

EXVIC Engineering and Expeditionary Warfare Center

Horizontal Directional Drilling and Horizontal Wells to Enhance Remediation at Complex Sites

Kyle J. Carlton, PG Geosyntec Consultants, Inc.

Summer 2023

Distribution A: Approved for public release. Distribution is unlimited.

This seminar is intended to be informational and does not indicate endorsement of a particular product(s) or technology by the Department of Defense or NAVFAC EXWC, nor should the presentation be construed as reflecting the official policy or position of any of those Agencies. Mention of specific product names, vendors, or source or information, trademarks, or manufacturers is for informational purposes only and does not constitute an endorsement or recommendation by the Department of Defense or NAVFAC EXWC. Although every attempt is made to provide reliable and accurate information, there is no warranty or representation as to the accuracy, adequacy, efficiency, or applicability of any product or technology discussed or mentioned during the seminar, including the suitability of any product or technology for a particular purpose.

HDD and HWs to Enhance Remediation at Complex Sites 3

Speaker Introduction

Kyle Carlton

- Specialties
 - HDD planning and oversight
 - HW design, installation, and operation
 - Contamination assessment and in situ remediation
- Experience
 - 17 years in environmental industry (including 2 years working directly for a nationwide HDD company)
 - Project management/HDD support for 25+ HDD projects across country, including three DOD sites (Joint Base Charleston, Eglin AFB, and Robins AFB)
- Education: BS, Geology 2005 University of Alabama, Tuscaloosa
- Certifications: PG: MS, FL
- Location: Pensacola, FL

AFB: Air Force Base DOD: Department of Defense HDD: horizontal direction drilling HW: horizontal well PG: Professional Geologist

US Navy Blue Angels over Pensacola Beach, FL

(North Escambia 2022)

Two-Part Technology: Horizontal Directional Drilling (HDD) and Horizontal Wells (HWs)

Objective 1: Understand HDD basic processes, capabilities, and limitations

Objective 2: Understand **HW** applications, designs, and operations and maintenance

Objective 3: Understand the **best practices** of HDD and HW for successfully managing and implementing a project

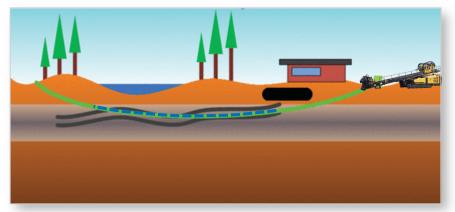
Presentation Overview

Introduction to HDD and HWs

- HDD technology overview
- HW design, construction, and installation
- HW O&M and refurbishment
- Cost considerations
- Case studies
- Conclusions and references

O&M: operations and maintenance

What Is HDD? What Is a HW?



What is HDD?

- Also called directional boring, horizontal drilling
- Rigs advance a shallow entry angle borehole with planned curvature to achieve a horizontal (near zero) pitch/orientation
- Not angled drilling or jack and bore
- Mud rotary
- Purposes:
 - Installing utilities and pipelines
 - Installing HWs (most of our discussion)
 - Informing site assessments (less common)

What is an HW?

- Also called an HDD well, collection pipe, French drain, or perforated pipe
- Horizontally placed pipe with slots/perforations
- Installed via HDD boring and trenching

Conceptual HDD boring (Environmental Science and Technology 2012)

DOD facilities where HDD/HWs have been implemented for site remediation (NAVFAC EXWC 2020)

EDTD: Ellingson-DTD

Introduction to HDD and HWs

When, Where, and Why? HDD and HWs

Access: Allows access to areas beneath surface obstacles/infrastructure, such as buildings, roads, runways/taxiways, railways, wetlands, water bodies, landfills, mine tailings, containment basins, and ash ponds. Access is primary reason for using HDD for remediation.

Coverage: HWs can cover large areas and be installed to lengths > 2,000 ft.

Targets: Targets horizontal features, such as thin geologic units, aquifers, LNAPL plumes, smear zones, and DNAPL plume.

HDD for installation of horizontal air-sparge well installation at Eglin AFB (EDTD 2023)

DTI: Directional Technologies, Inc. DNAPL: dense nonaqueous-phase liquid Introduction to HDD and HWs

Horizontal air-sparge wellhead at Eglin AFB (EDTD 2023)

HDD installation of a biosparge well at Joint Base Charleston (DTI 2019)

Remedial Applications

Remedial technologies using HWs

- Air and ozone sparge/biosparge/sparge curtains
- SVE and dual-phase extraction
- Injection
- GW extraction
- Subslab vapor extraction and VI mitigation (active or passive)
- Thermal: ERH
- Permeable reactive barrier

Investigation techniques using HDD

- Soil sampling
- GW sampling
- High-resolution site characterization and direct imaging

ERH: electrical resistance heating GW: groundwater

SVE: soil vapor extraction VI: vapor intrusion

 Performance

 Performance

Horizontal air-sparge wells beneath Taxiway B at Robins AFB (NAVFAC EXWC 2020)

Water being pumped through horizontal air-sparge well demonstrating uniform flow through well screen (DTI 2011)

Introduction to HDD and HWs

When Not to Use HDD?

Trenching

- Lack of surface
 infrastructure/utilities
- Unconsolidated soils
- Filter media around collection pipe

50-foot one-pass trenching (Geosyntec 2020)

Angled drilling

- Area beneath surface infrastructure accessible at predefined angle
- Wells can be installed through drill rods with filter packs

Angled sonic drilling (Gregory Drilling 2023)

Intro to HDD and HWs \$200

Answer:

This is the primary reason for implementing HDD for site remediation.

Presentation Overview

- Introduction to HDD and HWs
- HDD technology overview
- HW design, construction, and installation
- HW O&M and refurbishment
- Cost considerations
- Case studies
- Conclusions and references

HDD Rig Sizes and Uses

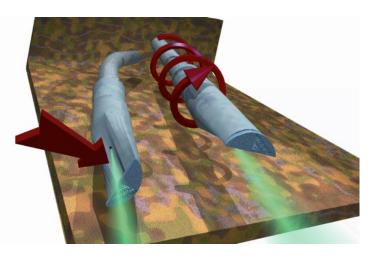
Rig Size	Thrust/Pullback	Length of Bore	Max Depth	Well Diameters	Subsurface Material
Small	24,000–40,000 lb	50–500 ft	50 ft	2–4 in	Unconsolidated soils
Medium	60,000–80,000 lb	100–1,000 ft	100 ft	3–6 in	Unconsolidated soils, cobble, and soft rock
Large	90,000–200,000 lb	300–2,500 ft	200 ft	4–8 in	Unconsolidated soils and rock

Vermeer 23x30 (Trenchless Technology Magazine 2023)

Ditch Witch JT60 (Ditch Witch 2023)

American Auger 440 (American Auger 2023)

in: inches lb: pound(s)


HDD Technology Overview

Steering Controls

- Steerable drill bits
 - Angled face to enable turns
 - Forward advancement = rotation
 - Steering adjustment
 - Tool face of bit rotated into desired position
 - Forward thrust applied from rig on drill rods
 - 10%–20% steering capabilities

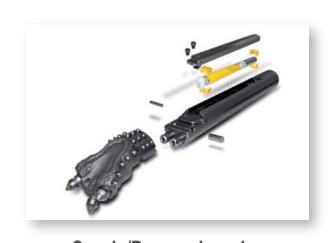
Assorted unconsolidated HDD bits for sand, clay, loose rock, granular rock, cobble/gravel (Radiushdd.com 2023)

A 3-dimensional conceptual HDD steering graphic (DTI 2023)

KEY POINT

Bend radius is the distance required for the drill string to perform a 90-degree turn.

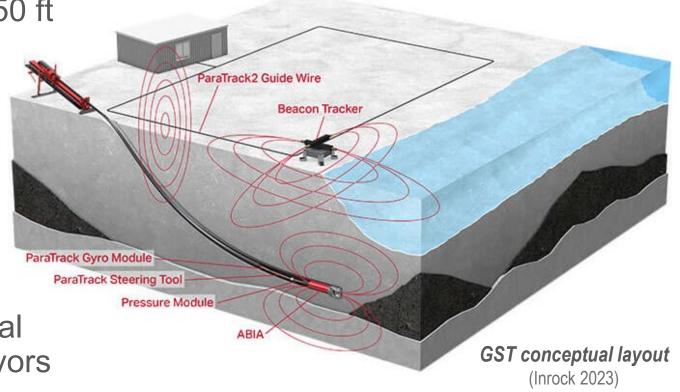
HDD rod joint (Trenchless Technology Magazine 2023)



Drill Bit Tracking Systems: Walk-Over Location

- Walk-over location
 - Is the most common type of locating system
 - Has shallower target depths (50 ft or less)
 - Must have walk-over access over target areas
 - Is subject to interferences from utilities, rebar

Walk-over locating technology, Falcon F2 system (EDTD and Underground Construction 2023)



HDD and HWs to Enhance Remediation at Complex Sites 15

Drill Bit Tracking Systems: Wire-Line and GST

- Wire-line and GST
 - Deeper target depths below 50 ft
 - Wire-line requires a wire-grid at surface for first several hundred feet
 - GST provides X, Y, Z coordinates compared to planned bore path
 - More costly and time consuming, requires additional crew, and may require surveyors to lay out bore path and grid

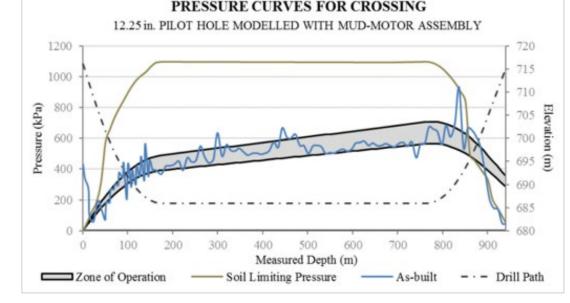
GST: gyroscopic steering tool

HDD Technology Overview

Drilling Fluids

- HDD is mud rotary! It must be, and here's why:
 - Transportation of soil/rock cuttings
 - Cleaning and cooling of cutters on bits and reamers
 - Borehole stabilization
 - Reduction of friction
 - Transmission of hydraulic power
 - Hydraulic excavation
- Drilling fluids must be properly managed
- Roll-offs, vac boxes, vac trucks, tanker trucks are required
- Recycling/recirculating mud can be beneficial (larger projects)

- Bentonite-based mud
 - Mostly used for utility installations
 - Risk of formation porosity damage (mud cake)
 - Less expensive
 - Can be developed out of well if done properly
- Biodegradable mud (biopolymers)
 - Generally considered better for HW installations
 - Less risk of formation porosity damage



Inadvertent Returns/Frac-outs

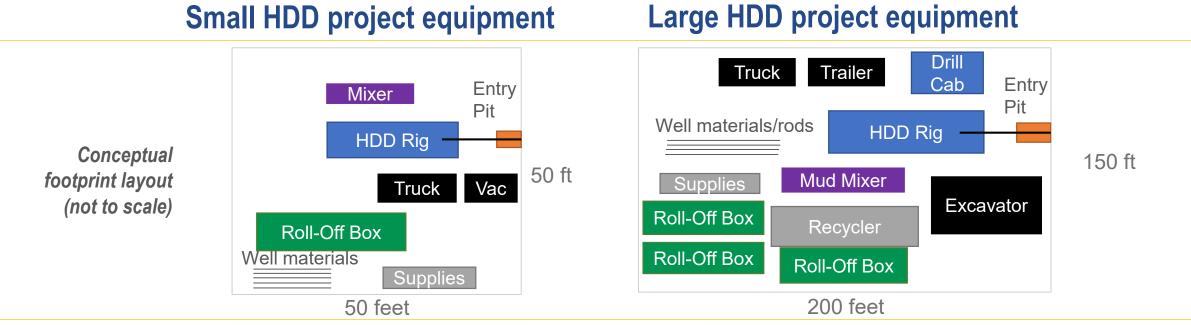
- Inadvertent returns
 - Frac-outs or hydrofracturing
 - When drilling fluids return to surface above boring (not back to entry pit)
 - Causes include utilities/structures, low drill angle, insufficient cover, soft soils, wrong equipment, wrong drilling fluid
- Mitigation
 - Understand subsurface geology
 - Prepare bore plan with sufficient cover/overburden
 - Prepare mud program, including correct mud type, viscosity, planned pressures
 - Complete hydrofracture analyses and inadvertent return analysis

HDD and HWs to Enhance Remediation at Complex Sites 17

Pressure model with as-built pressures overlain (CCI Inc. 2020)

Inadvertent returns (Utility Magazine 2016)

- Stop rotation
- Apply forward thrust to drill bit


HDD Video (Geosyntec 2021)

- Boring advancement
 - Mud jetted
 - Provides hydraulic excavation
 - Cools drill bit and beacon housing
 - Mobilizes cuttings to entry
 - Steering adjustments

HDD Equipment Footprint

Equipment footprint photographs (EDTD 2023)

Don't forget a water source!

HDD and HWs to Enhance Remediation at Complex Sites 19

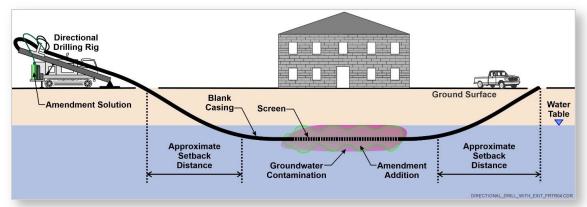
HDD Technology Overview

HDD Technology \$400

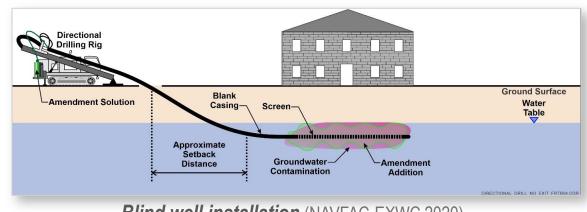
Answer:

The distance required for the drill string to perform a 90-degree turn.

Presentation Overview


- Introduction to HDD and HWs
- HDD technology overview
- HW design, construction, and installation
- HW O&M and refurbishment
- Cost considerations
- Case studies
- Conclusions and references

HW Well Types

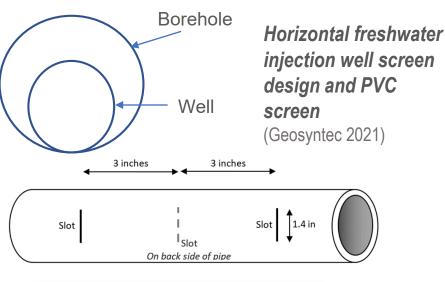


- Entry-exit wells
 - Double-ended wells or surface to surface
 - HW pulled into borehole from exit
 - Two access points
 - Larger diameter wells: up to 8 inches in diameter
 - Easier maintenance
- Blind wells (do not daylight)
 - Single-ended wells, dead-ended wells
 - HW pushed into place from entry
 - More layout options
 - Reduced total linear feet (cost effective)
 - Limited to 2-, 3-, and 4-inch-diameter wells

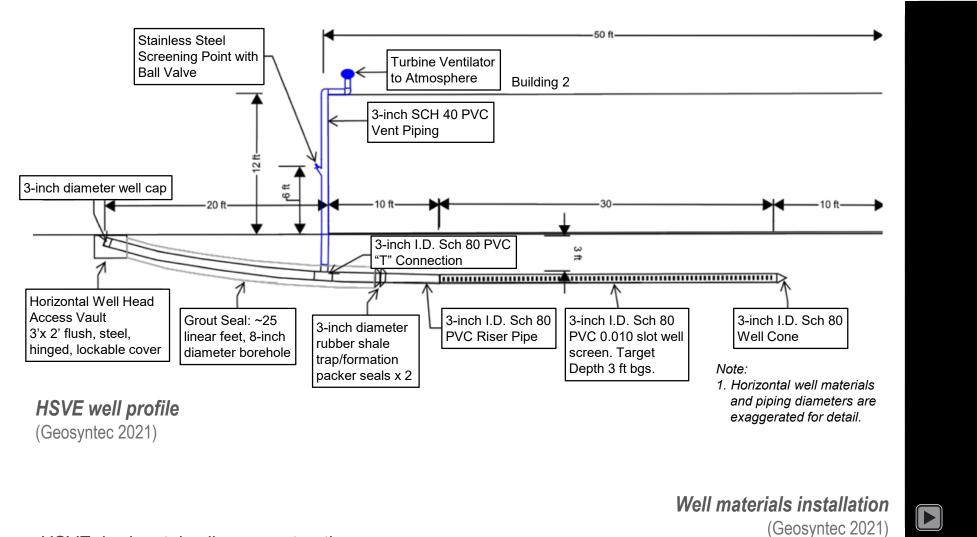
KEY POINT Use a 5:1 horizontal to vertical ratio to determine approximate setback distance.



Blind well installation (NAVFAC-EXWC 2020)


HW Materials and Screen Design

- Well materials: PVC (typically Sch 80), HDPE, SS, fiberglass
- Multiple types of stresses on well materials
- Custom slotted for remedial application
- Can be zoned to control fluid exit from screen
- Grain size analysis helps design!
 - Typically, no filter sand installed



Varying well materials and custom slotting: SS (GW extraction), HDPE (injection), PVC (SVE and injection) (EDTD and DTI 2023)

HDPE: high-density polyethylene PVC: polyvinyl chloride SS: Stainless Steel

HW Design, Construction, and Installation

HW Installation Well Video

HSVE: horizontal soil vapor extraction

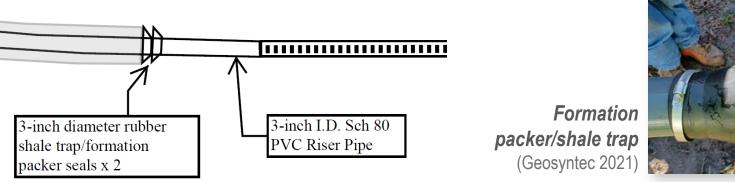
HW Design, Construction, and Installation

HW Design, Construction, and Installation

Grouting an HW

Grouting

Grout Seal: ~25


linear feet, 6-inch

diameter borehole

- Can be challenging with HDD, but important
- Cannot rely on gravity feed
- Install tremie pipe/grout line entry and exit side
- Use shale traps/formation packers prior to screen

Horizontal well head with grout tremie pipe (FPM Remediations 2018)

HW profile with grout seal design (Geosyntec 2021)

HW Development

Very important multistep process:

- 1. Remove drilling mud
- 2. Break down residual mud
 - Bentonite mud: clay dispersants
 - Biodegradable mud: enzyme breakers
- 3. Flush/jet/pump (repeat)
- 4. Manage fluid

HW Design, Construction, and Installation

Screen jetting tool (EDTD 2023)

Vac box and frac tank for fluid containment (Geosyntec 2021)

HW head flushing connection (Geosyntec 2021)

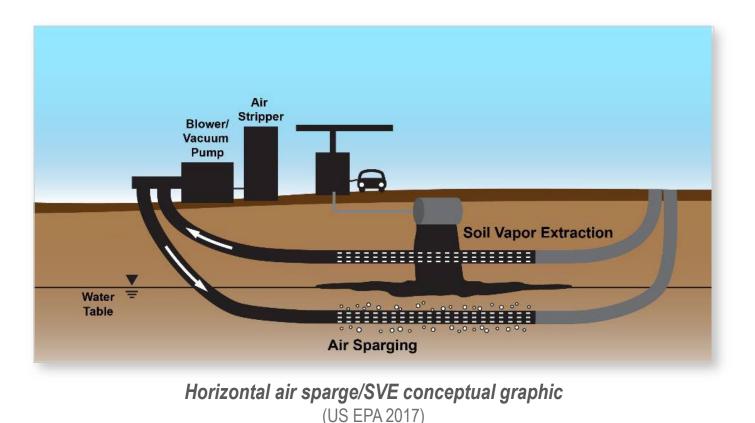
Horizontal submersible pump (EPG Companies 2023)

HW Design \$600

Answer:

This is the horizontal to vertical ratio to determine setback distance.

Presentation Overview


- Introduction to HDD and HWs
- HDD technology overview
- HW design, construction, and installation
- HW O&M and refurbishment
- Cost considerations
- Case studies
- Conclusions and references

HDD and HWs to Enhance Remediation at Complex Sites 29

US EPA: United States Environmental Protection Agency

Horizontal Air Sparge

- HW operations: air sparge
 - Larger compressors
 needed for HWs
 - Continuous or pulsating
 - Often combined SVE wells in vadose zone
 - Use HDD for conveyance conduits

HDD and HWs to Enhance Remediation at Complex Sites 30

400

300

-M Sam

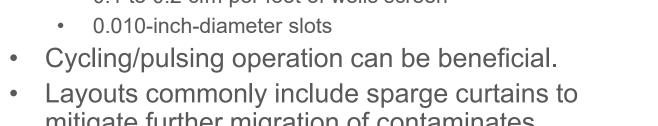
500

600

700

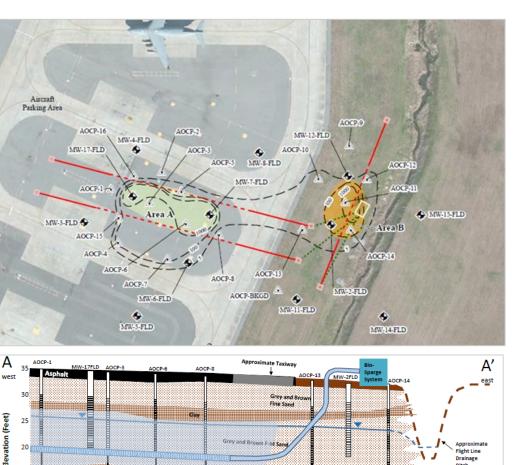
Horizontal biosparge well layouts and profile at Joint Base Charleston, flightline drainage ditch (DTI & FPM Remediations 2018, 2019)

15


Stiff Clay

200

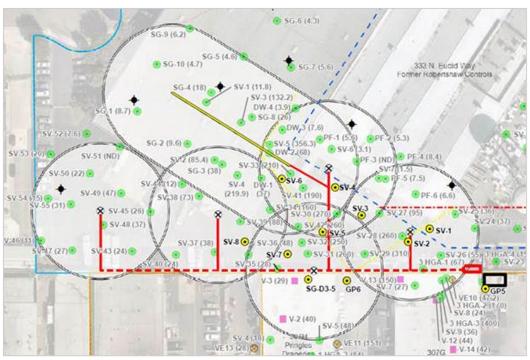
100


cfm: cubic feet per minute

HW O&M and Refurbishment

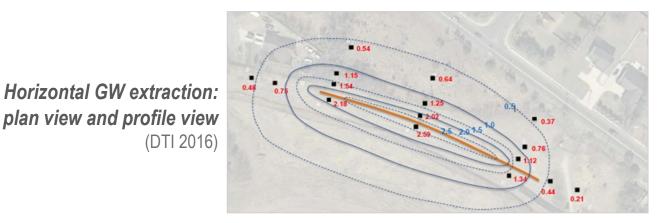
Horizontal Biosparge

- Oxygen is introduced in GW to augment biodegradation of contaminates.
- Typically, low flow compared to air sparging.
 - - 0.1 to 0.2 cfm per foot of wells screen
- mitigate further migration of contaminates.


HSVE and **VI**

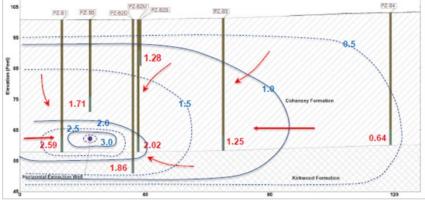
- Varied blower sizes based on well diameters and lengths
- Passive ventilation or active
- One of the most common HW remedial application

HSVE well installation (Geosyntec and EDTD 2021)



HSVE radius of influence achieved 80 ft (Geosyntec and EDTD 2021)

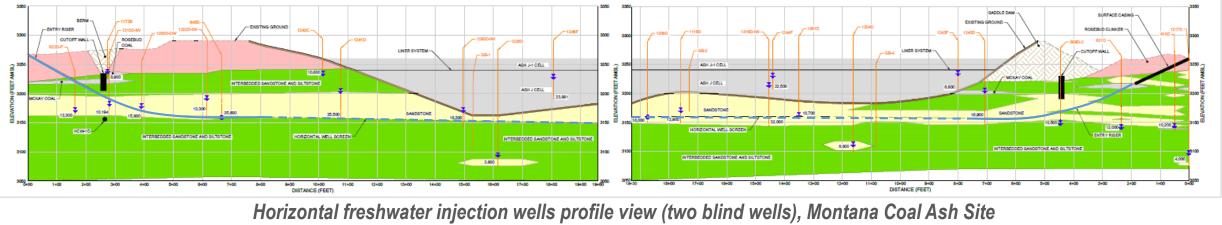
HW O&M and Refurbishment


Hydraulic Control/GW Extraction

- A trough of depression
- Double-ended well (two pumping locations)
- Grain size analysis
- Horizontal pumps
 - Maintenance
 - Risks

Horizontal GW extraction: aerial drone view (DTI 2016)

HW O&M and Refurbishment

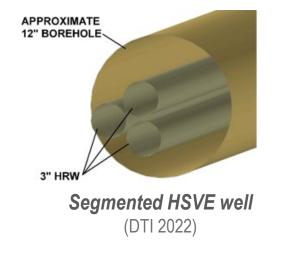

HW O&M and Refurbishment

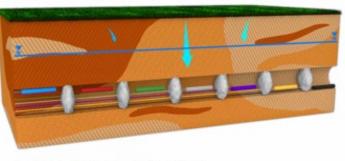
Horizontal Injection

- Permanent infrastructure for injections
- Screen design for flow
- Up-front costs higher but lessen for repeated injection amendments and application
- Injection packers isolate screen
- Daylighting/inadvertent returns

Horizontal freshwater injection pilot test GW head rise results (Geosyntec 2021)

(Geosyntec 2021)

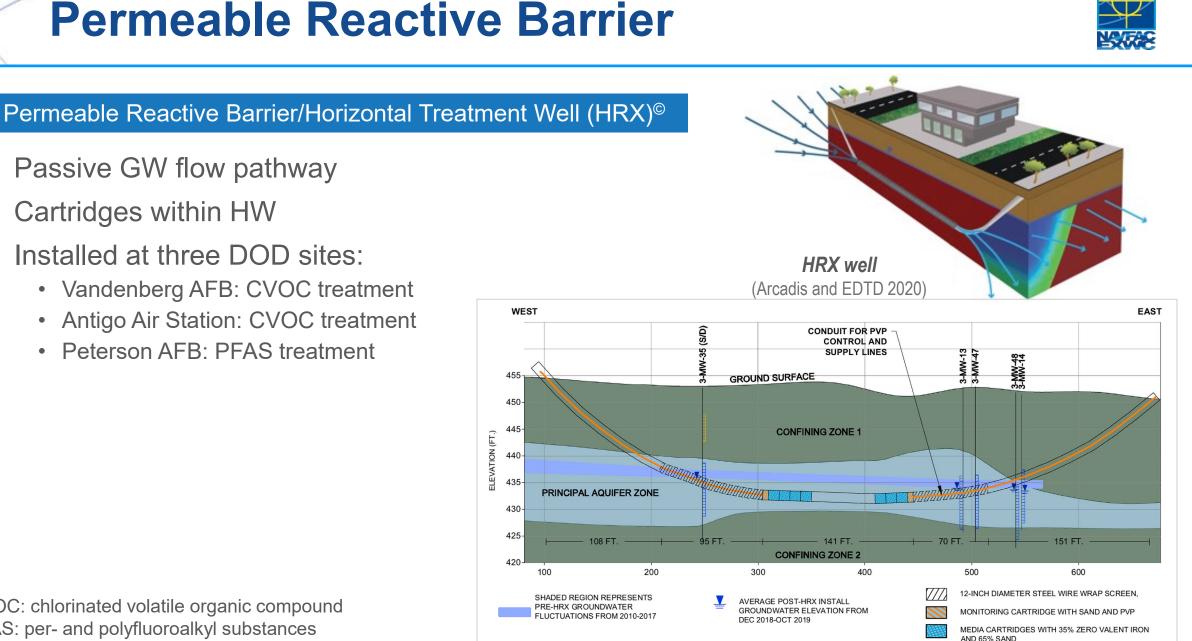




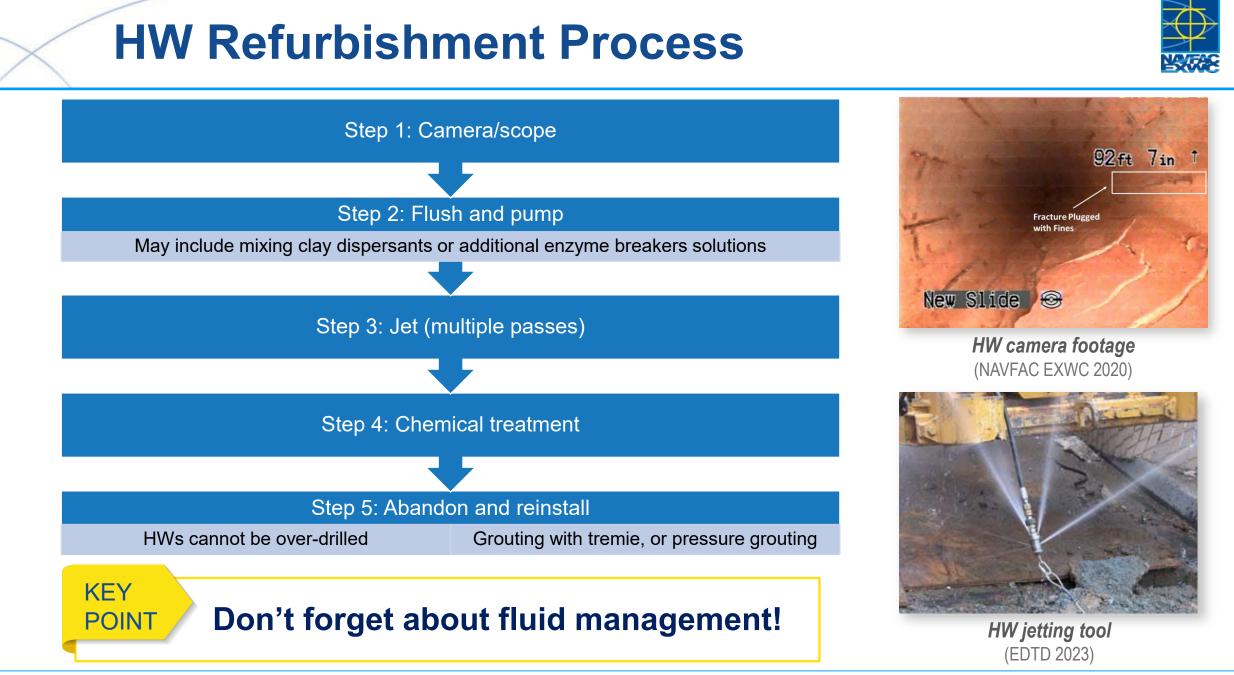
Segmented/Nested HW Systems

- Multiple well screens within one horizontal boring
- Discrete remedial approaches
 - Injection
 - SVE
 - Air sparge/biosparge

- Discrete groundwater and soil gas sampling beneath surface infrastructure
- Vertebrae[©] HW system installed at DOD site
 - Fleet Logistics Center, Jacksonville-Navy Fuel Depot, NFD Site #8, Jacksonville, FL



Sand 🔤 Silty Sand 📰 Clay 📰 Grout



Vertebrae well system (Vertebrae 2023)

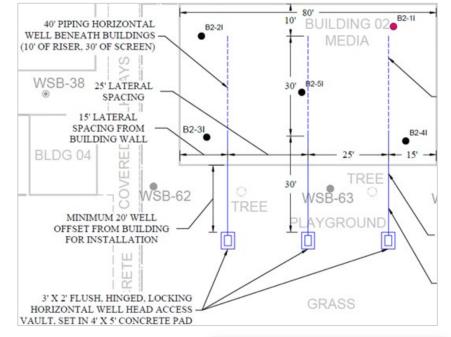
CVOC: chlorinated volatile organic compound PFAS: per- and polyfluoroalkyl substances

HW O&M and Refurbishment

HW O&M and Refurbishment

HW O&M and Refurbish

Answer:


An 80-foot radius of influence was observed from this type of well at a site in Southern California.

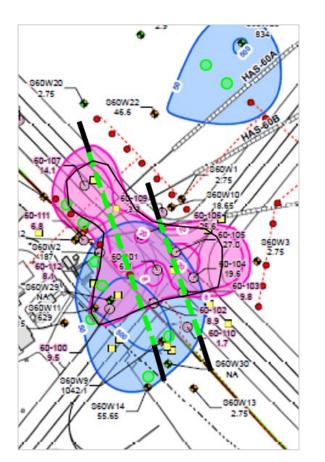
Presentation Overview

- Introduction to HDD and HWs
- HDD technology overview
- HW design, construction, and installation
- HW O&M and refurbishment
- Cost considerations
- Case studies
- Conclusions and references

HDD/HW Costs: Small Project

Small HDD project example: three HSVE wells beneath school library. Left: walk-over locating/tracking bit (Geosyntec 2021)

Estimated ranges of costs: three HSVE wells ~200 total linear ft


Line Item	Rate Range Units		Example Project Totals	Approx. Cost Totals		
Mobilization*	\$8,000-\$15,000	Lump sum	1	\$12,500		
HDD (small rig)	\$100\$140	Per foot	200	\$26,000		
Well Materials (3-inch-diameter PVC)	\$20-\$40	Per foot	200	\$6,000		
Drilling Mud	\$150	Per bag	10	\$1,500		
Grouting	\$250 - 500	Per well	3	\$1,500		
Development	\$50-\$100	Per hour	6	\$3,000		
	Estimated project total		± 25%	\$50,000		
	Estimated total price per foot		± 25%	\$250		
Other costs (outside of HDD drilling costs)						
Waste Management and Disposal	\$0.50-\$5	Per gallon	5,000	\$5,000		
Well Completions	\$250-\$500	Per well	2	\$1,000		
Screen Design	\$2,500 - \$5,000	Lump sum	1	\$3,000		
Site Restoration	\$1,000-\$3,000	Lump sum	3	\$4,500		

* Mobilization cost if using a nationwide environmental HDD firm

Cost Considerations

HDD/HW Costs: Midsize Project

Midsized HDD project example: two horizontal biosparge wells, active taxiway (Geosyntec 2020) Estimated ranges of costs: two horizontal biosparge wells ~1,500 total linear ft

Line Item	Rate Range Units		Example Project Totals	Approx. Cost Totals	
Mobilization*	\$15,000-\$25,000	Lump sum	1	\$20,000	
HDD (midsize rig)	\$110-\$160	Per foot	1,500	\$180,000	
Well Materials (3-inch-diameter PVC)	\$20-\$40	Per foot	1,500	\$45,000	
Drilling Mud	\$150	Per bag	40	\$6,000	
Grouting	\$1,000-\$4,000	Per well	2	\$4,000	
Development	\$400-\$800	Per hour	8	\$4,000	
	Estimated project total		± 25%	\$260,000	
	Estimated total	± 25%	\$175		
Other costs (outside of HDD drilling costs)					
Waste Management and Disposal	\$0.5-\$5	Per gallon	15,000	\$10,000	
Screen Design	\$5,000 - \$10,0000	Lump Sum	1	\$10,000	
Well Completions	\$250-\$500	Per well	2	\$1,000	
Site Restorations	\$1,000-\$3,000	Lump sum	1	\$2,000	

* Mobilization cost if using a nationwide environmental HDD firm

Cost Considerations

HDD/HW Costs: Large Project

Estimated ranges of costs: two horizontal GW extraction wells ~4000 linear ft

Large HDD project example: Two horizontal GW extraction wells in bedrock, each ~2,000 ft long (Geosyntec 2021)

Line Item	Rate Range	Units	Example Project Totals	Approx. Cost Totals
Mobilization*	\$50,000-\$80,000	Lump sum	1	\$60,000
HDD (large rig, wire-line, rock drilling)	\$200-\$300	Per foot	4,000	\$1,000,000
Well Materials (6-inch-diameter HDPE)**	\$30—\$60	Per foot	4,000	\$200,000
Drilling Mud	\$150	Per bag	200	\$30,000
Grouting	\$3,000-\$6,000	Per well	2	\$10,000
Development	\$500-\$1,000	Per hour	24	\$20,000
	Estimated project total		± 25%	\$1,330,000
Estimated total price per foot		± 25%	\$333	
Other co	osts (outside of HDD	drilling cost	s)	
Waste Management and Disposal	\$0.5-\$5	Per gallon	15,000	\$10,000
Screen Design	\$5,000 - \$10,000	Lump sum	1	\$10,000
Well Completions/Site Restoration	\$1,000-\$3,000	Per well	2	\$4,000
	ETRIC BURACE	3350 1300 (Liss) 1300 (Liss) 1300 (Liss) 1300 (Liss)	* Mobilization cost if nationwide environm **Prices of materials fluctuations	ental HDD firm

HDD and HWs to Enhance Remediation at Complex Sites 41

Cost Considerations

HDD/HW: Driller Selection

- Regional HDD contractors vs nationwide HDD contractors
- Licensure requirements
- Vet subcontractor experience
- Utility installation experience ≠ HW installation experience
- Utility installations do not include
 - Screen design
 - Blind/single-ended installations
 - Well development
 - Grouting
 - Waste management/hazardous IDW

IDW: investigation-derived waste

Cost Considerations

Change Order	Legitimate	Poor Planning/Driller Error
Boring Offset/Redrill	 Unforeseen obstructions Building footer Unknown utility Cobble/boulder Loss of fluids/void space 	 Poor planning Wrong entry angle Wrong drill bit Insufficient setback Missed target
Additional Drilling Fluid	Loss of returns due to unforeseen void space	Wrong viscosity or additivesPoor fluid management (should have been recycled)
Mobilization of Larger Drill Rig or Recycler	Legitimate if discussed during planning/proposal/contracting to try smaller rig, may need to mobilize larger rig	Driller says rig isn't big enough during project
Failed HW Installation	Borehole collapseObstruction shift into bore (cobble/debris)	 Installation pressures too high for materials Bend radius too steep, materials buckle Poorly fused HDPE
Necessity to Exit (blind installation)	Legitimate if discussed during planning/proposal/contracting for collapsing formations	Driller says they need to exit and was not discussed during project planning/proposal/contracting
Switch to Mud-Motor	 Legitimate if discussed during planning/proposal/contracting Anticipate ground conditions 	Driller says they need to switch to mud-motor and it was not discussed during project planning/ proposal/contracting
Material Cost Increases	 Legitimate if discussed during planning/proposal/contracting Anticipate ground conditions 	If driller's quote is firm without stipulation for adjustment in market prices of materials

Cost Considerations \$1,000

Answer:

This portion of the HW installation project is charged as an hourly rate.

Break

Presentation Overview

- Introduction to HDD and HWs
- HDD technology overview
- HW design, construction, and installation
- HW O&M and refurbishment
- Cost considerations
- Case studies
- Conclusions and references

Naval Facilities Engineering Systems Command EXXC Engineering and Expeditionary Warfare Center

Case Studies

AOC: area of concern ISCO: in situ chemical oxidation SWMU: solid waste management unit

Joint Base Charleston, South Carolina

- Case Study 1A: SWMU 145, Building 575 JP-4 Tank Leak
- Case Study 1B: AOC I, Base Gasoline Station Leak

Marine Corps Base Camp Lejeune, North Carolina

 Case Study 2: Site 88, Horizontal ISCO Injection and Recirculation

Naval Air Station North Island, California

 Case Study 3: Building 379, Combined Remedy Horizontal Well Approach for Vapor Mitigation, SVE, and NAPL Recovery

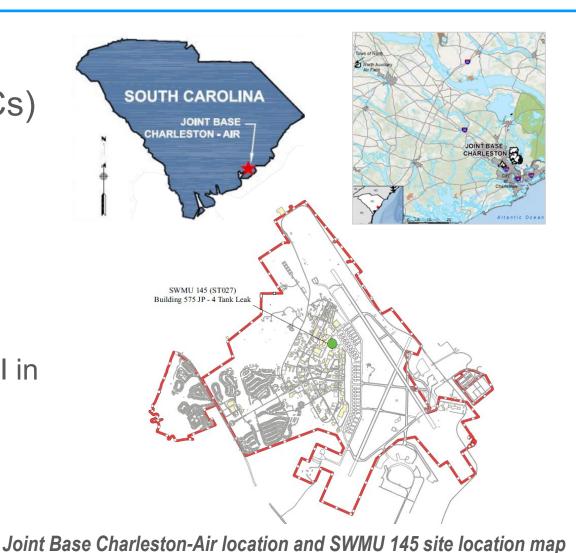
Case Study #1 Enhanced Hydrocarbon Degradation Using Horizontal Biosparge Wells at Joint Base Charleston, South Carolina

Contributors: Laura Powers, Remedial Project Manager, Joint Base Charleston, AFCEC/CZOE Katherine Pezzillo, Restoration Support Contractor, Joint Base Charleston Air/Weapons Dave Forse, CPG, FPM Remediations, Inc.

Kyle Carlton, PG, Geosyntec, Inc.

AFCEC/CZOE: Air Force Civil Engineer Center / Environmental Directive CPG: Certified Professional Geologist Photograph Source: USAF, 2006

HDD and HWs to Enhance Remediation at Complex Sites 49

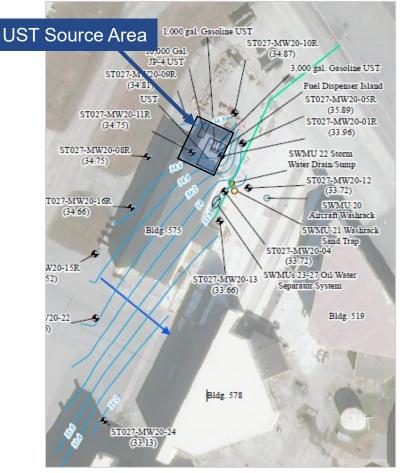

(FPM Remediations and DOD REPI 2022)

JP: jet propellant UST: underground storage tank

Case Study #1: Joint Base Charleston

Case Study 1A Building 575: Background

- HWs for biosparge remediation of residual hydrocarbons (multiple AOCs)
- SWMU 145 (ST027) Building 575
 - Three USTs
 - 10,000-gallon UST (JP-8)
 - 3,000-gallon UST (JP-4)
 - 1,000-gallon UST (JP-4)
 - USTs operated 30 years before removal in 1988
 - Soil impacts discovered during UST removal



Case Study 1A Building 575: Background

- Two new USTs installed in 1988:
 - 4,000-gallon UST for motor gasoline
 - 3,000-gallon UST for diesel
- Leak testing in 1996 discovered both USTs were leaking.
- Source is combined jet fuel, diesel, and motor gasoline.
- Site geology is as follows:
 - Sands and silty to clayey fine sands
 - GW within silty/clayey sands, flow to southeast

Case Study 1A: HWs

Access beneath source area (USTs) and


Horizontal biosparge wells

• Three wells installed in 2017

downgradient beneath building

- Target depth 25 ft bgs
- 0.010-inch slot diameter
- 0.1–0.2 cfm per foot of screen
- 3-inch-diameter HDPE
- Fourth well added in 2018 (to address naphthalene east of UST source area)

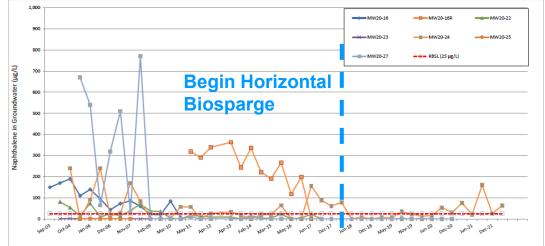
Horizontal biosparge well network (FPM Remediations 2022)

HDD

Driver

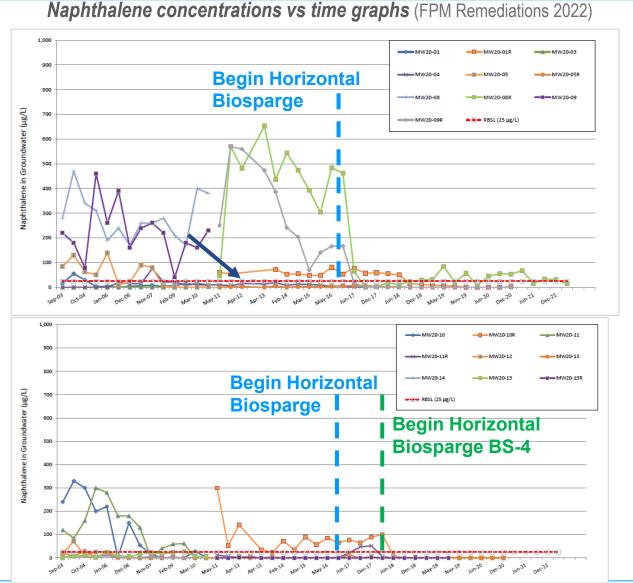
Case Study #1: Joint Base Charleston

Case Study 1A: Installation Photographs



Horizontal biosparge well installation (FPM Remediations 2018)

Case Study 1A: Operations and Results


Horizontal biosparge well operations

- 30-horsepower air compressor with 160 scfm air flow
- Began spring 2017
 - After one year of operation, only naphthalene remained above site specific target level
 - Horizontal biosparge well BS-4 installed to address naphthalene in MW-20-10R
- Periodic cycling began in 2019

scfm: standard cubic feet per minute

Case Study #1: Joint Base Charleston

Case Study 1A Building 575: Key Takeaways

Lessons Learned

- Initial coverage required expansion with fourth biosparge well
- Original compressor was oversized and replaced with smaller one (260 scfm to 160 scfm)
- Polishing biosparge events were required to address elevated concentrations outside radius of influence of horizontal biosparge wells

Successes

- Horizontal biosparge wells provided
 access to source area beneath USTs
- Horizontal biosparge wells provided access to downgradient impacted areas beneath building
- After one year of biosparging, naphthalene concentrations were above site-specific target levels in only three monitoring wells

HDD and HWs to Enhance Remediation at Complex Sites 55

COC: contaminant of concern

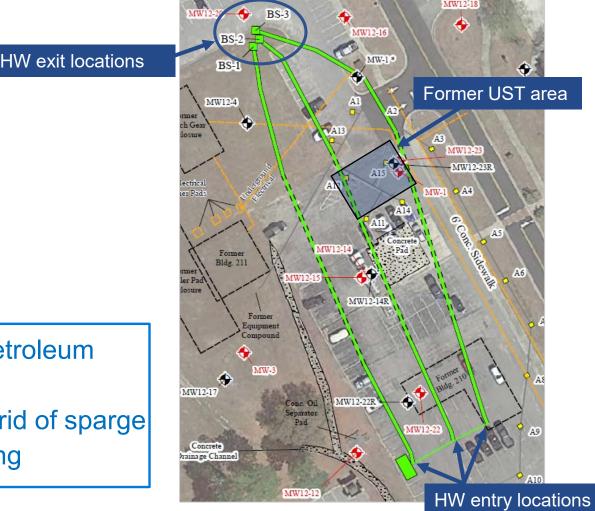
Case Study #1: Joint Base Charleston

Horizontal biosparge well network (FPM Remediations 2018)

• Three horizontal biosparge wells to address residual petroleum constituents in groundwater

Case Study 1B AOC I: HWs

• Target depth of 15–16 ft bgs


Horizontal biosparge wells

- 9–10 ft below water table
- 1–2 ft above confining clay
- Entry-exit design (exit locations congregated)
- 2-inch-diameter, HDPE, custom-slotted screen
- 375 ft total lengths per well
- 150–200 ft of biosparge screen per well
- Designed for 0.1 scfm per foot of wells screen

HDD Drivers

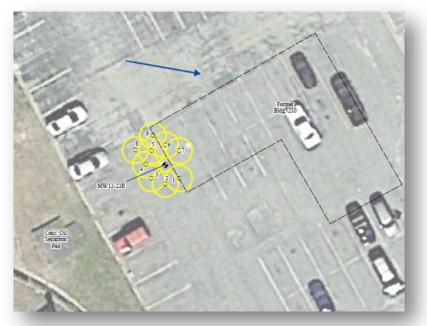
Coverage: large area to treat residual petroleum COCs in GW after excavation **Cost savings:** less costly than vertical grid of sparge points and supporting trenching and piping

Case Study 1B AOC I: Installation Photos

Horizontal biosparge well installation (FPM Remediations 2018)

Case Study #1: Joint Base Charleston

Case Study 1B AOC I: Key Takeaways



Lessons Learned

- Shallow GW resulted in surface bubbling
 - Base facility management was concerned
 - Communication is key
- Remediation system electrical compatibility issues
 - Caused delay in fulltime operations

Successes

- Large area covered
- Costs, site disturbance, and materials reduced compared to vertical grid
- Combined remedy approach for local exceedances of naphthalene
- NFA pending well abandonment spring 2023

Oxidant injection locations for local exceedance MW 12-22R (FPM Remediations 2018)

NFA: No Further Action

Case Study #1: Joint Base Charleston

Case Studies \$1,200

Answer:

During horizontal biosparge well installation at AOC-I, the bend radius was used to successfully consolidate the locations of these.

Case Study #2 Horizontal Injection Wells at MCB Camp Lejeune, North Carolina

Contributors: Monica Fulkerson, PE, Project Manager, Jacobs Jessica Persons, PE, Project Engineer, Jacobs Mike Perlmutter, PE, Senior Technical Consultant, Jacobs David Cleland, PG, Remedial Project Manager, NAVFAC

MCB: Marine Corps Base PE: Professional Engineer Photograph Source: USMC, 2023

Case Study #2: Site 88, MCB Camp Lejeune

Since 1996, PCE and daughter products in GW

- Past remedial actions, pilot studies, and feasibility study refined remedial strategies
 - ISCO

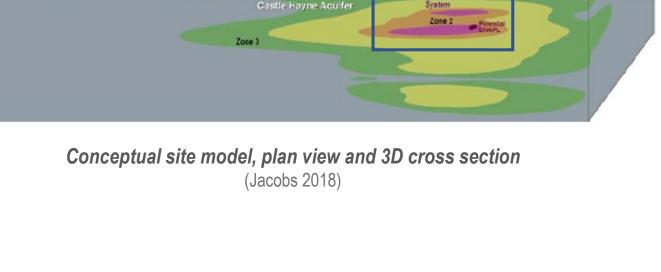
• Site 88

- Air sparging
- Enhanced reductive dichlorination

• GW plume approximately 51 acres

Monitored natural attenuation

Past site remedial actions: UST removal (five USTs total) (Jacobs 2018)


Background

Former dry-cleaning facility

PCE: tetrachloroethene

Conceptual Site Model

- Zone 1 (clayey silt, surficial aquifer):
 PCE from dry-cleaning building
- **Zone 2** (sand aquifer): migrated downward vertical gradient to underlying clay unit
- **Zone 3:** transported horizontally and vertically downgradient to west
 - Highest concentrations at ~100 ft bgs
 - Impacts up to 180 ft bgs
 - Concentrations indicative of DNAPL in Zones 1 and 2

HDD and HWs to Enhance Remediation at Complex Sites 61

Surficial Aquifer.

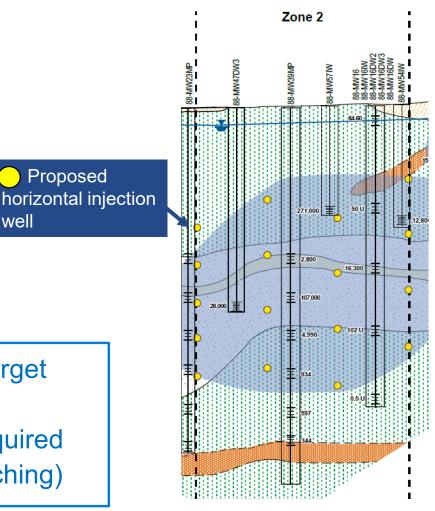
Clayey Silt

Zone 2

Potential Source

Zone 1

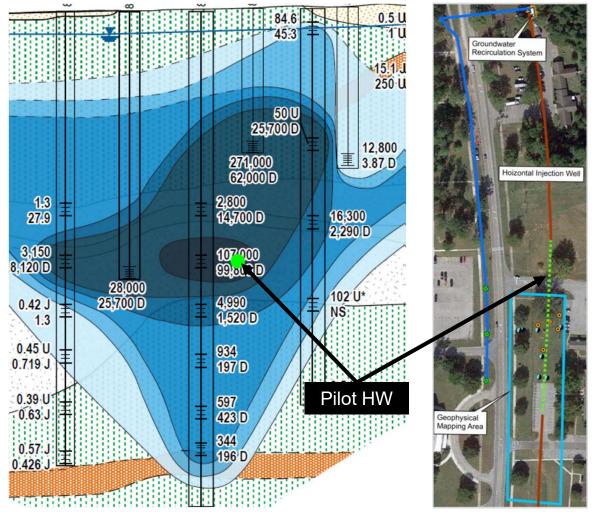
Soil Mixing Area


Zone 2 Study

- Zone 2 remedy selection
 - ISCO
 - Conceptual design
 - 17 horizontal injection wells installed with HDD
 - Injection of permanganate
 - Supplemented by recirculation
 - Pilot study recommended

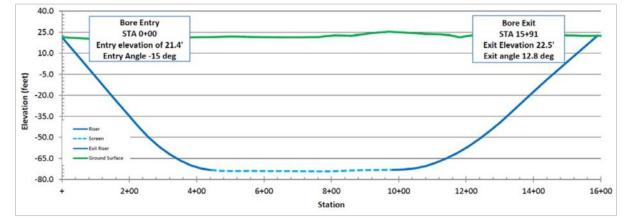
HDD Drivers **Coverage:** large target area at significant target depths (50 to 115 ft bgs) **Cost savings:** vertical wells would have required more infrastructure (vaults, piping, and trenching)

Horizontal injection well cconceptual design targets (Jacobs 2018)


well

Zone 2 Study Objectives

- Zone 2 permanganate tracer study objective
 - Evaluate feasibility and effectiveness:
 - ISCO using permanganate
 - HDD injection as effective delivery
 - Extraction and recirculation to improve distribution


Pilot test horizontal injection well target and layout (Jacobs 2018)

Zone 2 Study HDD Installation

- Pilot horizontal injection well
 - 1,560 ft long, double ended
 - 500-foot screen
 - 100 ft bgs
 - 4-inch-diameter HDPE SDR 11, custom-slotted screen
 - AA DD210 HDD drill rig

Pilot test horizontal injection well as built (Jacobs 2018)

Pilot test horizontal injection well HDD installation and bit exit

sodium permanganate

May/June 2016

• 800 mg/L sodium chloride tracer

• 98,000 gallons (42,000 lb) of 2%

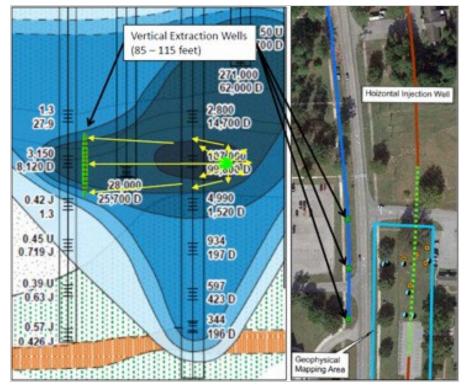
Phase 1 permanganate injections,

- Average flow rate of 65 gpm at 10 to 15 psi
- Post-injection geophysical mapping and performance monitoring, June 2016

Pilot-test injections (Jacobs 2018)

gpm: gallons per minute mg/L: milligrams per liter psi: pounds per square inch

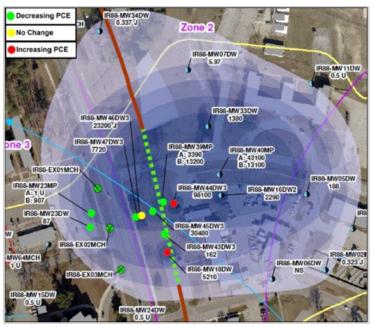
Case Study #2: Site 88, MCB Camp Lejeune


Zone 2 Study Recirculation

Phase 2 recirculation system operation, September 2016

- Three vertical extraction wells
- Spaced 125 ft apart, 160 ft from HDD pilot injection well
- Installed to 100 ft bgs
- 30 ft of well screen
- Extracted water pumped back into HDD pilot injection well, approximately 60 gpm

Pilot test recirculation (Jacobs 2018)

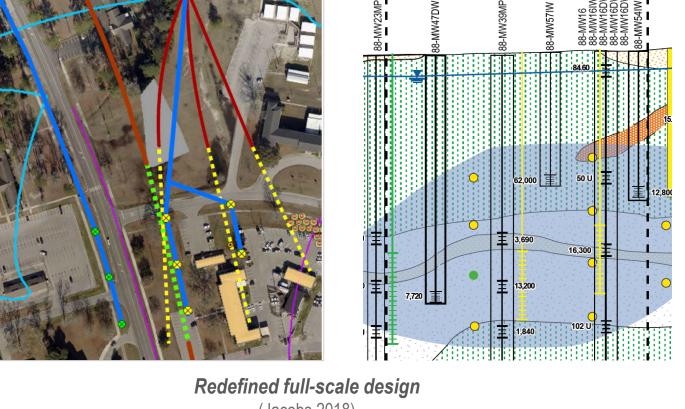


Zone 2 Study Results

- Study results
 - Post-injection results (prior to recirculation)
 - No initial signs of breakthrough in wells 7, 10, and 12 ft from injection well
 - Post-recirculation results
 - Observed tracer responses
 - 10 ft away after first day of operation
 - 25 ft away after 20 days of operation
 - Not observed 45 or 60 ft away after 30 days of operation
 - Geophysical mapping showed vertical and horizontal migration of GW: 15 to 25 ft vertical and 35 ft horizontal

- Analytical results
 - PCE reduced up to 97%
 - Total VOCs reduced up to 82%
 - Increased PCE observed 35 feet upgradient of HDD well
 - Impacted GW pulled into treatment zone

Post-pilot analytical results (Jacobs 2018)


VOC: volatile organic compound

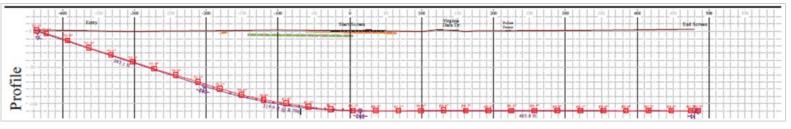
Case Study #2: Site 88, MCB Camp Lejeune

Full-Scale Design

- Refined design
 - 10 total horizontal injection wells (blind/single ended)
 - 8 vertical extraction wells
 - Operation of recirculation for 1 year subsequent of injections
 - 2 injection events

(Jacobs 2018)

Zone 2


Full-Scale Horizontal Injection Wells

- Construction: August–December 2020
- Injection and recirculation through 2022
- 10 horizontal injection wells
- Vertically nested or stacked
- Blind installation with sacrificial bit system (knock-off technology)
- GST locating device
- 4-inch-diameter PVC, custom-slotted for flow of 0.1 to 0.2 gpm per foot of screen
- Perpendicular to GW flow

Horizontal Injection Well ID	Nominal Depth (ft bgs)	Total Installed Length (ft)	PVC Blank Length (ft)	PVC Screen Length (ft)	Screen Slot Design	
UPGRADIE	NT					
HIW-2	75	750	370	380	0.016-	
HIW-3	100	840	460	380	inch, 3x10	
CENTRAL						
HIW-4	50	792	312		0.016- inch, 3x10	
HIW-5	70	851	371	480		
HIW-6	90	889	409	480		
HIW-7	110	937	457			
DOWNGRADIENT						
HIW-8	55	877	337	540	0.016-	
HIW-9	75	918	378			
HIW-10	115	976	436		inch, 3x10	
HIW-1	95	NA	NA	500	NA	

Horizontal injection well installation details (Aquia 2022)

Horizontal injection well as-built profile (Agviq 2022)

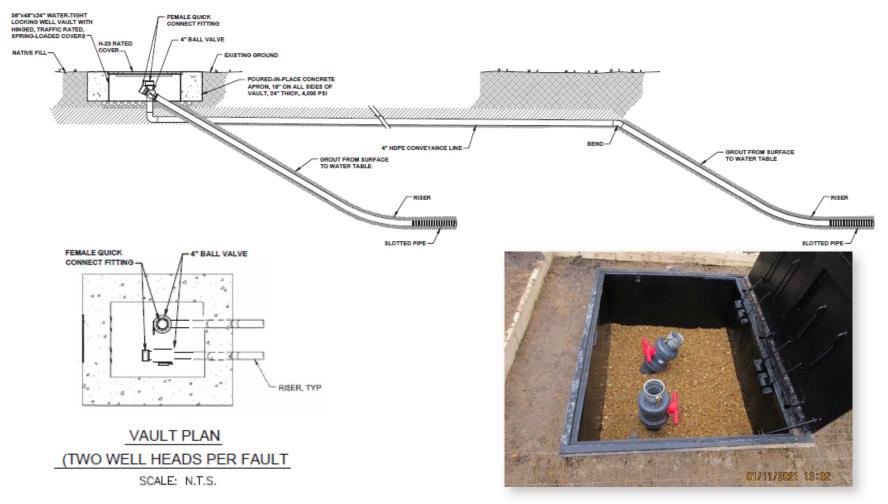
HDD Installation Photographs

Installation of horizontal injection wells

Full-scale HDD construction photographs (Aptim 2022)

Horizontal injection well development

Sacrificial drill bit knock-off bit



Case Study #2: Site 88, MCB Camp Lejeune

Horizontal Injection Well Head Design

Case Study #2: Site 88, MCB Camp Lejeune

Vertical Extraction Wells

- Five new vertical extraction wells
- Purpose
 - Induce a gradient
 - Amplify circulation with the three existing extraction wells downgradient of HIW-1
 - Circulate GW augmented with sodium permanganate
- 20 to 30 ft of screen
- Installed with rotosonic drilling methods
- Conveyance lines installed with HDD (utility driller) and conventional trenching

Vertical extraction well installation details (Agviz 2022)

Vertical Extraction Well ID	Nominal Depth (ft bgs)	Screen Interval (ft bgs)	Screen Slot Design	Well Diameter (in)	Status
UPGRADIENT					
IR88-EX07MCH	101		0.01-inch,		
IR88-EX08MCH	101	80-100	continuous wrap PVC	4	New
CENTRAL					
IR88-EX04MCH			0.01-inch,		
IR88-EX05MCH	111	90-110	continuous	4	New
IR88-EX06MCH			wrap PVC		
DOWNGRADIENT					
IR88-EX01MCH					
IR88-EX02MCH	NA	85-115	NA	NA	Existing
IR88-EX03MCH					

HDD installation of conveyance lines (Jacobs 2022)

Full-Scale ISCO Injections

- Total weight and volume ~1,871,400 lb and ~4,404,000 gallons of 2% sodium permanganate
- Overall molar mass of COCs reduced
- PCE reductions of 1 or 2 orders of magnitude

ISCO injection manifold and circulation equipment (Agviq 2022) **ISCO dosing summary for full scale though 2022** (Jacobs 2022)

Table 4. Permanganate Dosing Summary Total Dilution Water Volume arget Flowrat screen Length Pore Volume Well (feet (feet) (lb) (gallons) (gallons) (gpm) (gallons) (gallons) bgs) Upgradient Area (HIW-2, HIW-3) 734,016 Area Total: 3,949,714 311,895 27,181 710,127 Central Area (HIW-4, HIW-5, HIW-6, HIW-7) Area Total: 779,738 1,835,041 9.874.288 67,952 1,775,317 Downgradient Area (HIW-8, HIW-9, HIW-10, HIW-1) Area Total: 9,874,288 779,738 67,952 1,775,317 1,835,041 INJECTION EVENT TOTAL 23,698,290 1,871,371 163,084 4,260,760 4,404,097

Conclusions and Lessons Learned

1. HDD/horizontal injection wells

- Effective method of delivering injectate in deeper subsurface
- One of largest horizontal injection projects to date
- 2. Blind (single-ended) vs entry-exit (pilot horizontal injection well)
 - Sacrificial bit system (knock-off)
 - Eliminated exit side site disturbance
 - Better installation method in flowing sands collapsible formation
 - Reduced total footage drilled, reducing cost

3. Recirculation with vertical extraction wells

- Improved injectate distribution
- Provided cost savings through optimized infrastructure needed to create contact with impacted zones of treatment area

4. Additional injections will be required to achieve active remediation goals

Case Studies \$1,400

Answer:

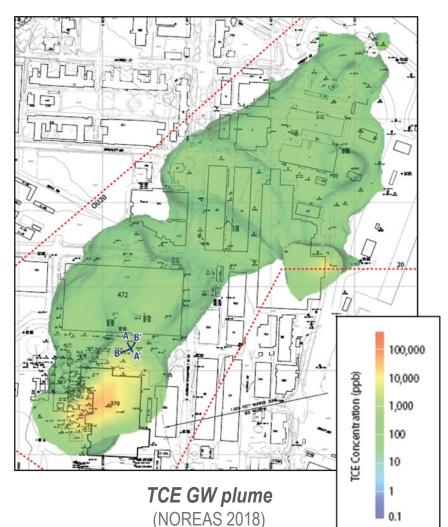
During the Zone 2 study, three of these were installed downgradient of the horizontal injection well.

Case Study #3 Enhanced Contaminant Recovery, Vapor Mitigation, and Heat Transfer Using Horizontal Wells at Building 379, Naval Air Station North Island, California

Contributors: Michael Pound, Base Realignment and Closure, BRAC

Pamela Chang, Battelle Memorial Institute

Vitthal Hosangadi, PE Civil, Vice President/Sr. Consulting Engineer NOREAS, Inc.

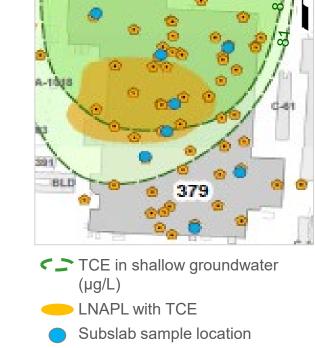

Lisa Goode, PhD, PE, Senior Engineer, Geosyntec Consultants, Inc.

Photograph Source: Getty Images

Building 379: Background

- Overlies 0.5-mile-long GW plume migrating toward San Diego Bay
- CVOCs from day-to-day operations
- Sources
 - Several USTs containing jet fuels and Stoddard solvent
 - AST leaked TCE, which migrated downward
- LNAPL present at ~23 to 25 ft bgs
 - Jet fuel and Stoddard solvent released first
 - High levels of TCE and other CVOCs (dissolved) became entrained with LNAPL while migrating downward

AST: aboveground storage tank NASNI: Naval Air Station, North Island TCE: trichloroethylene


location

Building 379: Background

- VI of CVOCs was a significant concern
- TCE in subslab soil gas up to 6,000,000 μ g/m³ (June 2014)
- Indoor air concentrations of TCE measured at 53 µg/m³ (June 2015)
- US EPA Region 9 Indoor Air Response Action Levels
 - Accelerated 8 µg/m³
 - Urgent 24 µg/m³
- TCRA implemented
- Steam lines raised temperatures of LNAPL, exacerbating subslab gas concentrations
- Measured as high as 140 °F (compared to 70 °F ambient)

TCRA: time-critical removal action µg/m³: micrograms per cubic meter

Case Study #3: Building 379, NASNI

Indoor/outdoor air sample

Baseline impacts Building 379

(NOREAS 2018)

Mitigation and Remedial Approach

Phase 1

• Consisted of sealing >15,000 ft of cracks and joints of the concrete foundation of the building

Phase 2

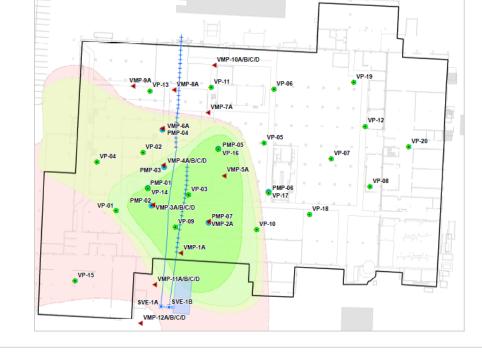
- TCRA specified subslab SVE installation of HSVE wells
- Vertical wells were not feasible. Interior of building not conducive to additional piping
- Radius of influence from one HSVE can be much greater than one SVE (Phase 1 sealing resulted in better radius of influence)

Joint sealing with flexible selfleveling silicone joint sealant (NOREAS 2018)

Phase 3

- Use steam to assist with VOC mobilization from NAPL
- Install three additional HSVE wells
- Install two horizontal NAPL recovery wells
- Install three horizontal steam injection wells

Case Study #3: Building 379, NASNI


Phase 2 HSVE Wells

- HSVE-1A and HSVE-2A (blind wells)
 - Spaced 8 ft apart, east-west orientation
 - Targeted highest soil gas concentrations
 - 140 ft of 0.010-slot SS 304
 - Approximate 50-foot setback distances
 - 10–11 ft bgs installed depth
 - Walk-over location

HDD Drivers HSVE wells **access** impacted vadose zone beneath building and achieve **coverage of a large area without interior disruption.**

WELL VAULTS (SEE DETAIL)

HDD and HWs to Enhance Remediation at Complex Sites 80

(NOREAS, 2018)

HDD HW Install Photos, Phase 2

HW installation photographs (NOREAS 2018)

C3: cooling, compression, condensation

Case Study #3: Building 379, NASNI

HDD and HWs to Enhance Remediation at Complex Sites 82

PMP-03 PMP-04 PMP-05 PMP-06 PMP-06 Negative differential pres

- PMP-01

PMP-02

Negative differential pressure measurements after SVE startup (NOREAS 2018)

-251

VMP-3A/B/C/D

VP04

154.7 @

VP15

100

Case Study #3: Building 379, NASNI

5/11/16

200

150

100

50

0 -50

-100

-150 -200

-250

Pressure (Pascals)

Phase 2 operation

 Operated for 20 months before expanding system for LNAPL recovery

HSVE Operations, Phase 2

- Approximately 6,000 lb of VOCs recovered
- GEO C3 vapor treatment

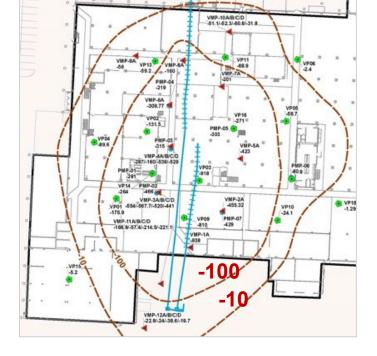
Cross-Slab Differential Pressure

5/16/16

Date

SVE

5/21/16

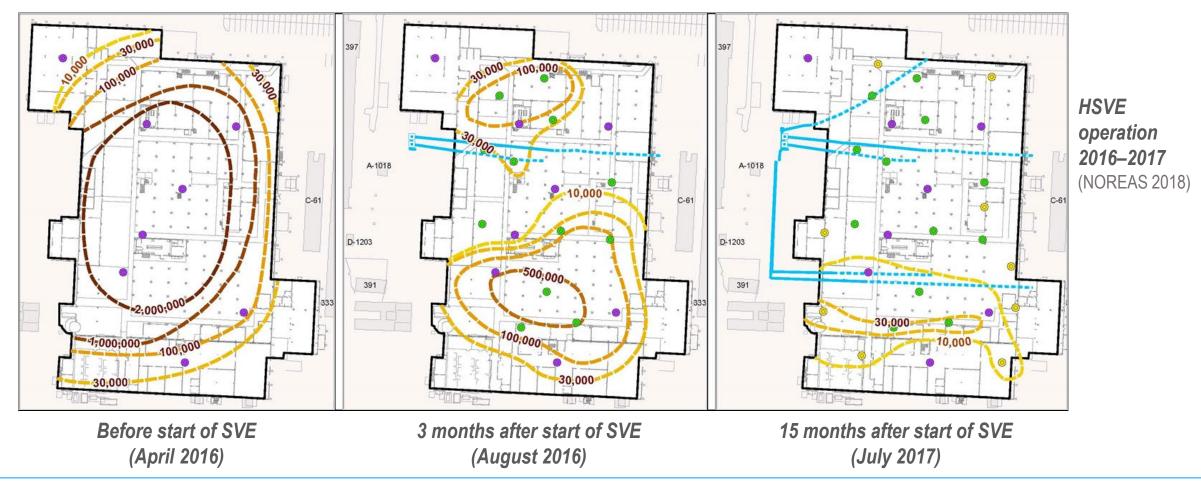

HSVE-1A and HSVE-1A layouts with observed SVE influence (NOREAS 2018)

VPt

VMP-10A/B/C/D

VMP-2A PMP-07

VMP-11A/B/C/D



HSVE Expansion, Phase 3

Three additional SVE wells installed in 2017 (as part of Phase 3)

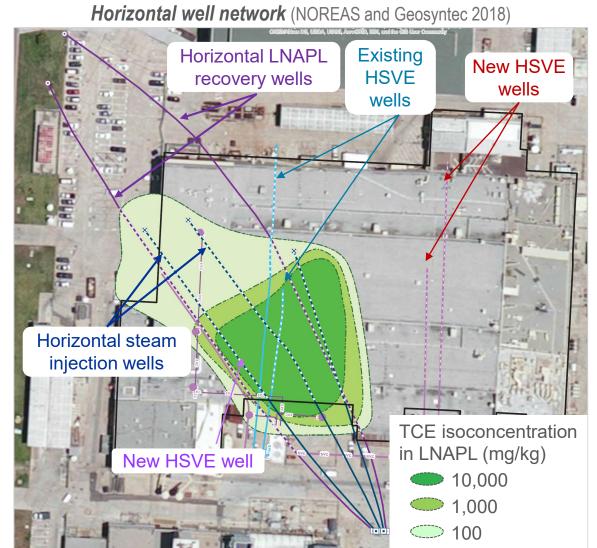
Case Study #3: Building 379, NASNI

Phase 3 HW Design

HDD

Driver

- HW design, Phase 3
 - Three additional HSVE wells
 - Target depths 10 and 20 ft bgs
 - Three horizontal steam injection wells
 - Target ~3 ft below LNAPL zone
 - Connected to base steam supply line
 - Two horizontal LNAPL recovery wells
 - Entry-exit installation
 - Historical GW levels reviewed for target depths immediately below LNAPL zone


Horizontal steam injection wells and horizontal LNAPL recovery wells access LNAPL beneath the building.

HW construction details (NOREAS 2018)

Well Type	Well ID	Screen Depth (ft bgs)	Diameter (inch)	Riser Length (ft)	Screen Length (ft)
SVE	HSVE-2A	10	3	90	130
	HSVE-2B	10	3	210	140
	HSVE-3	20	3	50	190
Steam	HSIW-1A	15	3	200	240
	HSIW-1B	15	3	170	250
	HSIW-1C	15	3	160	180
LNAPL Recovery	NAPLRW-A	25	6	470	260
	NAPLRW-B	25	6	380	350

Phase 3 HW Layout

mg/kg: milligrams per kilogram

Case Study #3: Building 379, NASNI

Horizontal LNAPL Installation Video

HDD drill bit exiting prior to pullback of horizontal LNAPL recovery well materials (NOREAS 2018)

Remediation System

- Vapors recovered and treated by GEO C3 system
- Routed through vapor liquid separator
- Condenses vapors into liquids
 - Condensate filtration
 - Coil coalescing filtration
 - Two heat exchangers
 - Two, 1,000-pound activated carbon
 vessels
- Periodic measurement of temperatures
 in product

Remediation system compound (NOREAS 2018)

- Indoor air TCE concentrations decreased below action levels within days of operation (and remain below)
- Concentrations remained low, so tenants returned to building
- Steam injections commenced 1,360 days after SVE, resulting in sharp increase of TPH recovery
- LNAPL temperature rose from ~ 70 °F to 110 °F
- Steam injection ceased due to base steam system shutdown in June 2018
- Steam injection resumed in September 2021

TPH: total petroleum hydrocarbons

• TPH extracted: 45,000 lb • TPH biodegraded: 120,000 lb • Total removed: 177,000 lb ----Cumulative TPH Extracted -Cumulative TPH Biodegraded Cumulative mass Cumulative cVOCs Extracted (lbs) (lbs) (lbs) removed Steam Start (9/20/2021) -Steam Stop (6/15/2018) (NOREAS 2022) 120,000 Steam injection start Steam injection stop **Cumulative lb** 000008 **Gumulative lb** 000009 Steam injection restart 40.000 20,000 Cumulative Hours of Operation 4 44,000 33,000 41,000 34,000 31,000 32,000 22,000 32,000 21,000 20,000 0 19,000 18,000 17,000 49,000 48,000 47,000

Operations and results (cumulative since May 2016)

Cumulative Mass Removed

CVOCs extracted: 12,000 lb

Well materials buckling and

	HSVE	Horizontal Steam Injection	Horizontal LNAPL Recovery	downhole camera showin damage (NOREAS 2018)
Advantages	 Provided access to impacts below building Abated need for interior piping for SVE 	 Used available steam to volatilize 	 HWs allow for increased well screen contact with NAPL zone 	
Challenges and Lessons Learned	 Locating interferences HDD footprint IDW SS well materials still subject to buckling 	 Steam delivery ceased shortly after startup Independent boiler for system Slot diameter to grain size 	 Greater target depth posed installation challenges, entry exit requirement Maintenance 	
Key Takeaways	 HSVE highly effective for inducing vacuum over large area Provided vapor mitigation to satisfy TCRA and improve indoor air 	 Innovative use of available heat source First horizontal steam injection wells 	 Successful combined remedy approach for significant mass removal 	92ft 7i Fracture Plugged with Fines

Case Study #3: Building 379, NASNI

New Slide 😔

What's Next?

Next Steps for Building 379

- 1. Levels of TPH and CVOCs in extracted vapor are decreasing: evaluate less-expensive treatment methods
- 2. Cyclical operations: 1 month per quarter will likely still meet the original VITCRA objective of indoor air protection
- 3. Additional HSVE: install additional HSVE between HSVE-1 and HSVE-2 to address residual elevated TCE in soil gas at depth

VITCRA: vapor intrusion time critical removal action

Case Studies \$1,600

Answer:

HWs were constructed of this durable material for Building 379.

Presentation Overview

- Introduction to HDD and HWs
- HDD technology overview
- HW design, construction, and installation
- HW O&M and refurbishment
- Cost considerations
- Case studies
- Conclusions and references

Conclusions

- HDD allows for creative placement of borings/wells for three primary remedial objectives:
 - Access beneath surface obstructions and infrastructure
 - Coverage of large areas
 - Targeting horizontal subsurface features (aquifers, smear zones, top of confining layers)
- Multiple applications for remediation and assessment
- Not a silver bullet (typically a combined remedy)
- Four key factors in successful HWs:
 - Design
 - Installation
 - Development
 - Maintenance
- HDD and HWs are used throughout the environmental industry and innovative DOD site remediation using HDD has pushed envelope and will continue to do so

Final Jeopardy Category: Horizontal Injection Wells

Answer:

At 1,976 ft and 1,973 ft, the longest blind horizontal injection wells ever installed to date¹ were installed beneath a coal ash basin located in this state known for its world class fly fishing.

Agviq, LLC. 2022. *Final Construction Completion Report. Remedial Action for Zone 2 at Site 88,* Marine Corps Base Camp Lejeune, Jacksonville, North Carolina.

Chang, Pamela, N. Durant, V. Hosangadi, M. Pound. 2018. *Successful Rapid Response Mitigation of High Strength Vapor Plume Underneath a Large, Active Navy Building.* Presented at the Conference on Remediation of Chlorinated and Recalcitrant Compounds, April 8-12, 2018, Palm Springs, CA.

Cleland, Charity, C. Delaney, M. Fulkerson, J. High, M. Perlmutter. 2018. *Distribution of Permanganate via 100-Foot Deep Horizontal Well*. Presented at the Conference on Remediation of Chlorinated and Recalcitrant Compounds, April 8-12, 2018, Palm Springs, CA.

Directional Technologies, Inc. 2023. "Case Studies." Available at: https://www.directionaltech.com/category/horizontal-well-case-studies/.

Divine, C.E., J. Wright, M. Crimi, J.F. Devlin, M. Lubrecht, J. Wang, J. McDonough, M. Kladias, J. Hinkle, Al. Cormican, T. Osorno, B.N. Nzeribe, F. Laramay, D. Ombalski, K. Gerber, and H. Anderson. 2020. *Field Demonstration of the Horizontal Treatment Well (HRX* ® *Well) for Passive In Situ Remediation*. July 26. Available at: <u>https://ngwa.onlinelibrary.wiley.com/doi/full/10.1111/gwmr.12407</u>.

Ellingson-DTD. 2023. "Case Studies" Available at: https://www.directionaltech.com/category/horizontal-well-case-studies/

ENRx/Vertebrae. 2023. "Case Studies." Available at: https://enrxinc.com/vertebrae/

FPM Remediations, Inc. & URS Group, Inc. 2018. *Corrective Action Implementation Report (Construction Completion Report)* AOC I (ST013) – Base Gasoline Station Leak GWPD Site #A-10-AA-16344, Joint Base Charleston-Air, North Charleston, South Carolina, Facility ID SC3570024460.

FPM Remediations, Inc. 2022. 2021 Annual Groundwater Monitoring Report / Corrective Action System Evaluation Report March and June 2021 Events, AOC-I (ST013) - Base Gasoline Station Leak GWPD Site #A-10-AA-16344, Joint Base Charleston-Air, North Charleston, South Carolina, Facility ID SC3570024460.

FPM Remediations, Inc. 2022. *Performance Monitoring Progress Report, December 2021 and March 2022.* AOC-P (DD540) – Flight Line Drainage Ditch, Joint Base Charleston, South Carolina, Facility ID SC3570024460.

FPM Remediations, Inc. 2022. 2022 Semi-Annual Groundwater Monitoring Report (Corrective Action System Evaluation (CASE) Report – December 2021 and March 2022). SWMU 145 (ST027) Building 575 JP-4 Tank Leak GWPD Site # A-10-AA-01829.

FPM Remediations, Inc. 2022. *Construction Completion Report, Corrective Action Progress Report, And* 1st and 3rd Quarter 2017 Groundwater Monitoring Report. SWMU 145 (ST027) Building 575 JP-4 Tank Leak GWPD Site # A-10-AA-01829.

NAVFAC EXWC. 2020. *Application of Horizontal Wells to Enhance Site Remediation.* Technical Report TR-NAVFAC-EXWC-EV-2103. Available at: <u>https://clu-in.org/download/techfocus/horizontal-wells/Horizontal-Well-Case-Studies-11_13_20_Final.pdf</u>.

NOREAS, Inc, Geosyntec Consultants, Inc., and Battelle Memorial Institute. 2018. *Soil Vapor Extraction Interim Removal Action Completion Report,* Building 349, Operable Unit 19/20.

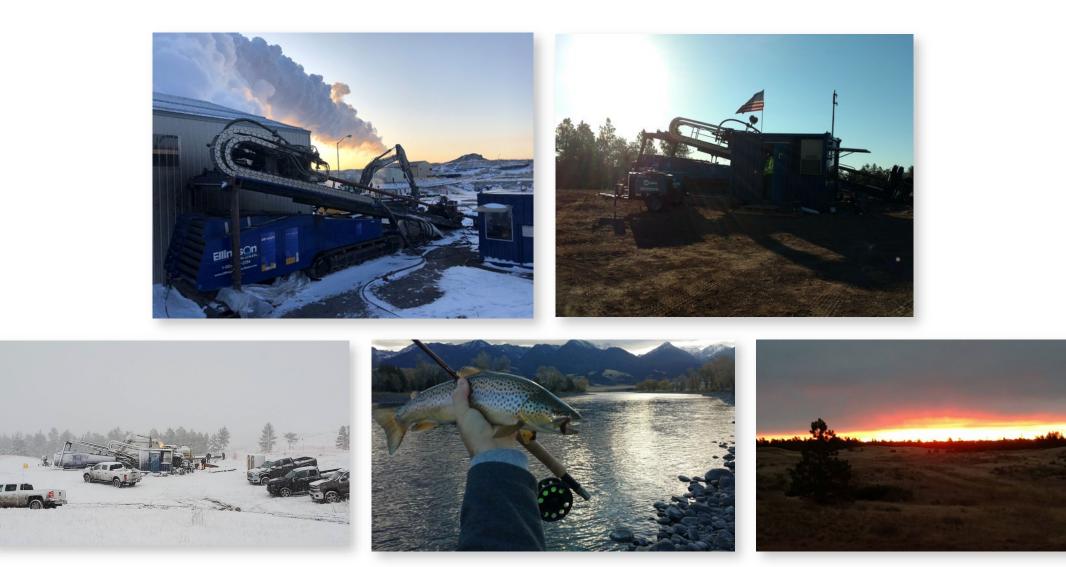
Paragon Professional Services, LLC. 2022. *Final Construction Completion Report. Remedial Action for Zone 2 at Site 88,* Marine Corps Based Camp Lejeune, Jacksonville, North Carolina.

US EPA. 2017. *How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites, A Guide for Corrective Action Plan Reviewers.* Appendix A, Horizontal Wells. Available at: https://www.epa.gov/sites/default/files/2017-10/documents/tums-app-a-oct2017.pdf

Points of Contact

Presenter

Kyle Carlton, PG


Geosyntec Consultants, Inc. (850) 830-4328

kcarlton@geosyntec.com

Topic Champion **Angela Paolucci, PG** NAVFAC EXWC (805) 982-1411 <u>angela.paolucci2.civ@us.navy.mil</u>

Questions and Discussion

Questions and Discussion