301 The State of the suspense westerness Sign Control of the suspense westerness	
		D		□ F _A	-	n ye il narity	ociates.com SPECIAL										×		OTHER HCI HNO ₃ H ₂ SO ₄ NaOH MeOH		12
	Date	9/19/	09/19/		XPDF (e-mail address) VINCEST.	POF to	INSTRUCTION	× Pinding	X 00 19 15	x allelis	X 9/6/15	Albilia A	X 9(19)	X alializ	2113113	X Blight	2119116	*	DATE	S 1987601 S 1987601 S 1987601 S 1987601 S 1987601 S 1987601 S 1987601 S 1987601	124 Heritage Avenue #16
	te Time	1/5 / 1200	1/1/1/1/1		Went date russes	Vincent de la visça		0638 AB X	0853 ARS V	0830 PG X	-0825 AB V	V BACSBO	X # £130	0813 AS X		2080 X	CE-CA-AB X	091 = 1 ×	TIME SAMPLER	S.com S.com Other NPDES OTHER S-1 S-1 S-1 S-1 S-1 S-1 S-1 S-1 S-1 S-1	J , * ===
	Received by Labo	rpeceived by.			(g)	wes trasdurions.		are the control of th										- not reid to	☐ TPH ☐ DRO 8	EGRO GRO 8015 1,4-Dioxane C 524.2 NH List Gases-List:	NOF
0	Laboratory: Willow	3	Om	1	wester solven are con	ations, cam and													□ 0&G 1664 □ □ pH □ BOD □ TSS □ TDS □	neral 0&G SM5520F Conductivity Turbidity TS TVS Alkalinity Priority Pollutant Metals TAL Metals Hardness	CUSTODY RECORD VSIS REQUEST
						id en k halle	1.												☐ Dissolved Metal ☐ Ammonia ☐ C ☐ T-Phosphorus ☐ Cyanide ☐ Su	St: Chloride Sulfate Bromide Fluoride Chloride Reactive S- Ignitibility/FP	
	9/19/15	Dano	9/19/15	TEMPERATURE	RECEIVED ON ICE	Mestansblutions. Com													☐ Corrosivity ☐ ☐ TCLP Metals ☐	active CN	72
	1000		Time	روا	YES NO	Jans, Can													Grab (G) or Co	osite (C)	

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Vinnie DellaRusso PO Number: 0089493

Weston Solutions,Inc.

Job ID: 34520

45 Constitution Ave

Date Received: 10/5/15

Suite 100

Concord, NH 03301

Project: Kearsarge Metallurgical Superfund Site NHDES198708002

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

lluer

Principal, General Manager Total number of pages: 17

Date of Approval: 10/15/2015

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Lab ID: 34520

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CB5-6-100215-1	Water	10/2/2015 14:00	34520-001	
				VOCs 8021 Halocarbons in water by 8260
BF-100215-1-1	Solid	10/2/2015 12:15	34520-002	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
BF-100215-2-1	Solid	10/2/2015 13:10	34520-003	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
Trip Blank	Solid	10/2/2015 0:00	34520-004	•
·				VOCs 8021 Halocarbons in solid by 8260
Trip Blank	Water	10/2/2015 0:00	34520-005	•
•				VOCs 8021 Halocarbons in water by 8260

Job ID: 34520

Sample#: 34520-001

Sample ID: CB5-6-100215-1

Matrix: Water

Sampled: 10/2/15 14:00

F		Reporting		Instr Dil'r	1	Prep		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst Da	ate Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
chloromethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
vinyl chloride	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
bromomethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
chloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
trichlorofluoromethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,1-dichloroethene	U	1	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
methylene chloride	U	5	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
trans-1,2-dichloroethene	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,1-dichloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
cis-1,2-dichloroethene	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
chloroform	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,1,1-trichloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
carbon tetrachloride	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,2-dichloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
trichloroethene	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,2-dichloropropane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
bromodichloromethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
cis-1,3-dichloropropene	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
trans-1,3-dichloropropene	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,1,2-trichloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
tetrachloroethene	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
dibromochloromethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
chlorobenzene	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,1,1,2-tetrachloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
bromoform	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,1,2,2-tetrachloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,3-dichlorobenzene	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,4-dichlorobenzene	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,2-dichlorobenzene	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,2,4-trichlorobenzene	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
1,2,3-trichlorobenzene	U	2	ug/L	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
Surrogate Recovery		Limits							
dibromofluoromethane SUR	97	78-114	%	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
toluene-D8 SUR	106	88-110	%	1	LMM		1502997	10/9/15	19:38 SW5030C8260C
4-bromofluorobenzene SUR	111	86-115	%	1	LMM		1502997	10/9/15	19:38 SW5030C8260C

Job ID: 34520

Sample#: 34520-005 Sample ID: Trip Blank Matrix: Water

Sampled: 10/2/15 0:00

		Reporting		Instr Dil'r	า	Prep		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
chloromethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
vinyl chloride	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
bromomethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
chloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
trichlorofluoromethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,1-dichloroethene	U	1	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
methylene chloride	U	5	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
trans-1,2-dichloroethene	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,1-dichloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
cis-1,2-dichloroethene	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
chloroform	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,1,1-trichloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
carbon tetrachloride	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,2-dichloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
trichloroethene	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,2-dichloropropane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
bromodichloromethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
cis-1,3-dichloropropene	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
trans-1,3-dichloropropene	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,1,2-trichloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
tetrachloroethene	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
dibromochloromethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
chlorobenzene	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,1,1,2-tetrachloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
bromoform	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,1,2,2-tetrachloroethane	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,3-dichlorobenzene	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,4-dichlorobenzene	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,2-dichlorobenzene	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,2,4-trichlorobenzene	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
1,2,3-trichlorobenzene	U	2	ug/L	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
Surrogate Recovery		Limits							
dibromofluoromethane SUR	99	78-114	%	1	LMM		1502997		15:15 SW5030C8260C
toluene-D8 SUR	106	88-110	%	1	LMM		1502997	10/9/15	15:15 SW5030C8260C
4-bromofluorobenzene SUR	105	86-115	%	1	LMM		1502997	10/9/15	15:15 SW5030C8260C

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 34520

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 0 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

The sample, 34520-003, was preserved in methanol at the lab on 10/7/15.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

VOC: The surrogate a,a,a-trifluorotoluene was above the acceptance criteria in the sample 34520-002. Since no targets were detected above the quantitation limit, there is no impact to the data.

Laboratory Control Sample Results

VOC: The LCS/D1502997 did not meet the acceptance criteria for bromomethane and trichloroethene. These compounds showed high recovery. There is no impact to the data as these analytes were not detected in the associated samples.

VOC: The MLCS/D8243 did not meet the acceptance criteria for bromomethane and chloroethane. These compounds showed high recovery. There is no impact to the data as these analytes were not detected in the associated samples.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Data Qualifiers

U = This compound was analyzed for, but not detected above the associated detection limit.

J = The analytical result was below the instrument calibration range, but above the detection limit. The reported concentration is an estimate.

- QC Association Table -

Analysis VOCs 8021 Halocarbons SW5030C8260C	QC Number	Field ID	Lab ID	
	1502997	CB5-6-100215-1 Trip Blank	34520-001 34520-005	
VOCs 8021 Halocarbons SW5035A8260C		·		
	8243	BF-100215-1-1	34520-002	
		BF-100215-2-1 Trip Blank	34520-003 34520-004	

- QC Report -

Method QC ID	Parameter	Associated Sample		Result	Units Amt Added	l %R	Limits	RPD	RPD Limit
SW5030C8260C BLK1502997	dichlorodifluoromethane		<	2	ug/L				
	chloromethane		<	2	ug/L				
	vinyl chloride		<	2	ug/L				
	bromomethane		<	2	ug/L				
	chloroethane		<	2	ug/L				
	trichlorofluoromethane		<	2	ug/L				
	1,1-dichloroethene		<	1	ug/L				
	methylene chloride		<	5	ug/L				
	trans-1,2-dichloroethene		<	2	ug/L				
	1,1-dichloroethane		<	2	ug/L				
	cis-1,2-dichloroethene		<	2	ug/L				
	chloroform		<	2	ug/L				
	1,1,1-trichloroethane		<	2	ug/L				
	carbon tetrachloride		<	2	ug/L				
	1,2-dichloroethane		<	2	ug/L				
	trichloroethene		<	2	ug/L				
	1,2-dichloropropane		<	2	ug/L				
	bromodichloromethane		<	0.6	ug/L				
	cis-1,3-dichloropropene		<	2	ug/L				
	trans-1,3-dichloropropene		<	2	ug/L				
	1,1,2-trichloroethane		<	2	ug/L				
	tetrachloroethene		<	2	ug/L				
	dibromochloromethane		<	2	ug/L				
	chlorobenzene		<	2	ug/L				
	1,1,1,2-tetrachloroethane		<	2	ug/L				
	bromoform		<	2	ug/L				
	1,1,2,2-tetrachloroethane		<	2	ug/L				
	1,3-dichlorobenzene		<	2	ug/L				
	1,4-dichlorobenzene		<	2	ug/L				
	1,2-dichlorobenzene		<	2	ug/L				
	1,2,4-trichlorobenzene		<	2	ug/L				
	1,2,3-trichlorobenzene		<	2	ug/L				
	dibromofluoromethane SUR			94	%		78	114	
	toluene-D8 SUR			106	%		88	110	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	L	imits		RPD	RPD Limit
SW5030C8260C LCS1502997	dichlorodifluoromethane		20	ug/L	20	101	7	0	130		
	chloromethane		23	ug/L	20	116	7	0	130		
	vinyl chloride		22	ug/L	20	108	7	0	130		
	bromomethane		31	ug/L	20	156	* 7	0	130		
	chloroethane		16	ug/L	20	81	7	0	130		
	trichlorofluoromethane		23	ug/L	20	113	7	0	130		
	1,1-dichloroethene		20	ug/L	20	101	7	0	130		
	methylene chloride		21	ug/L	20	106	7	0	130		
	trans-1,2-dichloroethene		22	ug/L	20	111	7	0	130		
	1,1-dichloroethane		20	ug/L	20	102	7	0	130		
	cis-1,2-dichloroethene		21	ug/L	20	105	7	0	130		
	chloroform		21	ug/L	20	107	7	0	130		
	1,1,1-trichloroethane		22	ug/L	20	112	7	0	130		
	carbon tetrachloride		21	ug/L	20	106	7	0	130		
	1,2-dichloroethane		24	ug/L	20	118	7	0	130		
	trichloroethene		25	ug/L	20	127	7	0	130		
	1,2-dichloropropane		22	ug/L	20	108	7	0	130		
	bromodichloromethane		21	ug/L	20	106	7	0	130		
	cis-1,3-dichloropropene		21	ug/L	20	105	7	0	130		
	trans-1,3-dichloropropene		21	ug/L	20	104	7	0	130		
	1,1,2-trichloroethane		21	ug/L	20	104	7	0	130		
	tetrachloroethene		21	ug/L	20	104	7	0	130		
	dibromochloromethane		17	ug/L	20	84	7	0	130		
	chlorobenzene		19	ug/L	20	95	7	0	130		
	1,1,1,2-tetrachloroethane		19	ug/L	20	94	7	0	130		
	bromoform		17	ug/L	20	84	7	0	130		
	1,1,2,2-tetrachloroethane		16	ug/L	20	80	7	0	130		
	1,3-dichlorobenzene		19	ug/L	20	95	7	0	130		
	1,4-dichlorobenzene		19	ug/L	20	96	7	0	130		
	1,2-dichlorobenzene		19	ug/L	20	94	7	0	130		
	1,2,4-trichlorobenzene		18	ug/L	20	89	7	0	130		
	1,2,3-trichlorobenzene		18	ug/L	20	88	7	0	130		
	dibromofluoromethane SUR		105	%			7	8	114		
	toluene-D8 SUR		106	%			8	8	110		
	4-bromofluorobenzene SUR		108	%			8	6	115		

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Lim	its	RPD	RPD Limit
SW5030C8260C LCSD1502997	dichlorodifluoromethane		20	ug/L	20	102	70	130		20
	chloromethane		24	ug/L	20	122	70	130		20
	vinyl chloride		23	ug/L	20	113	70	130		20
	bromomethane		34	ug/L	20	169	* 70	130		20
	chloroethane		16	ug/L	20	82	70	130		20
	trichlorofluoromethane		24	ug/L	20	119	70	130		20
	1,1-dichloroethene		22	ug/L	20	108	70	130		20
	methylene chloride		22	ug/L	20	110	70	130		20
	trans-1,2-dichloroethene		24	ug/L	20	118	70	130		20
	1,1-dichloroethane		21	ug/L	20	107	70	130		20
	cis-1,2-dichloroethene		22	ug/L	20	111	70	130		20
	chloroform		23	ug/L	20	113	70	130		20
	1,1,1-trichloroethane		24	ug/L	20	121	70	130		20
	carbon tetrachloride		23	ug/L	20	115	70	130		20
	1,2-dichloroethane		25	ug/L	20	123	70	130		20
	trichloroethene		27	ug/L	20	133	* 70	130		20
	1,2-dichloropropane		23	ug/L	20	114	70	130		20
	bromodichloromethane		23	ug/L	20	115	70	130		20
	cis-1,3-dichloropropene		22	ug/L	20	112	70	130		20
	trans-1,3-dichloropropene		23	ug/L	20	113	70	130		20
	1,1,2-trichloroethane		21	ug/L	20	107	70	130		20
	tetrachloroethene		22	ug/L	20	112	70	130		20
	dibromochloromethane		18	ug/L	20	92	70	130		20
	chlorobenzene		20	ug/L	20	99	70	130		20
	1,1,1,2-tetrachloroethane		20	ug/L	20	100	70	130		20
	bromoform		19	ug/L	20	93	70	130		20
	1,1,2,2-tetrachloroethane		17	ug/L	20	85	70	130		20
	1,3-dichlorobenzene		20	ug/L	20	98	70	130		20
	1,4-dichlorobenzene		20	ug/L	20	99	70	130		20
	1,2-dichlorobenzene		20	ug/L	20	98	70	130		20
	1,2,4-trichlorobenzene		19	ug/L	20	93	70	130		20
	1,2,3-trichlorobenzene		18	ug/L	20	90	70	130		20
	dibromofluoromethane SUR		103	%			78	114		
	toluene-D8 SUR		107	%			88	110		
	4-bromofluorobenzene SUR		110	%			86	115		

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5035A8260	C MB8243	dichlorodifluoromethane		<	0.1	ug/g				
		chloromethane		<	0.1	ug/g				
		vinyl chloride		<	0.1	ug/g				
		bromomethane		<	0.2	ug/g				
		chloroethane		<	0.1	ug/g				
		trichlorofluoromethane		<	0.1	ug/g				
		1,1-dichloroethene		<	0.02	ug/g				
		methylene chloride		<	0.2	ug/g				
		trans-1,2-dichloroethene		<	0.1	ug/g				
		1,1-dichloroethane		<	0.1	ug/g				
		cis-1,2-dichloroethene		<	0.1	ug/g				
		chloroform		<	0.1	ug/g				
		1,1,1-trichloroethane		<	0.1	ug/g				
		carbon tetrachloride		<	0.1	ug/g				
		1,2-dichloroethane		<	0.1	ug/g				
		trichloroethene		J	0.1	ug/g				
		1,2-dichloropropane		<	0.1	ug/g				
		bromodichloromethane		<	0.1	ug/g				
		cis-1,3-dichloropropene		<	0.1	ug/g				
		trans-1,3-dichloropropene		<	0.1	ug/g				
		1,1,2-trichloroethane		<	0.1	ug/g				
		tetrachloroethene		<	0.1	ug/g				
		dibromochloromethane		<	0.1	ug/g				
		chlorobenzene		<	0.1	ug/g				
		1,1,1,2-tetrachloroethane		<	0.1	ug/g				
		bromoform		<	0.1	ug/g				
		1,1,2,2-tetrachloroethane		<	0.1	ug/g				
		1,3-dichlorobenzene		<	0.1	ug/g				
		1,4-dichlorobenzene		<	0.1	ug/g				
		1,2-dichlorobenzene		<	0.1	ug/g				
		1,2,4-trichlorobenzene		<	0.1	ug/g				
		1,2,3-trichlorobenzene		<	0.1	ug/g				
		dibromofluoromethane SUR			86	%		78 1	14	
		toluene-D8 SUR			105	%		88 1	10	
		4-bromofluorobenzene SUR			107	%		86 1	15	
		a,a,a-trifluorotoluene SUR			111	%		70 1	30	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R		Limits		RPD	RPD Limit
SW5035A8260C MLCS8243	dichlorodifluoromethane		1.0	ug/g	1	97		70	130		
	chloromethane		0.9	ug/g	1	95		70	130		
	vinyl chloride		1.1	ug/g	1	110		70	130		
	bromomethane		1.5	ug/g	1	149	*	70	130		
	chloroethane		1.3	ug/g	1	127		70	130		
	trichlorofluoromethane		1.2	ug/g	1	117		70	130		
	1,1-dichloroethene		1.0	ug/g	1	103		70	130		
	methylene chloride		1.2	ug/g	1	117		70	130		
	trans-1,2-dichloroethene		1.1	ug/g	1	114		70	130		
	1,1-dichloroethane		1.1	ug/g	1	105		70	130		
	cis-1,2-dichloroethene		1.1	ug/g	1	107		70	130		
	chloroform		1.1	ug/g	1	108		70	130		
	1,1,1-trichloroethane		1.1	ug/g	1	113		70	130		
	carbon tetrachloride		1.0	ug/g	1	102		70	130		
	1,2-dichloroethane		1.2	ug/g	1	119		70	130		
	trichloroethene		1.2	ug/g	1	120		70	130		
	1,2-dichloropropane		1.2	ug/g	1	115		70	130		
	bromodichloromethane		1.0	ug/g	1	104		70	130		
	cis-1,3-dichloropropene		1.1	ug/g	1	110		70	130		
	trans-1,3-dichloropropene		1.1	ug/g	1	111		70	130		
	1,1,2-trichloroethane		1.1	ug/g	1	111		70	130		
	tetrachloroethene		1.1	ug/g	1	110		70	130		
	dibromochloromethane		0.8	ug/g	1	82		70	130		
	chlorobenzene		1.0	ug/g	1	100		70	130		
	1,1,1,2-tetrachloroethane		1.0	ug/g	1	97		70	130		
	bromoform		0.8	ug/g	1	85		70	130		
	1,1,2,2-tetrachloroethane		0.9	ug/g	1	93		70	130		
	1,3-dichlorobenzene		1.0	ug/g	1	100		70	130		
	1,4-dichlorobenzene		1.0	ug/g	1	103		70	130		
	1,2-dichlorobenzene		1.0	ug/g	1	102		70	130		
	1,2,4-trichlorobenzene		1.1	ug/g	1	105		70	130		
	1,2,3-trichlorobenzene		1.1	ug/g	1	107		70	130		
	dibromofluoromethane SUR		99	%				78	114		
	toluene-D8 SUR		107	%				88	110		
	4-bromofluorobenzene SUR		111	%				86	115		
	a,a,a-trifluorotoluene SUR		121	%				70	130		

chloromethane	Method	QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Lir	nits	RPD	RP	D Limit
vinyl chloride 1.0 ug/g 1 104 70 130 6 bromomethane 1.5 ug/g 1 147 70 130 1 chloroethane 1.3 ug/g 1 114 70 130 5 trichloroethane 1.1 ug/g 1 110 70 130 5 1,1-dichloroethene 1.0 ug/g 1 97 70 130 6 methylene chloride 1.1 ug/g 1 110 70 130 4 trans-1,2-dichloroethene 1.1 ug/g 1 110 70 130 3 1,1-dichloroethane 1.0 ug/g 1 103 70 130 2 chloroform 1.1 ug/g 1 107 70 130 2 chloroforme 1.1 ug/g 1 107 70 130 1 1,1-trichloroethane 1.2 ug/g	SW5035A8260	C MLCSD8243	dichlorodifluoromethane		0.9	ug/g	1	95	70	130		3	30
bromomethane			chloromethane		0.9	ug/g	1	89	70	130		6	30
chloroethane 1.3 ug/g 1 134 70 130 5 trichlorofuloromethane 1.1 ug/g 1 110 70 130 5 1,1-dichloroethene 1.0 ug/g 1 170 70 130 6 methylene chloride 1.1 ug/g 1 113 70 130 4 trans-1,2-dichloroethane 1.1 ug/g 1 110 70 130 3 1,1-dichloroethane 1.0 ug/g 1 103 70 130 2 chloroform 1.1 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 104 70 130 5 carbon tetrachloride 1.0 ug/g 1 107 70 130 4 1,2-dichloropthane 1.2 ug/g 1 120 70 130 1 trichloroptopane 1.1 <t< td=""><td></td><td></td><td>vinyl chloride</td><td></td><td>1.0</td><td>ug/g</td><td>1</td><td>104</td><td>70</td><td>130</td><td></td><td>6</td><td>30</td></t<>			vinyl chloride		1.0	ug/g	1	104	70	130		6	30
trichlorofluoromethane 1.1 ug/g 1 110 70 130 5 1,1-dichloroethene 1.0 ug/g 1 97 70 130 6 methylene chloride 1.1 ug/g 1 113 70 130 4 trans-1,2-dichloroethane 1.1 ug/g 1 110 70 130 2 cis-1,2-dichloroethane 1.0 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 107 70 130 2 chloroform 1.1 ug/g 1 107 70 130 2 chloroform 1.1 ug/g 1 107 70 130 4 1.1 1.2 1.1 ug/g 1 120 70 130 1 1.2 1.2 ug/g			bromomethane		1.5	ug/g	1	147	* 70	130		1	30
1,1-dichloroethene			chloroethane		1.3	ug/g	1	134	* 70	130		5	30
methylene chloride 1.1 ug/g 1 11.3 70 130 4 trans-1,2-dichloroethene 1.1 ug/g 1 110 70 130 3 1,1-dichloroethane 1.0 ug/g 1 103 70 130 2 cis-1,2-dichloroethene 1.0 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 107 70 130 0 1,1,1-trichloroethane 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 120 70 130 4 1,2-dichloroethane 1.2 ug/g 1 120 70 130 1 1,2-dichloropropane 1.1 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1			trichlorofluoromethane		1.1	ug/g	1	110	70	130		5	30
trans-1,2-dichloroethene 1.1 ug/g 1 110 70 130 3 1.1,1-dichloroethane 1.0 ug/g 1 103 70 130 2 cis-1,2-dichloroethene 1.0 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 104 70 130 0 1.1,1-trichloroethane 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 120 70 130 1 1.2-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethene 1.2 ug/g 1 121 70 130 1 1.2-dichloropropane 1.1 ug/g 1 111 70 130 4 cis-1,3-dichloropropane 1.1 ug/g 1 111 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 100 70 130 3 cis-1,3-dichloropropene 1.1 ug/g 1 100 70 130 3 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 cis-1,3-dichloropropene 1.0 ug/g 1 104 70 130 5 cis-1,3-dichloropropene 1.0 ug/g 1 104 70 130 5 cis-1,3-dichlorobenzene 1.0 ug/g 1 81 70 130 2 cis-1,3-dichlorobenzene 1.0 ug/g 1 82 70 130 3 cis-1,1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 cis-1,1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 cis-1,1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 cis-1,1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 cis-1,1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 cis-1,1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 cis-1,1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 cis-1,1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 cis-1,1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 cis-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,			1,1-dichloroethene		1.0	ug/g	1	97	70	130		6	30
1,1-Idichloroethane			methylene chloride		1.1	ug/g	1	113	70	130		4	30
cis-1,2-dichloroethene 1.0 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 108 70 130 0 1,1,1-trichloroethane 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 120 70 130 4 1.2-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethene 1.2 ug/g 1 121 70 130 1 1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 100 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 107 70 130 1 tly-trichloroethane 1.1 ug/g 1 100 70 130 1 <td< td=""><td></td><td></td><td>trans-1,2-dichloroethene</td><td></td><td>1.1</td><td>ug/g</td><td>1</td><td>110</td><td>70</td><td>130</td><td></td><td>3</td><td>30</td></td<>			trans-1,2-dichloroethene		1.1	ug/g	1	110	70	130		3	30
chloroform 1.1 ug/g 1 108 70 130 0 1,1,1-trichloroethane 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 98 70 130 4 1,2-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethane 1.2 ug/g 1 121 70 130 1 1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropthane 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 dibromochloromethane 0.8 ug/g 1 81 70 130 3 ch			1,1-dichloroethane		1.0	ug/g	1	103	70	130		2	30
1,1,1-trichloroethane 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 98 70 130 4 1,2-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethane 1.2 ug/g 1 121 70 130 1 1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropethane 1.1 ug/g 1 109 70 130 1 tletrachloroethane 1.0 ug/g 1 104 70 130 5 dibromoform 0.8 ug/g 1 81 70 130 3 <t< td=""><td></td><td></td><td>cis-1,2-dichloroethene</td><td></td><td>1.0</td><td>ug/g</td><td>1</td><td>104</td><td>70</td><td>130</td><td></td><td>2</td><td>30</td></t<>			cis-1,2-dichloroethene		1.0	ug/g	1	104	70	130		2	30
carbon tetrachloride 1.0 ug/g 1 98 70 130 4 1,2-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethene 1.2 ug/g 1 121 70 130 1 1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropethane 1.1 ug/g 1 107 70 130 1 tetrachloroethane 1.1 ug/g 1 110 70 130 1 dibromochloromethane 0.8 ug/g 1 81 70 130 3 chlorobenzene 1.0 ug/g 1 95 70 130 3 <td< td=""><td></td><td></td><td>chloroform</td><td></td><td>1.1</td><td>ug/g</td><td>1</td><td>108</td><td>70</td><td>130</td><td></td><td>0</td><td>30</td></td<>			chloroform		1.1	ug/g	1	108	70	130		0	30
1,2-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethene 1.2 ug/g 1 121 70 130 1 1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethene 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 <t< td=""><td></td><td></td><td>1,1,1-trichloroethane</td><td></td><td>1.1</td><td>ug/g</td><td>1</td><td>107</td><td>70</td><td>130</td><td></td><td>5</td><td>30</td></t<>			1,1,1-trichloroethane		1.1	ug/g	1	107	70	130		5	30
trichloroethene 1.2 ug/g 1 121 70 130 1 1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethane 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 3 thorobenzene 1.0 ug/g 1 95 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 bromoform 0.8 ug/g 1 86 70 130 3 1,2-dichl			carbon tetrachloride		1.0	ug/g	1	98	70	130		4	30
1,2-dichloropropane 1.1 ug/g 1 11.1 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethane 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 3 chlorobenzene 1.0 ug/g 1 95 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 bromoform 0.8 ug/g 1 86 70 130 3 1,1,2-2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 <t< td=""><td></td><td></td><td>1,2-dichloroethane</td><td></td><td>1.2</td><td>ug/g</td><td>1</td><td>120</td><td>70</td><td>130</td><td></td><td>1</td><td>30</td></t<>			1,2-dichloroethane		1.2	ug/g	1	120	70	130		1	30
bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethene 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 98 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR			trichloroethene		1.2	ug/g	1	121	70	130		1	30
cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethane 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 bromoform 0.8 ug/g 1 86 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 3 1			1,2-dichloropropane		1.1	ug/g	1	111	70	130		4	30
trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethene 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 5 tomoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR			bromodichloromethane		1.0	ug/g	1	100	70	130		4	30
1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethene 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 bromoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 3 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			cis-1,3-dichloropropene		1.1	ug/g	1	107	70	130		3	30
tetrachloroethene 1.0 ug/g 1 104 70 130 5 3 dibromochloromethane 0.8 ug/g 1 81 70 130 2 3 chlorobenzene 1.0 ug/g 1 97 70 130 3 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 3 bromoform 0.8 ug/g 1 82 70 130 3 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 3 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 3 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 1,2,3-trichlorobenzene 1.0 u			trans-1,3-dichloropropene		1.1	ug/g	1	109	70	130		1	30
dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 bromoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 101 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			1,1,2-trichloroethane		1.1	ug/g	1	110	70	130		1	30
chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 bromoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			tetrachloroethene		1.0	ug/g	1	104	70	130		5	30
1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 bromoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			dibromochloromethane		0.8	ug/g	1	81	70	130		2	30
bromoform 0.8 ug/g 1 82 70 130 3 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 3 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 3 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			chlorobenzene		1.0	ug/g	1	97	70	130		3	30
1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			1,1,1,2-tetrachloroethane		0.9	ug/g	1	95	70	130		3	30
1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 3 dibromofluoromethane SUR 96 % 78 114			bromoform		0.8	ug/g	1	82	70	130		3	30
1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			1,1,2,2-tetrachloroethane		0.9	ug/g	1	86	70	130		8	30
1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 3 1 101 <td></td> <td></td> <td>1,3-dichlorobenzene</td> <td></td> <td>1.0</td> <td>ug/g</td> <td>1</td> <td>98</td> <td>70</td> <td>130</td> <td></td> <td>1</td> <td>30</td>			1,3-dichlorobenzene		1.0	ug/g	1	98	70	130		1	30
1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 3 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 3 dibromofluoromethane SUR 96 % 78 114			1,4-dichlorobenzene		1.0	ug/g	1	99	70	130		3	30
1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 3 dibromofluoromethane SUR 96 % 78 114			1,2-dichlorobenzene		1.0	ug/g	1	101	70	130		1	30
dibromofluoromethane SUR 96 % 78 114			1,2,4-trichlorobenzene		1.0	ug/g	1	103	70	130		2	30
dibromofluoromethane SUR 96 % 78 114			1,2,3-trichlorobenzene		1.0	ug/g	1	103	70	130		3	30
toluene-D8 SUR 106 % 88 110			dibromofluoromethane SUR		96				78	114			
			toluene-D8 SUR		106	%			88	110			
4-bromofluorobenzene SUR 112 % 86 115			4-bromofluorobenzene SUR		112	%			86	115			
a,a,a-trifluorotoluene SUR 115 % 70 130			a,a,a-trifluorotoluene SUR		115	%			70	130			

Absolute l	Resoul	rce		N S	_				Ports	603-	ge Aven ith, NH (436-200 irceasso	03801 1										DD	U	ES	T				34		52	0					
Company Name: Wister Solution Company Address: 4316746 Mar.	tions						Pr	Suf	Nam W fu	ie: K	19870 NH MA VT NY	Met	1/1/2	% (4)		8021VT	Jioxane		☐ TPH Fingerprint		R		2/1/		Wetais □ Hardness.	S			Bacteria MPN	□ Ruoride		☐ TCLP Pesticide	Formaldehyde				
Protocol: RCRA SDIVA NE MCP (HDES) OT Reporting QAPP GW-) CE Limits: EPA DW Other Protocol: Hard Copy Invoice Required Protocol: RCRA SDIVA NE MCP (HDES) OT Reporting QAPP GW-) CE Limits: EPA DW Other Protocol: RCRA SDIVA NE MCP (HDES) OT REPORTING TO SULTIME PROTOCOL: RCRA SDIVA NE MCP (HDES) OT RCRA SDIVA NE MCP (HDES) OT REPORTING TO SULTIME PROTOCOL: RCRA SDIVA NE MCP (HDES) OT REPORTING TO SULTIME PROTOCOL: RCRA SDIVA NE MCP (HDES) OT REPORTING TO SULTIME PROTOCOL: RCRA SDIVA NE MCP (HDES) OT REPORTING TO SULTIME PROTOCOL: RCRA SDIVA NE MCP (HDES) OT REPORTING TO SULTIME PROTOCOL: RCRA SDIVING TO SU							R	XVOC 8260 NHDES 🗆 VOC 8260 MADEP	☐ VOC BTEX ☐ MIBE, only ☐ VOC B021VT	☐ MEGRO ☐ GRO 8015 ☐ 1,4-Dioxane	☐ VOC 524.2 NH LISt ☐ Gases-List:	5 CI MEDRO CI EPH MADEP	☐ 8270ABN ☐ 625 ☐ EDB	☐ 8081 Pesticides ☐ 608 Pest/PC8		Conductivi	it	☐ Priority Pollutant Metals ☐ TAL		1	LIKN LIN LIGH	ienols 🖂 Bacteria P/A 🖂	Chloride Sulfat	active CN C Reactive S-	TCLP SVOC	Herbicides				Composite (C)							
Lab Sample Fi	eld ID	# CONTAINERS	Xwater	Matrix	ОТНЕВ	Pre	Serva	H ₂ SO ₄	Met	HO9M	Sa DATE	L.	E E	SAMPLER	□ VOC 8260 XVO	□ VOC 624 □ VOC	☐ VPH MADEP ☐	□ VOC 524.2 □ W	☐ TPH ☐ DRO 8015	☐ 8270PAH ☐ 827	□ 8082 PCB □ 80	-	008 □ Hd □	TSS 🗆 TDS	RCRA Metals	☐ Total Metals-list:	Dissolved	-	T-Phosphorus Ph	Nitrate	All Cal	TCLP Metals					Grab (G) or Comp
-52 BF-10 -53 BF-100 -55 TAPB	215-1-1	1	X	XX		X				X	V	13/	15		11								80		2		7										
TAT REQUESTED						1	0/	1	11	7 e	UCTION												,	10			1	-									
Priority (24 hr)* Expedited (48 hr)* Standard (10 Business Days) *Date Needed	for sample currer	ING	INS																																		
CUSTODY RECORD QSD-01 Revision 01/09/15	Relinquishe Relinquishe	b by	1	_	Hz	4					10/	Date	1/	Tim 191 Tim 5.	ne 13	1	Rec	eive	d by	Lab		ory:									10	Date Date Date	te /	5	18	ime ime	03

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Vinnie DellaRusso PO Number: 0089493

Weston Solutions,Inc.

Job ID: 34520

45 Constitution Ave

Date Received: 10/5/15

Suite 100

Concord, NH 03301

Project: Kearsarge Metallurgical Superfund Site NHDES198708002

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Maine

lluer

Principal, General Manager

NH903

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Date of Approval: 10/15/2015

Total number of pages: 17

Lab ID: 34520

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CB5-6-100215-1	Water	10/2/2015 14:00	34520-001	
				VOCs 8021 Halocarbons in water by 8260
BF-100215-1-1	Solid	10/2/2015 12:15	34520-002	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
BF-100215-2-1	Solid	10/2/2015 13:10	34520-003	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs 8021 Halocarbons in solid by 8260
Trip Blank	Solid	10/2/2015 0:00	34520-004	•
·				VOCs 8021 Halocarbons in solid by 8260
Trip Blank	Water	10/2/2015 0:00	34520-005	•
•				VOCs 8021 Halocarbons in water by 8260

Job ID: 34520

Sample#: 34520-002 **Sample ID:** BF-100215-1-1

Matrix: Solid Percent Dry: 79.2% Results expressed on a dry weight basis.

Sampled: 10/2/15 12:15

		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
bromomethane	U	0.3	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,1-dichloroethene	U	0.03	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
methylene chloride	U	0.3	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	84	78-114	%	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
toluene-D8 SUR	106	88-110	%	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C
4-bromofluorobenzene SUR	105	86-115	%	1	LMM	10/7/15		8243	10/10/15	0:03 SW5035A8260C
a,a,a-trifluorotoluene SUR	139 *	70-130	%	1	LMM	10/7/15	14:13	8243	10/10/15	0:03 SW5035A8260C

^{*} This surrogate is above the acceptance criteria. Since no targets were detected above the quantitation limit, there is no impact to the data.

Job ID: 34520

Sample#: 34520-003 **Sample ID:** BF-100215-2-1

Matrix: Solid Percent Dry: 90.6% Results expressed on a dry weight basis.

Sampled: 10/2/15 13:10

	-	Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,1-dichloroethene	U	0.02	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	84	78-114	%	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
toluene-D8 SUR	107	88-110	%	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
4-bromofluorobenzene SUR	106	86-115	%	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C
a,a,a-trifluorotoluene SUR	119	70-130	%	1	LMM	10/7/15	14:13	8243	10/10/15	0:33 SW5035A8260C

Job ID: 34520

Sample#: 34520-004
Sample ID: Trip Blank
Matrix: Solid

Sampled: 10/2/15 0:00

		Reporting		Instr Dil'r	1	Pre	ер		Anal	ysis
Parameter	Result	Limit	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
dichlorodifluoromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
chloromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
vinyl chloride	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
bromomethane	U	0.2	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
chloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
trichlorofluoromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,1-dichloroethene	U	0.02	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
methylene chloride	U	0.2	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
trans-1,2-dichloroethene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,1-dichloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
cis-1,2-dichloroethene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
chloroform	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,1,1-trichloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
carbon tetrachloride	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,2-dichloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
trichloroethene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,2-dichloropropane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
bromodichloromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
cis-1,3-dichloropropene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
trans-1,3-dichloropropene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,1,2-trichloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
tetrachloroethene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
dibromochloromethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
chlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,1,1,2-tetrachloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
bromoform	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,1,2,2-tetrachloroethane	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,3-dichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,4-dichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,2-dichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,2,4-trichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
1,2,3-trichlorobenzene	U	0.1	ug/g	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
Surrogate Recovery		Limits								
dibromofluoromethane SUR	89	78-114	%	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C
toluene-D8 SUR	107	88-110	%	1	LMM	10/7/15	14:13	8243		15:45 SW5035A8260C
4-bromofluorobenzene SUR	109	86-115	%	1	LMM	10/7/15		8243		15:45 SW5035A8260C
a,a,a-trifluorotoluene SUR	118	70-130	%	1	LMM	10/7/15	14:13	8243	10/9/15	15:45 SW5035A8260C

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 34520

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 0 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

The sample, 34520-003, was preserved in methanol at the lab on 10/7/15.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

VOC: The surrogate a,a,a-trifluorotoluene was above the acceptance criteria in the sample 34520-002. Since no targets were detected above the quantitation limit, there is no impact to the data.

Laboratory Control Sample Results

VOC: The LCS/D1502997 did not meet the acceptance criteria for bromomethane and trichloroethene. These compounds showed high recovery. There is no impact to the data as these analytes were not detected in the associated samples.

VOC: The MLCS/D8243 did not meet the acceptance criteria for bromomethane and chloroethane. These compounds showed high recovery. There is no impact to the data as these analytes were not detected in the associated samples.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Data Qualifiers

U = This compound was analyzed for, but not detected above the associated detection limit.

J = The analytical result was below the instrument calibration range, but above the detection limit. The reported concentration is an estimate.

- QC Association Table -

Analysis VOCs 8021 Halocarbons SW5030C8260C	QC Number	Field ID	Lab ID	
	1502997	CB5-6-100215-1 Trip Blank	34520-001 34520-005	
VOCs 8021 Halocarbons SW5035A8260C		·		
	8243	BF-100215-1-1	34520-002	
		BF-100215-2-1 Trip Blank	34520-003 34520-004	

- QC Report -

Method QC ID	Parameter	Associated Sample		Result	Units Amt Added	l %R	Limits	RPD	RPD Limit
SW5030C8260C BLK1502997	dichlorodifluoromethane		<	2	ug/L				
	chloromethane		<	2	ug/L				
	vinyl chloride		<	2	ug/L				
	bromomethane		<	2	ug/L				
	chloroethane		<	2	ug/L				
	trichlorofluoromethane		<	2	ug/L				
	1,1-dichloroethene		<	1	ug/L				
	methylene chloride		<	5	ug/L				
	trans-1,2-dichloroethene		<	2	ug/L				
	1,1-dichloroethane		<	2	ug/L				
	cis-1,2-dichloroethene		<	2	ug/L				
	chloroform		<	2	ug/L				
	1,1,1-trichloroethane		<	2	ug/L				
	carbon tetrachloride		<	2	ug/L				
	1,2-dichloroethane		<	2	ug/L				
	trichloroethene		<	2	ug/L				
	1,2-dichloropropane		<	2	ug/L				
	bromodichloromethane		<	0.6	ug/L				
	cis-1,3-dichloropropene		<	2	ug/L				
	trans-1,3-dichloropropene		<	2	ug/L				
	1,1,2-trichloroethane		<	2	ug/L				
	tetrachloroethene		<	2	ug/L				
	dibromochloromethane		<	2	ug/L				
	chlorobenzene		<	2	ug/L				
	1,1,1,2-tetrachloroethane		<	2	ug/L				
	bromoform		<	2	ug/L				
	1,1,2,2-tetrachloroethane		<	2	ug/L				
	1,3-dichlorobenzene		<	2	ug/L				
	1,4-dichlorobenzene		<	2	ug/L				
	1,2-dichlorobenzene		<	2	ug/L				
	1,2,4-trichlorobenzene		<	2	ug/L				
	1,2,3-trichlorobenzene		<	2	ug/L				
	dibromofluoromethane SUR			94	%		78	114	
	toluene-D8 SUR			106	%		88	110	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	L	imits		RPD	RPD Limit
SW5030C8260C LCS1502997	dichlorodifluoromethane		20	ug/L	20	101	7	0	130		
	chloromethane		23	ug/L	20	116	7	0	130		
	vinyl chloride		22	ug/L	20	108	7	0	130		
	bromomethane		31	ug/L	20	156	* 7	0	130		
	chloroethane		16	ug/L	20	81	7	0	130		
	trichlorofluoromethane		23	ug/L	20	113	7	0	130		
	1,1-dichloroethene		20	ug/L	20	101	7	0	130		
	methylene chloride		21	ug/L	20	106	7	0	130		
	trans-1,2-dichloroethene		22	ug/L	20	111	7	0	130		
	1,1-dichloroethane		20	ug/L	20	102	7	0	130		
	cis-1,2-dichloroethene		21	ug/L	20	105	7	0	130		
	chloroform		21	ug/L	20	107	7	0	130		
	1,1,1-trichloroethane		22	ug/L	20	112	7	0	130		
	carbon tetrachloride		21	ug/L	20	106	7	0	130		
	1,2-dichloroethane		24	ug/L	20	118	7	0	130		
	trichloroethene		25	ug/L	20	127	7	0	130		
	1,2-dichloropropane		22	ug/L	20	108	7	0	130		
	bromodichloromethane		21	ug/L	20	106	7	0	130		
	cis-1,3-dichloropropene		21	ug/L	20	105	7	0	130		
	trans-1,3-dichloropropene		21	ug/L	20	104	7	0	130		
	1,1,2-trichloroethane		21	ug/L	20	104	7	0	130		
	tetrachloroethene		21	ug/L	20	104	7	0	130		
	dibromochloromethane		17	ug/L	20	84	7	0	130		
	chlorobenzene		19	ug/L	20	95	7	0	130		
	1,1,1,2-tetrachloroethane		19	ug/L	20	94	7	0	130		
	bromoform		17	ug/L	20	84	7	0	130		
	1,1,2,2-tetrachloroethane		16	ug/L	20	80	7	0	130		
	1,3-dichlorobenzene		19	ug/L	20	95	7	0	130		
	1,4-dichlorobenzene		19	ug/L	20	96	7	0	130		
	1,2-dichlorobenzene		19	ug/L	20	94	7	0	130		
	1,2,4-trichlorobenzene		18	ug/L	20	89	7	0	130		
	1,2,3-trichlorobenzene		18	ug/L	20	88	7	0	130		
	dibromofluoromethane SUR		105	%			7	8	114		
	toluene-D8 SUR		106	%			8	8	110		
	4-bromofluorobenzene SUR		108	%			8	6	115		

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Lim	its	RPD	RPD Limit
SW5030C8260C LCSD1502997	dichlorodifluoromethane		20	ug/L	20	102	70	130		20
	chloromethane		24	ug/L	20	122	70	130		20
	vinyl chloride		23	ug/L	20	113	70	130		20
	bromomethane		34	ug/L	20	169	* 70	130		20
	chloroethane		16	ug/L	20	82	70	130		20
	trichlorofluoromethane		24	ug/L	20	119	70	130		20
	1,1-dichloroethene		22	ug/L	20	108	70	130		20
	methylene chloride		22	ug/L	20	110	70	130		20
	trans-1,2-dichloroethene		24	ug/L	20	118	70	130		20
	1,1-dichloroethane		21	ug/L	20	107	70	130		20
	cis-1,2-dichloroethene		22	ug/L	20	111	70	130		20
	chloroform		23	ug/L	20	113	70	130		20
	1,1,1-trichloroethane		24	ug/L	20	121	70	130		20
	carbon tetrachloride		23	ug/L	20	115	70	130		20
	1,2-dichloroethane		25	ug/L	20	123	70	130		20
	trichloroethene		27	ug/L	20	133	* 70	130		20
	1,2-dichloropropane		23	ug/L	20	114	70	130		20
	bromodichloromethane		23	ug/L	20	115	70	130		20
	cis-1,3-dichloropropene		22	ug/L	20	112	70	130		20
	trans-1,3-dichloropropene		23	ug/L	20	113	70	130		20
	1,1,2-trichloroethane		21	ug/L	20	107	70	130		20
	tetrachloroethene		22	ug/L	20	112	70	130		20
	dibromochloromethane		18	ug/L	20	92	70	130		20
	chlorobenzene		20	ug/L	20	99	70	130		20
	1,1,1,2-tetrachloroethane		20	ug/L	20	100	70	130		20
	bromoform		19	ug/L	20	93	70	130		20
	1,1,2,2-tetrachloroethane		17	ug/L	20	85	70	130		20
	1,3-dichlorobenzene		20	ug/L	20	98	70	130		20
	1,4-dichlorobenzene		20	ug/L	20	99	70	130		20
	1,2-dichlorobenzene		20	ug/L	20	98	70	130		20
	1,2,4-trichlorobenzene		19	ug/L	20	93	70	130		20
	1,2,3-trichlorobenzene		18	ug/L	20	90	70	130		20
	dibromofluoromethane SUR		103	%			78	114		
	toluene-D8 SUR		107	%			88	110		
	4-bromofluorobenzene SUR		110	%			86	115		

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5035A8260	C MB8243	dichlorodifluoromethane		<	0.1	ug/g				
		chloromethane		<	0.1	ug/g				
		vinyl chloride		<	0.1	ug/g				
		bromomethane		<	0.2	ug/g				
		chloroethane		<	0.1	ug/g				
		trichlorofluoromethane		<	0.1	ug/g				
		1,1-dichloroethene		<	0.02	ug/g				
		methylene chloride		<	0.2	ug/g				
		trans-1,2-dichloroethene		<	0.1	ug/g				
		1,1-dichloroethane		<	0.1	ug/g				
		cis-1,2-dichloroethene		<	0.1	ug/g				
		chloroform		<	0.1	ug/g				
		1,1,1-trichloroethane		<	0.1	ug/g				
		carbon tetrachloride		<	0.1	ug/g				
		1,2-dichloroethane		<	0.1	ug/g				
		trichloroethene		J	0.1	ug/g				
		1,2-dichloropropane		<	0.1	ug/g				
		bromodichloromethane		<	0.1	ug/g				
		cis-1,3-dichloropropene		<	0.1	ug/g				
		trans-1,3-dichloropropene		<	0.1	ug/g				
		1,1,2-trichloroethane		<	0.1	ug/g				
		tetrachloroethene		<	0.1	ug/g				
		dibromochloromethane		<	0.1	ug/g				
		chlorobenzene		<	0.1	ug/g				
		1,1,1,2-tetrachloroethane		<	0.1	ug/g				
		bromoform		<	0.1	ug/g				
		1,1,2,2-tetrachloroethane		<	0.1	ug/g				
		1,3-dichlorobenzene		<	0.1	ug/g				
		1,4-dichlorobenzene		<	0.1	ug/g				
		1,2-dichlorobenzene		<	0.1	ug/g				
		1,2,4-trichlorobenzene		<	0.1	ug/g				
		1,2,3-trichlorobenzene		<	0.1	ug/g				
		dibromofluoromethane SUR			86	%		78 1	14	
		toluene-D8 SUR			105	%		88 1	10	
		4-bromofluorobenzene SUR			107	%		86 1	15	
		a,a,a-trifluorotoluene SUR			111	%		70 1	30	

Method QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	I	imits		RPD	RPD Limit
SW5035A8260C MLCS8243	dichlorodifluoromethane		1.0	ug/g	1	97	7	70	130		
	chloromethane		0.9	ug/g	1	95	7	70	130		
	vinyl chloride		1.1	ug/g	1	110	7	70	130		
	bromomethane		1.5	ug/g	1	149	*	70	130		
	chloroethane		1.3	ug/g	1	127	7	70	130		
	trichlorofluoromethane		1.2	ug/g	1	117	7	70	130		
	1,1-dichloroethene		1.0	ug/g	1	103	7	70	130		
	methylene chloride		1.2	ug/g	1	117	7	70	130		
	trans-1,2-dichloroethene		1.1	ug/g	1	114	7	70	130		
	1,1-dichloroethane		1.1	ug/g	1	105	7	70	130		
	cis-1,2-dichloroethene		1.1	ug/g	1	107	7	70	130		
	chloroform		1.1	ug/g	1	108	7	70	130		
	1,1,1-trichloroethane		1.1	ug/g	1	113	7	70	130		
	carbon tetrachloride		1.0	ug/g	1	102	7	70	130		
	1,2-dichloroethane		1.2	ug/g	1	119	7	70	130		
	trichloroethene		1.2	ug/g	1	120	7	70	130		
	1,2-dichloropropane		1.2	ug/g	1	115	7	70	130		
	bromodichloromethane		1.0	ug/g	1	104	7	70	130		
	cis-1,3-dichloropropene		1.1	ug/g	1	110	7	70	130		
	trans-1,3-dichloropropene		1.1	ug/g	1	111	7	70	130		
	1,1,2-trichloroethane		1.1	ug/g	1	111	7	70	130		
	tetrachloroethene		1.1	ug/g	1	110	7	70	130		
	dibromochloromethane		0.8	ug/g	1	82	7	70	130		
	chlorobenzene		1.0	ug/g	1	100	7	70	130		
	1,1,1,2-tetrachloroethane		1.0	ug/g	1	97	7	70	130		
	bromoform		0.8	ug/g	1	85	7	70	130		
	1,1,2,2-tetrachloroethane		0.9	ug/g	1	93	7	70	130		
	1,3-dichlorobenzene		1.0	ug/g	1	100	7	70	130		
	1,4-dichlorobenzene		1.0	ug/g	1	103	7	70	130		
	1,2-dichlorobenzene		1.0	ug/g	1	102	7	70	130		
	1,2,4-trichlorobenzene		1.1	ug/g	1	105	7	70	130		
	1,2,3-trichlorobenzene		1.1	ug/g	1	107	7	70	130		
	dibromofluoromethane SUR		99	%			7	78	114		
	toluene-D8 SUR		107	%			8	38	110		
	4-bromofluorobenzene SUR		111	%			8	36	115		
	a,a,a-trifluorotoluene SUR		121	%			7	70	130		

chloromethane vinyl chloride vinyl viny	Method	QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Lir	nits	RPD	RP	D Limit
vinyl chloride 1.0 ugg 1 104 70 130 6 bromomelhane 1.5 ug/g 1 147 70 130 1 chloroethane 1.3 ug/g 1 117 70 130 5 trichloroethane 1.1 ug/g 1 110 70 130 5 1.1-dichloroethene 1.0 ug/g 1 170 130 6 methylene chloride 1.1 ug/g 1 110 70 130 4 trans-1,2-dichloroethene 1.1 ug/g 1 110 70 130 3 1,1-dichloroethane 1.0 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 104 70 130 2 chloroforme 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1	SW5035A82600	C MLCSD8243	dichlorodifluoromethane		0.9	ug/g	1	95	70	130		3	30
bromomethane			chloromethane		0.9	ug/g	1	89	70	130		6	30
chloroethane 1.3 ug/g 1 134 70 130 5 trichlorofuloromethane 1.1 ug/g 1 110 70 130 5 1,1-dichloroethene 1.0 ug/g 1 170 70 130 6 methylene chloride 1.1 ug/g 1 110 70 130 4 trans-1,2-dichloroethene 1.1 ug/g 1 110 70 130 3 1,1-dichloroethane 1.0 ug/g 1 103 70 130 2 chloroform 1.1 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 104 70 130 2 chlorofethane 1.1 ug/g 1 107 70 130 4 1,2-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethane 1.1 ug/g </td <td></td> <td></td> <td>vinyl chloride</td> <td></td> <td>1.0</td> <td>ug/g</td> <td>1</td> <td>104</td> <td>70</td> <td>130</td> <td></td> <td>6</td> <td>30</td>			vinyl chloride		1.0	ug/g	1	104	70	130		6	30
trichlorofluoromethane 1.1 ug/g 1 110 70 130 5 1,1-dichloroethene 1.0 ug/g 1 97 70 130 6 methylene chloride 1.1 ug/g 1 1110 70 130 4 trans-1,2-dichloroethane 1.1 ug/g 1 1110 70 130 3 1,1-dichloroethane 1.0 ug/g 1 103 70 130 2 cis-1,2-dichloroethane 1.0 ug/g 1 104 70 130 2 cis-1,2-dichloroethane 1.1 ug/g 1 107 70 130 2 chloroform 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 120 70 130 1 1,1-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethane 1.1 ug/g 1 111 70 130 1 trichloroethane 1.1 ug/g 1 111 70 130 1 trichloroethane 1.1 ug/g 1 111 70 130 1 trichloroethane 1.1 ug/g 1 111 70 130 1 trichloroethane 1.1 ug/g 1 111 70 130 1 trichloroethane 1.1 ug/g 1 111 70 130 1 trichloroethane 1.1 ug/g 1 111 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 110 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 110 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 110 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 100 70 130 1 tetrachloroethane 1.1 ug/g 1 100 70 130 1 tetrachloroethane 1.1 ug/g 1 100 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 100 70 130 3 trans-1,3-dichloropene 1.0 ug/g 1 100 70 130 3 thetrachloroethane 0.8 ug/g 1 81 70 130 3 thetrachloroethane 0.9 ug/g 1 95 70 130 3 thomoform 0.8 ug/g 1 97 70 130 3 trans-1,4-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane			bromomethane		1.5	ug/g	1	147	* 70	130		1	30
1,1-dichloroethene			chloroethane		1.3	ug/g	1	134	* 70	130		5	30
methylene chloride 1.1 ug/g 1 113 70 130 4 trans-1,2-dichloroethene 1.1 ug/g 1 110 70 130 3 1,1-dichloroethane 1.0 ug/g 1 103 70 130 2 cis-1,2-dichloroethane 1.0 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 120 70 130 4 1,2-dichloropropane 1.2 ug/g 1 120 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1			trichlorofluoromethane		1.1	ug/g	1	110	70	130		5	30
trans-1,2-dichloroethene 1.1 ug/g 1 110 70 130 3 1,1-dichloroethane 1.0 ug/g 1 103 70 130 2 cis-1,2-dichloroethene 1.0 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 104 70 130 0 1,1,1-trichloroethane 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 120 70 130 1 trichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethane 1.2 ug/g 1 121 70 130 1 trichloroethane 1.1 ug/g 1 111 70 130 4 trichloroethane 1.1 ug/g 1 111 70 130 4 trichloroethane 1.0 ug/g 1 111 70 130 4 trichloroethane 1.1 ug/g 1 111 70 130 4 trichloroethane 1.1 ug/g 1 110 70 130 4 trichloroethane 1.1 ug/g 1 110 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 100 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloroethane 1.1 ug/g 1 107 70 130 1 tetrachloroethane 1.0 ug/g 1 107 70 130 1 tetrachloroethane 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 81 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 98 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 100 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 100 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 100 70 130 3 1,1,2-tetrachloroetha			1,1-dichloroethene		1.0	ug/g	1	97	70	130		6	30
1,1-dichloroethane cis-1,2-dichloroethene cliougly clioug			methylene chloride		1.1	ug/g	1	113	70	130		4	30
cis-1,2-dichloroethene 1.0 ug/g 1 104 70 130 2 chloroform 1.1 ug/g 1 108 70 130 0 1,1,1-trichloroethane 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 120 70 130 4 1,2-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethene 1.2 ug/g 1 121 70 130 1 1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropene 1.1 ug/g 1 107 70 130 1			trans-1,2-dichloroethene		1.1	ug/g	1	110	70	130		3	30
chloroform 1.1 ug/g 1 108 70 130 0 1,1,1-trichloroethane 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 98 70 130 4 1,2-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethane 1.2 ug/g 1 121 70 130 1 1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropenehane 1.1 ug/g 1 100 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 dibromochloromethane 0.8 ug/g 1 81 70 130 3			1,1-dichloroethane		1.0	ug/g	1	103	70	130		2	30
1,1,1-trichloroethane 1.1 ug/g 1 107 70 130 5 carbon tetrachloride 1.0 ug/g 1 98 70 130 4 1,2-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethane 1.2 ug/g 1 121 70 130 1 1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropethane 1.1 ug/g 1 109 70 130 1 tetrachloroethane 1.0 ug/g 1 104 70 130 5 dibromoform 0.8 ug/g 1 81 70 130 3 <td< td=""><td></td><td></td><td>cis-1,2-dichloroethene</td><td></td><td>1.0</td><td>ug/g</td><td>1</td><td>104</td><td>70</td><td>130</td><td></td><td>2</td><td>30</td></td<>			cis-1,2-dichloroethene		1.0	ug/g	1	104	70	130		2	30
carbon tetrachloride 1.0 ug/g 1 98 70 130 4 1,2-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethene 1.2 ug/g 1 121 70 130 1 1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloropropene 1.1 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 4 trans-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 trans-1,3-dichloropena 1.1 ug/g 1 109 70 130 1 tetrachlorethane 1.0 ug/g 1 110 70 130 1 dibromochloromethane 0.8 ug/g 1 81 70 130 3			chloroform		1.1	ug/g	1	108	70	130		0	30
1,2-dichloroethane 1.2 ug/g 1 120 70 130 1 trichloroethene 1.2 ug/g 1 121 70 130 1 1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethene 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 3 trans-transcriptorethane 0.9 ug/g 1 95 70 130 3 trans-transcriptorethane 0.9 ug/g 1 86 70 130 3 <tr< td=""><td></td><td></td><td>1,1,1-trichloroethane</td><td></td><td>1.1</td><td>ug/g</td><td>1</td><td>107</td><td>70</td><td>130</td><td></td><td>5</td><td>30</td></tr<>			1,1,1-trichloroethane		1.1	ug/g	1	107	70	130		5	30
trichloroethene 1.2 ug/g 1 121 70 130 1 1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethane 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 95 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 bromoform 0.8 ug/g 1 86 70 130 3 1,2-dich			carbon tetrachloride		1.0	ug/g	1	98	70	130		4	30
1,2-dichloropropane 1.1 ug/g 1 111 70 130 4 bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethane 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 3 chlorobenzene 1.0 ug/g 1 95 70 130 3 1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 1,2-d-tetrachloroethane 0.9 ug/g 1 86 70 130 3 1,2-d-tichlorobenzene 1.0 ug/g 1 98 70 130 3			1,2-dichloroethane		1.2	ug/g	1	120	70	130		1	30
bromodichloromethane 1.0 ug/g 1 100 70 130 4 cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethene 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 97 70 130 3 bromoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 1.0 ug/g 1 98 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR			trichloroethene		1.2	ug/g	1	121	70	130		1	30
cis-1,3-dichloropropene 1.1 ug/g 1 107 70 130 3 trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethene 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 95 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 bromoform 0.8 ug/g 1 86 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 3 1			1,2-dichloropropane		1.1	ug/g	1	111	70	130		4	30
trans-1,3-dichloropropene 1.1 ug/g 1 109 70 130 1 1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethene 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 bromoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 82 70 130 3 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2,4-trichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR			bromodichloromethane		1.0	ug/g	1	100	70	130		4	30
1,1,2-trichloroethane 1.1 ug/g 1 110 70 130 1 tetrachloroethene 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 bromoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			cis-1,3-dichloropropene		1.1	ug/g	1	107	70	130		3	30
tetrachloroethene 1.0 ug/g 1 104 70 130 5 dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 bromoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 3 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 3 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane 96 % 78 114			trans-1,3-dichloropropene		1.1	ug/g	1	109	70	130		1	30
dibromochloromethane 0.8 ug/g 1 81 70 130 2 chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 bromoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			1,1,2-trichloroethane		1.1	ug/g	1	110	70	130		1	30
chlorobenzene 1.0 ug/g 1 97 70 130 3 1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 bromoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			tetrachloroethene		1.0	ug/g	1	104	70	130		5	30
1,1,1,2-tetrachloroethane 0.9 ug/g 1 95 70 130 3 bromoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			dibromochloromethane		0.8	ug/g	1	81	70	130		2	30
bromoform 0.8 ug/g 1 82 70 130 3 1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			chlorobenzene		1.0	ug/g	1	97	70	130		3	30
1,1,2,2-tetrachloroethane 0.9 ug/g 1 86 70 130 8 1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			1,1,1,2-tetrachloroethane		0.9	ug/g	1	95	70	130		3	30
1,3-dichlorobenzene 1.0 ug/g 1 98 70 130 1 1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			bromoform		0.8	ug/g	1	82	70	130		3	30
1,4-dichlorobenzene 1.0 ug/g 1 99 70 130 3 1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			1,1,2,2-tetrachloroethane		0.9	ug/g	1	86	70	130		8	30
1,2-dichlorobenzene 1.0 ug/g 1 101 70 130 1 1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			1,3-dichlorobenzene		1.0	ug/g	1	98	70	130		1	30
1,2,4-trichlorobenzene 1.0 ug/g 1 103 70 130 2 1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			1,4-dichlorobenzene		1.0	ug/g	1	99	70	130		3	30
1,2,3-trichlorobenzene 1.0 ug/g 1 103 70 130 3 dibromofluoromethane SUR 96 % 78 114			1,2-dichlorobenzene		1.0	ug/g	1	101	70	130		1	30
dibromofluoromethane SUR 96 % 78 114			1,2,4-trichlorobenzene		1.0	ug/g	1	103	70	130		2	30
dibromofluoromethane SUR 96 % 78 114			1,2,3-trichlorobenzene		1.0	ug/g	1	103	70	130		3	30
toluono D8 SIID 104 % 90 110			dibromofluoromethane SUR		96				78	114			
100 עס פע-201 איני פער 100 איני פער 100 איני פער 100 איני פער			toluene-D8 SUR		106	%			88	110			
4-bromofluorobenzene SUR 112 % 86 115			4-bromofluorobenzene SUR		112	%			86	115			
a,a,a-trifluorotoluene SUR 115 % 70 130			a,a,a-trifluorotoluene SUR		115	%			70	130			

Absolute l	Resoul	rce		N S	_				Ports	smoi 603-	ge Aven ith, NH (436-200 irceasso	03801 1								SIS		EG	U	ES	T				34		52	20)					
Company Name: Wister Sulc Company Address: 43.45144 Ma Report To:	tions						Pr	Suf	Nam U fu	ne: K	19870 NH MA VT NY	Met	1/1/2	% (4)		8021VT	Dioxane		☐ TPH Fingerprint		R		Ž/N		Wetals □ Hardness.	S			Bacteria MPN	1	romide 🗆 Fluoride	□ (gritibility/FP	☐ TCLP Pesticide	Formaldehyde				
Phone #: 603 6 Invoice to Email: VIV	Cr 1-11	1-1	rusx rusx	00	wes	ston Itian	R	eport mits: uote	ing	QAP EPA	P GW	DES) (R	XVOC 8260 NHDES 🗆 VOC 8260 MADEP	☐ VOC BTEX ☐ MIBE, only ☐ VOC B021VT	☐ MEGRO ☐ GRO 8015 ☐ 1,4-Dioxane	☐ VOC 524.2 NH LISt ☐ Gases-List	5 CI MEDRO CI EPH MADEP	☐ 8270ABN ☐ 625 ☐ 6DB	☐ 8081 Pesticides ☐ 608 Pest/PC8	neral O&G SM5520F	Conductivi	A)	☐ Priority Pollulant Metals ☐ TAL			NOT CI NIT CI NOT CI	enols 🗆 Bacteria P/A 🗆	le 🗆 Nitrate + N	Chloride Sulfate	☐ Reactive S-	OC TELP SVOC	Grain Size Herbicides Form			The state of	Compositia (C)
Lab Sample Fi	eld ID	# CONTAINERS	Xwater	Matrix	ОТНЕВ	Pre	Serva	H ₂ SO ₄	Met	HOOM	Sa DATE	1	E E	SAMPLER	□ VOC 8260 XVO	□ VOC 624 □ VOC	☐ VPH MADEP ☐	□ V0C 524.2 □ W	☐ TPH ☐ DR0 8015	☐ 8270PAH ☐ 827	☐ 8082 PCB ☐ 80	-	008 □ Hd □	TSS 🗆 TDS	RCRA Metals	☐ Total Metals-list:	Dissolved	- 1	T-Phosphorus	do l	Nitrate C Nitr		SE	Subcontract:				Grab (G) or Comp
73 BF-10 C	215-1-1	1	X			X				X	V	13/	15	1	<i>(</i>								Vis.		,		7											
TAT REQUESTED	C. shall					1	0/	1	11	7 STE	UCTION	JS												10		2	1		7									
Priority (24 hr)* Expedited (48 hr)* Standard (10 Business Days) *Date Needed	See absolute for sample currer	ING	INS	ation TRU	olicy a lists. CTIO	NS	AX (PDF	(e-ma			r;l< ,		e	we	Sfo	2	510	Нi	07.				at		45	0/0/0	ita	F	REC		ED C			K.	ES)		°C
CUSTODY RECORD QSD-01 Revision 01/09/15	Relinquishe Relinquishe	b by	1	_	Hz	4					10/	Date	1/	Tim 191 Tim 5.	ne 13	1	Reci Reci	eive	d by	Lab		ory:									1	0	afte	1,5	1/	50 Tin 41 Tin 51	ne ne	

APPENDIX H

CEMENT KILN DUST AND LIME KILN DUST MATERIAL ANALYTICAL DATA PACKAGES

Cement and Lime Kiln Dust Data In-Situ Chemical Oxidation Via Soil Mixing Kearsarge Superfund Site Conway, New Hampshire

Analyte	Units	LKD - Bedford	LKD - Marbleton	Dragon CKD	NH SRS
Calcium	(%)	42.4	48.9	31.48	
Magnesium	(%)	0.5	0.4	1.44	
Iron	(%)	1	0.4	1.02	
Aluminum	(%)	2.1	0.7	1.05	
Strontium	(mg/kg)	501	397		
Manganese	(mg/kg)	57	109	237	1000
Silicon	(%)	4.4	1.8		
Barium	(mg/kg)	231	85	63	1000
Potassium	(mg/kg)	6945	2507	9	
Sodium	(mg/kg)	853	530	171	
Phosphorus	(mg/kg)	338	128		
Titanium	(mg/kg)	1222	469		
Sulfur	(%)	2.1	3.8		
Silver	(mg/kg)	<2.5	<2.5		89
Arsenic	(mg/kg)	7	<5	23.6	11
Boron	(mg/kg)	79	40	25	1000
Beryllium	(mg/kg)	2	1	0.46	12
Bismuth	(mg/kg)	<7.5	<7.5		
Cadmium	(mg/kg)	3	3	0.9	33
Cerium	(mg/kg)	29	13		
Cobalt	(mg/kg)	12	5	4	
Chromium	(mg/kg)	25	13	49	1000 (III); 130 (IV)
Copper	(mg/kg)	16	9	5	
Mercury	(mg/kg)	0.11	< 0.02	0.05	7
Molybdenum	(mg/kg)	13	25	0.7	
Nickel	(mg/kg)	90	165	12	400
Lead	(mg/kg)	33	35	54	400
Antimony	(mg/kg)	13	5		9
Scandium	(mg/kg)	7	2		
Selenium	(mg/kg)	<7.5	<7.5	1.4	180
Tin	(mg/kg)	<11	<11		
Thallium	(mg/kg)	<4	<4	1.3	10
Vanadium	(mg/kg)	260	506	36	
Tungsten	(mg/kg)	<7.3	<7.3		
Zinc	(mg/kg)	34	28	35	1000
Zirconium	(mg/kg)	31	14		

Notes:

CKD - Cement Kiln Dust

LKD - Lime Kiln Dust

Bedford - Bedford, Quebec quarry for Graymont

Marbleton - Marbleton, Quebec quarry for Graymont

Dragon - Dragon Products Company

mg/kg - milligrams per killogram

NHDES SRS - New Hampshire Department of Environmental Services Soil Remediation Standards

Maine Environmental Laboratory

Report of Analyses

One Main Street Yarmouth, Maine 04096 Tel.: (207) 846-6569 Fax: (207) 846-9066 Email: melab@mel-lab.com

Michael Martunas April 28, 2015
Dragon Products Company Page 1 of 2

PO Box 191

Thomaston, ME 04861 Report No.: DPC241-15

Enclosed are the results of the analyses requested for your samples as received by the laboratory. Samples were received in acceptable condition and analyzed within method holding times. All quality control data was within laboratory acceptance limits unless noted. The Limit of Quantitation (LOQ) is the minimum level for reporting quantitative data. The Limit of Detection (LOD) is the minimum level for reporting estimated data. Data reported between the Limit of Quantitation and Limit of Detection are J flagged as estimated. Maine Environmental Laboratory is certified by Maine (cert. #2015007) and New Hampshire NELAP (NH ELAP) (cert. #2031). A list of certified parameters is available on request. The results reported herein conform to the most current NELAP standards where applicable unless otherwise narrated in this report. This report shall not be reproduced except in full without the written consent of the laboratory.

The complete report consists of the following sections:

Maine Environmental Laboratory report

Chain of Custody form

References

EPA - EPA600/4-79-020, Methods for Chemical Analysis of Water and Wastes, USEPA, Cincinnati, Ohio, March 1983.

EPA1 - EPA/600/R-93/100 Methods for the Determination of Inorganic Substances in Environmental Samples, Aug. 1993.

EPA2 - EPA/600R-94/111, Methods for the Determination of Metals in Environmental Samples, Supplement 1, May, 1994.

EPA3-EPA/600/R-06/115, Determination of Trace Elements in DW by Axially Viewed ICP-Atomic Emission Spectrometry, Rev 4.2 Oct. 2003

STM - Standard Methods for the Examination of Water and Wastewater, 18th edition, APHA, AWWA, WPCF, 1992.

SW8- SW846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, USEPA, third edition. Updates I-IV, 2007.

CLP - USEPA CLP Statement of Work for Inorganic Superfund Methods, ISM01.2, Exh. D, Sec. 1.6, Jan. 2010.

HACH - Chemical Oxygen Demand, Method 8000, Hach Handbook of Water Analysis, Hach Chemical Company, 1979.

HEX - EPA-821-R-98-002, Method 1664, Rev. A: N-Hexane Extractable Material by Extraction and Gravimetry, Feb. 1999.

AOA - Official Methods of Analysis of the Association of Official Analytical Chemists, 14th edition, 1984.

Authorized signature

Jacquelyn R. Villinski

Jacquelyn R. Villinski, Laboratory Director

Maine Environmental Laboratory

Report of Analyses

One Main Street Yarmouth, Maine 04096 Tel.: (207) 846-6569 Fax: (207) 846-9066 Email: melab@mel-lab.com

Michael Martunas Page 2 of 2

Dragon Products Company

PO Box 191 April 28, 2015

Thomaston, ME 04861

Report No: DPC241-15 Sampler: E. Greiner Date received: 04/14/15 Sampling date: 04/13/15

Project ID: Semi-annual CKD 04/13/15 Sample matrix: Solid-Composite Laboratory ID: DPC24115-01 Sample ID: CKD 13/04/22

Data reported on a dry-weight basis.

Date

Parameter	Results		units	Analyzed	LOD	LOQ	Method	Reference
Aluminum, total	10500		mg/kg	04/20/15	9	26	3050B/6010B	SW8
Antimony, total	ND		mg/kg	04/20/15	0.5	1.7	3050B/6010B	SW8
Arsenic, total	23.6		mg/kg	04/20/15	0.5	1.7	3050B/6010B	SW8
Barium, total	63		mg/kg	04/20/15	2	5	3050B/6010B	SW8
Beryllium, total	0.46		mg/kg	04/20/15	0.05	0.17	3050B/6010B	SW8
Boron, soluble	25		mg/kg	04/17/15	3	9	H2O/6010B	SW8
Cadmium, total	0.9	J	mg/kg	04/20/15	0.5	1.7	3050B/6010B	SW8
Calcium, total	314800		mg/kg	04/20/15	430	1290	3050B/6010B	SW8
Chromium, total	49		mg/kg	04/20/15	2	5	3050B/6010B	SW8
Cobalt, total	4	J	mg/kg	04/20/15	2	5	3050B/6010B	SW8
Copper, total	5		mg/kg	04/20/15	2	5	3050B/6010B	SW8
Iron, total	10200		mg/kg	04/20/15	9	26	3050B/6010B	SW8
Lead, total	54		mg/kg	04/20/15	2	5	3050B/6010B	SW8
Magnesium, total	14400		mg/kg	04/20/15	9	26	3050B/6010B	SW8
Manganese, total	237		mg/kg	04/20/15	9	26	3050B/6010B	SW8
Mercury, total	0.05	J	mg/kg	04/24/15	0.03	0.09	7471B	SW8
Molybdenum, total	0.7	J	mg/kg	04/20/15	0.5	1.7	3050B/6010B	SW8
Nickel, total	12		mg/kg	04/20/15	2	5	3050B/6010B	SW8
Potassium, total	2179		mg/kg	04/20/15	9	26	3050B/6010B	SW8
Selenium, total	1.4	J	mg/kg	04/20/15	0.5	1.7	3050B/6010B	SW8
Silver, total	ND		mg/kg	04/20/15	0.5	1.7	3050B/6010B	SW8
Sodium, total	171		mg/kg	04/20/15	9	26	3050B/6010B	SW8
Thallium, total	1.3	J	mg/kg	04/20/15	0.5	1.7	3050B/6010B	SW8
Vanadium, total	36		mg/kg	04/20/15	2	5	3050B/6010B	SW8
Zinc, total	35		mg/kg	04/20/15	2	5	3050B/6010B	SW8
Total Solids	58.30		%	04/16/15		0.01	CLP	CLP
Cyanide, total	0.6	J	mg/kg	04/27/15	0.5	1.7	9010C/9014	SW8
ND = not detected	J = estimat	ed	$\mathbf{B} = \mathbf{c}$	letected in bla	ank S =	DLs increased	l due to sample r	natrix

Maine Environn	nenta	l La	boratory	- Cha	in o	f Cu	ıstody			Analyses	Laboratory Report #
One Main Street Yarmou			=				- 1				DPC241-15
One man sheet raimes			nelab@ime.n	-		207)0	10 3000			Aluminum, Antimony, Arsenic,	Delivered by:
Project Manager				Telephone			Fax/E-Mail			Barium, Beryllium, Boron, Cadmium,	
Michael Martunas				207-593-	0147		michael má	rtunas@gcp	W com	Calcium, Chromium, Cobalt,	UPS
Company				Purchase Orde		 -	micrael.me	irtan as(a)gop	V.COIII	Copper, Iron, Lead, Magnesium,	
Dragon Products Company L	l.C			Requisition	on # 1	8535	4			Manganese, Mercury, Molybdenum,	Turnaround Request:
Address							10			Nickel, Potassium, Selenium, Silver,	Standard X
P.O. Box 191 / U.S. Route 1		7	Γhomaston		ME	:	0486	i 1		Sodium, Thallium, Vanadium, Zinc,	Priority
Project Name				Sampler Name						Cyanide	Quote #
Semi-annual CKD 4/13/15				Eric Greir	ner		ſ				
Sample Identification	# Containers	Container Type	Field Filtration (Yes or No)	Sample Matrix	Grab	Composite	Method Preserve d	Samp Date/	-		Laboratory Identification/ Subcontractor
CKD 13/04/22	1		No	solid		х		4/13/15	10:54	X	-01
							[
	1										
				, ,,					_		
											_
		_									
									i		
				-							
Received in hold time	∕ Xî yes		□ no	□ N/A		• •				Comments	
Received in good condition)⊠ yes		□ no	□ N/A			:				
Temp. Blank °C 2-5 /Frozen ice	packs										
Samples received preserved	/α∕ yes		□ no	□ N/A				_			
Relinquished by Sampler:	Gl	Sure	25R		Date	3/100	Time	Received	by:	woky 4/13/15	
Relinquished by:					Date	1.2	Time	Received	by:	7	
Relinquished by:					Date 4/14	115	Time 0955	Received	by Labor	ratory	
<u> </u>							, , , , , ,			15/1	**************************************

•

			Bedford	Marbleton
			K1 & K2	K2
Calcium	Ca	(%)	42.4	48.9
Magnesium	Mg	(%)	0.5	0.4
lron	Fe	(%)	1.0	0.4
Aluminum	Al	(%)	2.1	0.7
Strontium	Sr	(mg/kg)	501	397
Manganese	Mn	(mg/kg)	57	109
Silicon	Si	(%)	4.4	1.8
Barium	Ba	(mg/kg)	231	85
Potassium	K	(mg/kg)	6945	2507
Sodium	Na	(mg/kg)	853	530
Phosphorus	Р	(mg/kg)	338	128
Titanium	Ti	(mg/kg)	1222	469
Sulfur	S	(%)	2.1	3.8
Silver	Ag	(mg/kg)	< 2.5	< 2.5
Arsenic	As	(mg/kg)	7	< 5
Boron	В	(mg/kg)	79	40
Beryllium	Be	(mg/kg)	2	1
Bismuth	Bi	(mg/kg)	< 7.5	< 7.5
Cadmium	Cd	(mg/kg)	3	3
Cerium	Ce	(mg/kg)	29	13
Cobalt	Co	(mg/kg)	12	5
Chromium	Cr	(mg/kg)	25	13
Copper	Cu	(mg/kg)	16	9
Mercury	Hg	(mg/kg)	0.11	< 0.02
Molybdenum	Mo	(mg/kg)	13	25
Nickel	Ni	(mg/kg)	90	165
Lead	Pb	(mg/kg)	33	35
Antimony	Sb	(mg/kg)	13	5
Scandium	Sc	(mg/kg)	7	2
Selenium	Se	(mg/kg)	< 7.5	< 7.5
Tin	Sn	(mg/kg)	< 11	< 11
Thallium	TI	(mg/kg)	< 4	< 4
Vanadium	V	(mg/kg)	260	506
Tungsten	W	(mg/kg)	< 7.3	< 7.3
Zinc	Zn	(mg/kg)	34	28
Zirconium	Zr	(mg/kg)	31	14

Weston Solutions, Inc.

Telecon for KMC Project

Date: 10/7/2015

Time: 2 pm

Weston Personnel: Vinnie DelloRusso

Conversation with: Drew Hoffman, NHDES 603-271-6778

Conversation summary: Vinnie DelloRusso contacted Drew Hoffman to follow-up on an email sent prior to the call with data analysis on various soil amendments for stabilizing soil at the Kearsarge Metallurgical Superfund Site, Conway, NH. The call was to discuss whether Weston has approval to proceed with use of a proposed cement kiln dust that contained elevated arsenic. The rationale for use included the low volume to be used for mixing with site soil and imported native soils for stabilization, low potential for direct exposure to site soil, and the anticipated low degree of leachability anticipated due to low permeability of site soil. Drew Hoffman gave approval to proceed with use of the Dragon CKD product. Vinnie confirmed that we had one truck confirmed for delivery on Thursday 10/8/15, another truck the following day (Friday), and possibly 2 trucks on Saturday and another 2 trucks the following Monday if needed. Estimated loads were about 30 tons per load or less.

Signature: Just Walker